

Getting started

This chapter covers the following topics:

Glossary

Terms which are commonly used in eXo Platform applications.

Welcome to eXo Platform

Introduction to what you need to do for the first startup of
eXo Platform.

Social Intranet Homepage

Introduction to the Social Intranet homepage, the Social Intranet
applications and how to change your language.

Signing in/Signing out Social Intranet

How to sign in and sign out Social Intranet.

Changing your account settings

How to change your account profile and password.

Forgot Password

How to request a link to reset your password.

Using the Activity stream

How to post status updates, share links and documents, delete
activities/comments, comment on activities, or like/unlike
activities.

Note

According to your roles, not all features described in this guide
are available to you. Check with your administrator to assure which
features are for your account or ask for more appropriate rights.

Glossary

This section provides a number of terms that you will encounter when
implementing eXo Platform.

Site

A web-based environment which is used for aggregating and personalizing
information via specific applications with an interactive and consistent
look and feel. Users and administrators are able to integrate
information, people and processes via a web-based user interface.

Portlet

An applicative component pluggable to a site through which users can
access some specific information, including supports, updates, or
mini-applications. The portlet produces fragments of a markup code that
are aggregated into a page. Typically, a page is displayed as a
non-overlapping portlet windows collection, where each portlet window
displays a portlet. Content generated by a portlet can be customized,
depending on the configuration set by each user. Portlets can be
divided into two following types:

	Functional portlets which support all functions of a site. They
are built into the site and accessed via toolbar links when the
site-related tasks are performed.

	Interface portlets which constitute the eXo Platform interface as
front-end components of the site.

Super-user

A super-user is a special user who has full privileges and used for the
administration. In eXo Platform, this account is configured with Root, Root,
root@localhost and its memberships are
member:/organization/management/executive-board,
*:/platform/administrators, *:/platform/users,
*:/platform/web-contributors, *:/organization/employees. A super-user
has all permissions on all features of eXo Platform.

Navigation

A set of menus (sometimes so-called node tree) that contains hyperlinks
to other parts of a site. The default navigation menus in eXo Platform are
located in the top navigation bar:

[image: image0]

Space

A collaboration workspace where you can share documents, tasks, events,
wikis and more. A space can be open or closed, private or public and
space administrators can manage members and applications that are
available.

Connection

A bond among people in a network. By connecting to other people, you
will be able you to track their activities through the activity stream.

Activity

An activity is published on the Activity Stream and allows you to follow
what your connections are sharing, such as links to documents or just
moods. An activity can be made out of different parts:

	The author

	The author’s avatar

	The space

	The type of the activity (for instance Documents, Wiki, Forums,
Spaces or Connections)

	The activity message

	The featured content

	The action bars including the buttons Comment and Like

	The like section

	The comment section

Gadget

A mini web application which is run on a platform and can be integrated
and customized in the website. You can add these gadgets to your
dashboards by yourself.

Modes

eXo Platform offers two access modes by default:

	Public mode is for guest users (visitors) who are not registered.
In this mode, you are not required to sign in, but limited to public
pages in the site. After being registered successfully, you can use
the private mode, but must contact the site administrators to get
more rights or the group manager to become the member and gain the
access to the group.

	Private mode is for registered users who will apply their
usernames and passwords to sign in. This mode supports users in
taking many actions, such as creating private pages, editing or
deleting them, “borrowing” pages from others by creating hyperlinks,
changing languages to their individual needs, managing private
information.

Permission

Permission settings control actions of a user within the site and
are set by the administrators. See Managing
permissions <Administration.ManagingPermissions>
for more details.

Repository

A locus where content or digital data are maintained. Users can access
without traveling across a network.

Drive

A shortcut to a specific location in the content repository that enables
administrators to limit visibility of each workspace for groups of
users. It is also a simple way to hide the complexity of the content
storage by showing only the structure that is helpful for business
users.

In details, a drive consists of:

	A configured path where the user will start when browsing the drive.

	A set of allowed views that will allow the user to limit the
available actions, such as editing or creating content while being in
the drive.

	A set of permissions which limits the access and view of the drive to
a specified number of people.

	A set of options to describe the behavior of the drive when the users
browse it.

Node

An abstract unit used to build linked data structures, such as linked
lists and trees, and computer-based representation of graphs. Nodes
contain data and/or links to another nodes. Links between nodes are
often implemented by pointers or references.

Also, a node can be defined as a logical placeholder for data. It is a
memory block which contains some data units, and optionally a reference
to some other data. By linking one node with other interlinked nodes,
very large and complex data structure can be formed.

WebDAV

This term stands for Web-based Distributed Authoring and Versioning. In
eXo Platform, it is used as a mean to access the content repository directly
from the Sites Explorer.

Symlink

A special file which contains a reference to a document or a folder. By
using symlinks, you can easily access specific nodes (target) to which
symlinks point. In Documents, a symlink has a small chain symbol
next to its icon.

Welcome to eXo Platform

eXo Platform is a full-featured application for users to have many
experiences in building and deploying transactional websites, authoring
web and social content, creating gadgets and dashboards with reliable
capabilities of collaboration and knowledge. When you initialize eXo Platform
for the first time, the Terms and Conditions Agreement screen is
displayed as follows:

[image: image1]

Note

The Terms and Conditions Agreement screen appears in the Commercial editions only. In the Community edition, the Account Setup form appears for the first time.

This agreement contains all terms and conditions that you need to read
carefully before deciding to use eXo Platform. By ticking the checkbox at the
screen bottom, you totally agree with the eXo Platform’s terms and
conditions. Next, click Continue to move to the Account Setup form.

[image: image2]

The Account Setup window consists of 2 sub-forms:

	Create your account: Create your primary account.

	Admin Password: Change the default password of the “root” user. You
can use this account to log in eXo Platform as a super-user who has the
highest rights in the system.

You can select Skip to ignore this step, then sign in as the root user
with the default password (gtn).

Setting up your account

	Enter your information in fields.

	It is required to fill all fields, except the Username field of the
Admin Password form, which is pre-filled with “root” and disabled.
See Adding auser for
more details.

	Values entered in both Password and Confirm fields must be the same.

	You can change these entered information after logging in eXo Platform.
See Changing your account settings for more details.

	Click Submit to finish setting up your account.

Once your account has been created successfully, a Greetings! screen
appears that illustrates how to add more users.

[image: image3]

3. Click Start to be automatically logged in with your created account and
redirected to the Social Intranet homepage. Now, you can start adding more users to collaborate, creating/joining spaces, or creating/following activities.

Note

	After your accounts have been submitted successfully, the following memberships will be granted to your primary account:

	*:/platform/administrators

	*:/platform/web-contributors

	*:/platform/users

	*:/developers

	If the server stops before your account setup data is submitted, the Account Setup screen will appear at your next startup.

Social Intranet Homepage

This section introduces you to the Social Intranet homepage. Besides,
you will further learn about the following topics:

	Creating content quickly
How to create your preferred content without navigating to its
relevant application, including events, tasks, polls, topics and Wiki
pages.

	Social Intranet applications
Introduction to applications that come with the Social Intranet
homepage.

	Changing the UI language
Instructions on how to change the UI language of eXo Platform.

After signing in your account successfully, you are redirected to the
Social Intranet homepage, the starting point for exploring eXo Platform.
This homepage provides you a perfect overview of all social and
collaboration activities available in eXo Platform.

[image: image4]

There are 3 main divisions in the Social Intranet homepage:

Navigations

	Top navigation [image: image5]: Take common actions via the following
menus:

	Help: Access online guides by clicking [image: image6]. For example,
if you are in the Wiki application, but still not know how to get
started with it, simply click [image: image7]. You will then be
redirected to the instructions page regarding to Wiki in another
browser tab.

	User Profile: Change your profile information, preferences,
language or quickly navigate to your personal pages by clicking
your display name, for example: John Smith.

	Notification: Clicking [image: image8] will show all on-site
notifications. See Managing your notifications
for more details.

	Search: Search for any types in eXo Platform, such as people,
spaces, files, events, tasks, activities, by clicking [image: image9].
See Searching In eXo Platform for more details.

	Create: Quickly create content (Wiki pages, topics, polls,
events/tasks, files) from any places by clicking [image: image10]. See
Creating content
quickly for more details.

	Administration: Perform advanced actions, such as managing
users, content, applications, monitoring your system or organizing
sites, by clicking [image: image11]. This menu is only visible to members
of the web-contributors and administrator group.

	Edit: Manage certain aspects of eXo Platform, including content,
pages and sites by clicking [image: image12]. This menu is only visible to
members of editor and administrator groups. See Customizing eXo Platform
for details.

Note

The number of menus which are displayed on the top navigation may vary, depending on your role. For example the administration menu appears only for members of the group /platform/administrators.

	Left navigation [image: image13]: It is a hamburger menu which allows you
to quickly jump to :

	Applications: By default, the following applications are
available:

	Home: To come back to your social intranet homepage from any
page.

	People: To display the whole list of the platform users. You
can manage your connections, search for users using different
filters…

	Wiki: To go to your social intranet wiki application which is
shared between all users.

	Documents: To go to documents application where you can manage
your personal drive and shared files.

	Forums: To go to your social intranet forums application where
you can post and reply to discussions.

	Calendar: To go to calendar application and view personal and
shared calendars.

	Pages shared by all users in the COMPANY list.

	Spaces in the “MY SPACES” list. It is also possible to search
for spaces by clicking on Join a space.

This hamburger menu is collapsible in order to widen the area for the
activity stream:

[image: image14]

When connecting to the platform, the menu is by default expansed. To
collapse or expand it, you should click on the hamburger menu icon
[image: image15].

When collapsed, the left navigation menu displays only application’s
icons. Mousing over an icon displays a tooltip with the application’s
name. Clicking on an icon redirects you to the concerned application.

Note

	The order of applications and pages in the COMPANY list may change in case some applications are not deployed, or some additional applications/pages are implemented.

	The MY SPACES list shows the latest spaces browsed by the user. If there are more than 10 spaces in the list, the Show [X] More Spaces link appears at the list bottom. Click this link to view more spaces.

	The Show [X] More Spaces link is not displayed when the left navigation menu is collapsed. It is only available if the menu is expansed.

	When the left navigation menu is collapsed, spaces search is not possible as the search field is not available. To search spaces, you should expand the left navigation menu.

Activity Composer [image: image16] & Activity Stream [image: image17]

	From Activity Composer, you can update your status, upload and share
your document/link. See `Updating status <Share-AS>`for more details.

	From Activity Stream, you can follow activities of your colleagues
and spaces, create your own activities (liking or commenting). See
Using the Activity Stream <Share-AS> for more details.

Applications [image: image18]

Quickly perform key actions through the following applications:

	Getting Started: See a list of suggested actions you can start.
See Getting Started application for more details.

	Calendar: Get an overview of calendar events. See Calendar application for more details.

	Invitation: See a list of spaces and users who have sent connection requests to you. See Invitations application for more details.

	Suggestions: See who you may want to connect with and spaces which you can ask to join. See Suggestions application for more details.

	Who’s Online?: See who are online or send your connection request to them. See Who’s Online? application for more details.

Creating content quickly

In eXo Platform, you easily create your preferred content without navigating
to its relevant application. Simply click [image: image33] to open the drop-down
menu.

[image: image34]

Here, you can do the following actions quickly:

	Creating a task

	Creating an event

	Creating a poll

	Creating a topic

	Uploading a file

	Creating a Wiki page

Creating a task

	Simply select Task from the drop-down menu. The menu will be updated into the Create a new task form.

[image: image35]

	Fill in the Title field, and then hit the button Add.

After saving, a pop up link appears [image: image36] which points to the
created task.

Creating an event

	Simply select Event from the drop-down menu. The menu will be updated
into the Add event form.

[image: image37]

	Give details for your event, including: Title, From and To dates, time.
For more details, see Creating a new event.

	Select the calendar where your event will be created from the Select Calendar drop-down menu.

	Click Save to add your event.

A pop up [image: image38] appears indicating in which calendar the event was added.

Note

Click Cancel at any time to dismiss the Add event form.

Creating a poll

	Click Poll from the drop-down menu. This menu will be updated into
the form as below:

[image: image39]

Note

If there is no forum available in Intranet and the user has no space
forum yet, the following warning is displayed: “Sorry, no forum is
available yet to create a poll. Start by creating your own space.”

	Select the location where your poll is created from the In Location
menu. If you have at least one public forum, the “intranet” location
is selected by default.

	Click Next to open the Poll form, or Cancel to dismiss the form.

	If you select a space forum, you will be redirected to the Forums
application of the selected space after clicking Next.

	If you select “intranet” which has more than 1 forum and then click
Next, another new selection menu will be opened. The Next button now
becomes disabled until you have selected one forum from the And Forum
menu.

[image: image40]

	Fill in the Poll form. See Creating a poll for
more details.

Creating a topic

	Click Topic from the drop-down menu.

Note

If there is no forum available in Intranet and the user has no space forum yet, the following warning is displayed: “Sorry, no forum is available yet to create a topic. Start by creating your own space.”

2. Select the location where your topic is created from the In Location
drop-down menu. The “intranet” is selected by default.

	Click Next to open the New Topic form.

	If you select a space forum, you will be redirected to the Forums
application of the selected space after clicking Next.

	After clicking Next, if you select “intranet” which has more than 1
forum, one new selection will be opened that requires you to select
your desired forum as below. The Next button becomes disabled until
you have selected one forum.

[image: image41]

	Fill in the New Topic form. See Creating a topic
for more details.

Uploading a file

Simply select Upload a File from the drop-down menu. See Sharing a File for more details.

Creating a Wiki page

	Click Wiki Page from the drop-down menu.

[image: image42]

	Select the location where your Wiki page is created from the In
Location drop-down menu. The “Intranet” space is selected by default.

	Click Next to be redirected to the Wiki application of your selected
location. Here, you can navigate across spaces.

	Enter the content of your Wiki page. See Creating a page
for more details.

Social Intranet applications

Intranet applications are ones which come with the Social Intranet
homepage, including:

	Getting Started

	Calendar

	Invitations

	Suggestions

	Who’s Online?

Getting Started

The Getting Started application is displayed first in the list of the
Intranet homepage applications on the top right. This application helps
you start exploring the Social Intranet by suggesting you where to go
and what you should do first via the following links:

	Add a profile picture

	Connect to coworkers

	Join a space

	Post an activity

	Upload a document

[image: image43]

Clicking each link will direct you to the related page to do the action.

After each action is performed, it will be remarked as completed with a
strike-through even though it is not performed via this application.
Also, the completion percentage is updated on the percentage bar.

When all the actions are performed, the completion percentage will be
100%. You can remove this application from the homepage by clicking
Close or by hovering your cursor over the application header, and click [image: image44].

[image: image45]

Note

	You cannot get the Getting Started application back when it is removed.

	The “Upload a document” action is considered as completed only when a document has been uploaded in your Personal Documents drive.

Calendar

The Calendar application displays some calendars and all of their events
and tasks scheduled in the Calendar applications of Intranet and spaces.
When going to the homepage, you will see events with their start and end
date and tasks of Today. You can also see the events and tasks of the
previous/next day by clicking the previous/next arrow respectively.

[image: image46]

	To view details of an event/task directly in the Calendar
application, click your desired event/task.

	To configure and set which calendars to be displayed in the Calendar
application, hover your cursor over the application, then click
[image: image47] at the right bottom of the application.

	To remove a calendar from the list of Displayed Calendars, click [image: image47].

This removed calendar will appear in the list of Display
Additional Calendar.

	To add one of removed calendars again to the list of Displayed
Calendars, simply hover your cursor over the desired calendar,
then click [image: image48]. You can use the Search box to filter
calendars quickly.

	Click OK to accept your settings.

Note

When a task is completed, it will be remarked with a strike-through.

Invitations

The Invitations application shows a list of spaces and users who have
sent you connection requests. You can see the number of requests
displayed next to the application name.

[image: image49]

	For a user’s connection request, you will see his avatar, name and
title (if defined).

	For a space’s connection request, you will see its avatar, name, the
number of members and know if it is public or private.

You can accept/refuse an invitation by hovering your cursor over a
user/space’s name, then clicking Accept or [image: image50] respectively.

When the invitation is accepted or refused, it will permanently removed
from the list.

Note

The Invitations application is not displayed when there is no invitation.

Suggestions

The Suggestions application suggests you to connect with other users or
to join spaces. Usually, it suggests two people having the most common
connections with you, and two spaces having the most members who are
your connections. Otherwise, it will suggest the newest users or the
latest created space in the portal.

[image: image51]

	To accept the people/space suggestion, hover your cursor over their
names and click Connect or Request respectively.

	To refuse the suggestion, hover your cursor over the people/space
names and click [image: image52].

When the suggestion is accepted or refused, it will permanently removed
from the list.

Note

	You can click a person’s name suggested in the list to see his profile.

	If there is no suggestion, the Suggestions application is not displayed.

Who’s Online?

The Who’s Online? application shows all users who are already logged in
the portal.

[image: image53]

Hover your cursor over the avatar of an online user, a pop-up will show
you some information about him, such as name, avatar, current position
(if defined), and the last activity message of status activity, file or
link sharing activity (if any).

You can also see your connection status with an online user via the
corresponding button at the pop-up bottom:

	If you are not connected with him yet, the Connect button is to send
connection invitation to him.

	If you have sent a connection request, the Cancel Request button is
to revoke your connection request.

	If you are invited to connect, the Confirm button is to accept his
connection request.

	If you are already connected with him, the Remove Connection button
is to delete connection between you and him.

Note

From the pop-up, you can click his avatar or display name to jump to his activity stream page.

Changing the UI language

To change the language of eXo Platform, do as follows:

1. Click your display name on the top navigation bar, then select Change
Language from the drop-down menu.

[image: image55]

2. In the Interface Language Setting form, you will see 23 languages that
eXo Platform supports. Select your preferred language to display, for
instance English:

[image: image56]

	Click Apply to commit your changes.

Note

In eXo Platform, the priority order of the display language is as the following:
User’s language –> Cookies’ language –> Browser’s language –> Site’s language
It means the language set by the user will be at the highest level, and the site’s language at the lowest level.
Accordingly, you should pay attention to this order when selecting your preferred display language.

Signing in/Signing out Social Intranet

Signing in Social Intranet

Note

To sign in Social Intranet, you must have an account. Your account is created by the Administrators and you can change your profile and password later.
See how to add a new user in the Adding a user section.

You can sign in Social Intranet by doing as follows:
[image: image19]

	Input your Username and Password in the Connect to you account form.

Switch Stay signed in to Yes if you want to automatically return to this
portal without signing in again. This feature enables you to be
automatically authenticated to avoid doing an explicit authentication
when you access the site.

2. Click Sign in. If your account has been suspended, one message says that
“This user account has been suspended. If you think this is an error,
please contact the administrator.”.

Note

After selecting Stay signed in, if you do not sign out when you leave the portal, you will be automatically authenticated for your next visit.

Signing out Social Intranet

To sign out, simply click your display name on the top navigation bar,
then select Logout from the drop-down menu.

[image: image20]

Managing Account

To change your account information, click your display name on the top navigation bar of the site and click Settings from the drop-down menu.

[image: image21]

The account settings appears.

[image: image22]

Changing your profile information

1- Select the Account Profiles tab.

2- Change your First Name, Last Name and Email. Your Username cannot be changed.

3- Click Save button to submit your changes.

Note

The email address changed must be in the valid format. See details about the Email Address format here.

Changing your password

1- Select the Change Password tab.

[image: image23]

2- Input your current password to identify that you are the owner of this account.

3- Input your new password which must have at least 6 characters.

4- Re-enter your password in the Confirm New Password field.

5- Click Save button to accept your changes.

Note

The users who just did their login via the social networks will not have a password defined.
They should be able to reset a password via their Account Settings or via the Forgot Password feature or ask the administrator to set it (in the Manage Community page).
Once the password is set, the user can either log in via the login/password or via the social networks.

When the reset password link is clicked:
- An information message is displayed: Reset password guidelines have been sent to you. Please check your mailbox.
- The Forgot Password function is executed, and the users receive an email to guide them to change their account password.

Managing your social networks

If your administrator does not integrate OAuth with eXo Platform, you will see one message “No social network available”.
If any social network is integrated, you will see the following that allows you to link/unlink your account to the social networks.

[image: image24]

	The text fields are read-only. Each has a value when the eXo account is linked with a social network account; otherwise, it is empty.

	A social network username can only be associated with a single eXo account at one time.
Hence, if one attempts to link with a username that is already linked to another account, an error message is displayed: This {$Network} username ({$Username}) is already linked to an eXo username.
Please enter another one or ask your administrator to unlink it.

	When you click the Unlink button, the link between the social network and the eXo Platform account is reset to blank. Hence, this username can be used to link another eXo account.

Forgot Password

If you forget your password, you can request the system to send you a
link to reset it. The link will be sent to your email. It helps if you
forget the username also, but it requires an email that is set in your
account properly.

	In Login screen, click Can’t access your account? link.

[image: image24]

	In next screen, input your username or email, then click Send.

[image: image25]

	Check your mailbox. The email looks like this:

[image: image26]

4. Click the link in the email, then input your new password and click
Save.

[image: image27]

If the password is saved successfully, a popup will notify you in
seconds, then you are redirected to the Login screen.

In case the link has been expired already, you will see a notification
like this:

[image: image28]

The link expires as soon as you successfully reset the password, or
after 1 day by default. The system administrators can configure the expiration time.

Using the Activity Stream

	Sharing in the activity stream
Steps to post status updates through the Activity Stream.

	The formatting toolbar in activity messages and comments
This sections describes possible actions with the microblog toolbar.

	Mentioning someone
Steps to refer to someone in your activity composer or comment box.

	Editing an activity
Steps to refer to someone in your activity composer or comment box.

	Liking activities
Steps to show your reaction (like/unlike) towards an activity.

	Deleting an activity
Steps to remove activities from the Activity Stream.

	Getting permalink of an activity
Steps to get permanent link of an activity.

	Commenting on activities
Steps to comment on an activity that allows you to get ideas, answers, and any additional information.

	Editing a comment
Steps to edit a comment in the Activity Stream.

	Liking comments
Steps to express emotion (like or remove like) on a comment to an activity.

	Replying to comments
Steps to reply to a comment.

	Deleting a comment
Steps to remove a comment from the Activity Stream.

	Getting permalink of a comment
Steps to get permanent link of a comment.

After logging in, you will be directed to the Intranet homepage as
below.

[image: homepage]

You can see activities of other users by clicking their display name to
reach their profile page, then selecting Activity Stream. However, for
people that are not in your connections, you only can view their
activities but cannot post, comment or like on their
activity streams.

The homepage also aggregates activities from spaces, so you can keep
track of their activities without visiting every space. For example,
when there is a new post in a forum of a given space, it is displayed in
Activity Stream of the space and of the Social Intranet homepage.

You can filter what you want to see on the homepage:

[image: filter]

	[image: image29] All Activities: shows all activities from spaces,
connections and your activities. This stream is selected by default.

	[image: image30] My Spaces: only shows activities created in spaces where
you are member.

	[image: image31] Connections: shows activities created by your
connections.

	[image: image32] My Activities: shows your activities (inside and outside a space) and activities where you were mentioned in, that you liked or where you left comments.

To access your Activity Stream page, click your display name on the
top navigation bar, then select My Activities.

You will be then directed to your Activity Stream page.

Note

In Activity Stream, the order of activities is based on the last date when you create a publication action, or post a new comment. This means the last publication or comment will be auto-updated and pushed up to the top of the Activity Stream so that you will not miss any recent activities.

Sharing in the activity stream

Using the acivity stream, you are able to share with your connections or
other space members (in the space’s activity stream):

	A text Message to ask for help or to inform something.

	A link.

	A single file or many files.

[image: image57]

Posting a text message in the activity stream

To share a text message with your connections or to other space’s members, follow these steps:

1. Click on Message tab form the activity composer, an area for message
composing appears with a formatting toolbar.

[image: image58]

	Type your message, you can format it using the buttons of the formatting toolbar:

[image: image59]

	[image: image60]: Selecting a text then clicking on that button makes it in
bold format.

	[image: image61]: Selecting a text then clicking on that button makes it in
italic format.

	[image: image62]: Selecting a formatted text then clicking on that button
eliminates the formatting on it.

	[image: image63]: Allows to add/remove a numbered list.

	[image: image64]: Allows to add/remove a bulleted list.

	[image: image65]: Allow to quote a text.

	[image: image66]: Allows to insert a link in the text message.

	[image: image67]: Allows to attach an image to the text message.

Click on [image: image68] button to share the message in the activity stream.

[image: image69]

Posting files in the activity stream

You can share a file or many files with your connections or in a space’s
activity stream by following this procedure:

Click on File tab form the activity composer, an area allowing to upload
file appears:

[image: image70]

Select the desired file or files. More details in Share multiple documents in activity stream
section.

You can add a text message or not and then click on [image: image71] button to
share the file(s) in the activity stream.

[image: image72]

Posting link in the activity stream

In additions to posting messages and files in activity stream, you can
also share link by making these steps:

Click on Link tab form the activity composer, two areas appears:

	Composer: allowing to add or not a text message with the link.

	Link area: allowing to attach a link in the activity stream.

[image: image73]

Add the link in the corresponding area and then click on [image: image74].

The link is attached and a thumbnail appears with a brief text from the
corresponding page to the link:

[image: image75]

You can check No thumbnail to remove the thumbnail display.

Add or not a text message and then click on [image: image76] button to share
the link.

[image: image77]

Note

If the activity composer is empty, the [image: image78] button still grey and unclickable until adding something (a text message, a link or a file) in the activity composer area.

The formatting toolbar in activity messages and comments

The formatting toolbar (or the microblog component) is present at every
place where you can add text message. It allows you to:

	format your text: bold, italic, numbered list, bullet list

	quote a previous message.

	insert a link in your status message/comment

	insert an image in your status message/comment.

[image: toolbar]

Text formatting in the microblog

You can format your text to make it richer and more readable by using
different effects.

Select the text you want to format. Then click on one of the buttons
from the formatting toolbar to apply its effect:

	[image: image79] The first button formats the text as bold.

	[image: image80] The second button formats the text as italic.

	[image: image81] The third button clears the existing format.

	[image: image82] Writing a text then clicking on the fourth button adds the
text to a numbered list. Clicking on Enter button of the keyboard
adds a new line with the following number.
When the listing is finished, to exit from the numbered list, you should click twice on Enter button of the keyboard.

	[image: image83] Typing a text then clicking on that button adds a bullet
list. When you finish your listing, you need to double click on Enter
button of the keyboard.

Quote text in the microblog

The formatting toolbar allows you to quote a previous text message. To
do this, click on the Quote button [image: image84] and then copy and paste the
text you want to quote.

Double click on the Enter button on your keyboard to leave the quote
area.

[image: image85]

Insert link in the microblog

To insert a link in your text message/comment, click on the link button
[image: image86] to bring up a Link form . Type the text and link into this
form.

The text you type will appear in your message/comment and will redirect
users to the inserted link.

[image: image87]

You can also link to text that has already been typed. Select the text,
then click on the Link button [image: image88].

The Link form will appear with the Text field already completed. To
finish, type the link.

[image: image90]

Note

It is also possible to add a link by right-clicking in the text area then selecting Link.
[image: image91]

Insert image in the microblog

The last button of the formatting toolbar in the microblog is the Insert
Image button allowing you to insert an image in your message/comment.

To insert an image in your text message/comment, follow these steps:

	Click on the Insert Image button [image: image92] to open the Select image form.

[image: image93]

You have four options:

	Drop an image: drag and drop an image from your computer. A progress
bar will appear to indicate the upload progress.

[image: image94]

When the upload has ended, the image will appear in the dedicated
area.

[image: image95]

	Upload an image from your desktop: It allows you to select an image
from your computer. Browse for the image and double-click on it to
select. A progress bar will appear to indicate the upload progress.

When the upload has ended, the image will appear in the dedicated
area.

	Select on server: select an image already on the server from your
drives. Clicking on the link opens the Select files form.

[image: image96]

Navigate through your drives and then select an image. This will be
directly displayed in the dedicated area.

	Pick an image online: insert an image using its URL. Paste the image
link into the Image URL field. An upload time will appear and the OK
button will be greyed.

[image: image97]

When the upload has ended, the image will appear in the dedicated
area and the OK button will become clickable.

Note

Click on the Cancel button to return to the screen showing the options. When picking an image online, click on the Back button. This button will disappear when the image is fully uploaded.

	To choose the alignement you want, click on one of the three buttons.

[image: image98]

3. Click on the OK button. The image will appear in the comment/message
area.

[image: image99]

	To resize, hover over the image to bring up a black frame. Manipulate the frame to the size you want.

[image: image100]

	When you right click on the image, a contextual menu appears:

[image: image101]

	Click on Copy followed by Paste to duplicate the image in the editor.

	lick on Cut followed by Paste to move the image to another location
in the editor.

	Click on Change Image to open the Insert Image form prefilled with:

	the image preview.

	the image alignment as previously selected.

	the Remove Image link allowing you to remove the image and start
again.

	Click on Link to open the Link form allowing you to insert an image
using its URL.

Note

After you’ve finished resizing the image and posted it in the activity stream, the image will appear with the exact size you defined. Otherwise it appears in its default size.

Mentioning someone

Mention is a way to refer to people so that they are informed of who and
what you are talking about. Mentioning someone is possible in activity
stream composer, activities comments and also document comments. To
mention someone, do as follows:

1. Type the “@” symbol into the activity/comment composer, then type the
person name you want to mention.

A suggestion list that contains matching characters will appear.

Only one person can be selected at one time.

Note

When mentionning a user with “@”, it displays in first positions contacts in your connections, then other people

[image: image102]

2. Go through the suggestion list with the “Up” and “Down” arrow keys or by
moving your cursor over it, then click or hit the “Enter” key to
validate your selected person.

Note

Only one person can be selected at one time.

After being validated, “@” and following characters will be replaced
with First name and Last name which are wrapped in a label. You can
click [x] in the label to dismiss it.

[image: image103]

In the Activity Stream, the mention is displayed as a link to the mentioned user’s profile page.

[image: image104]

Note

	You can do the same steps above to mention someone in your comments (document comments and activity comments).

	The person you mention also sees the post in his/her Activity Stream.

	Document comments appears also in the Activity Stream.

Editing an activity

Starting from eXo Platform 5.2, you can edit an activity you posted.
To edit an activity, proceed as follows:

	Click the pulldown menu on the top right of your activity : [image: image135]. Two entries appear: Edit and Delete.

[image: image136]

	Click on Edit –> Your activity’s text appears in the editor area allowing you to make changes.

[image: image137]

	Make the needed changes and then click on Update button.

Note

The Update button remains disabled until at least one change is done.

	If you click the Cancel button, your changes will be ignored.

Note

Edition is only possible on written text or inserted images added via the CKEditor toolbar.
Attached images, files or link
(added through the dedicated tab) can’t be edited.

[image: image138]

If the activity contains only attachments (link or files and/or images) the edit button opens the
editor allowing you to type a text message.

[image: image139]

After saving the change you made on your activity, the activity creation timestamp will be updated by a new
label under your name indicating the time of the last edit:

[image: image140]

If you mouseover the timestamp, a popover appears indicating the original time of activity post.

[image: image149]

Warning

Activities automatically generated from other aplications such as:

	Adding a topic or replying to a forum discussion

	Creating or joining a space

	Updating your profile

	Adding/Editing a wiki page

	Closing, opening or locking a topic in Forum application

	Adding a poll to a topic

	Editing an event in Calendar

	Moving a wiki page

	Editing a space’s description/avatar

	Connecting with a new user

are not editable, you just can delete them when you click on [image: image146] button.

Only activities generated following a document upload in Documents application are editable,
you can add a text message to that activity.

Liking activities

You can “Like” an activity to show your interest and support to that
activity.

Liking an activity

Click [image: image110] under the activity you like, a tooltip appears [image: image111].
When you like an activity, the “Like” button will be highlighted to show
that you already click “Like” on that activity. The activity displays
the information of like numbers or people who also like the activity
right below it. If many people have liked the activity, you can click
[image: image112] to expand the view to see other “likers”.

[image: image115]

Unliking an activity

To unlike a “Liked” activity, simply click [image: image113].

When disliking, a tooltip dislike appears. [image: image114]

Deleting an activity

You are allowed to delete your activities that you created, and
those in your activity stream and in the space where your are the manager.

	Change the activity filter to All Activities or My spaces to view all of your activities.

[image: image105]

	Click on the pulldown menu on the top right of your activity you want to delete.
Two entries appear: Edit and Delete.

[image: image106]

	Click on Delete button –> A confirmation pop up appears.

[image: image107]

	Click Yes button in the confirmation message to accept your deletion.

Note

As an eXo Platform user, you can only delete your own activities.
If you are manager of a space, you can delete any activity posted in your space.

	If you click Cancel button, nothing happens.

Getting permalink of an activity

You can easily get the link of any activity (either edited or not)
from the activity stream to share with others. With this feature, you can bring the
attention of other users to an activity/comment without the need to mention them.

To get the permalink to an activity, just click on its timestamp.

[image: image131]

This permalink will then take you to the activity with all comments
expanded.

If the activity is edited, when you mouse over its timestamp, a tooltip appears displaying the
original timestamp of the post.

[image: image147]

Commenting on activities

This action allows you to get ideas, answers, and any additional
information when your collaborators respond to your status updates.
Besides, you can comment by yourself about any activities as follows:

	Click [image: image108] on the the activity you want to comment.

[image: image109]

2. Enter your comment into the Comment box and press the Comment button.
Your comment will be displayed right after the activity.

Note

A formatting toolbar appears once you click in the comment composer. It allows you to change the formatting of your message, attaching images and links and preview how it will look once posted. (like what we have for the activity stream composer)

When there are more than two comments on activity, 2 latest comments
will be displayed below the activity. You can click “View all XX
comments” (XX is the total number of comments) to view 10 more comments.
If some comments left are not displayed yet, click View previous
comments on the top of the comment part to view more.

[image: viewmore]

You can mention people in your comment by “@” symbol into your activity
composer, then type the person name you want to mention. See Mentioning
someone for more details.

Editing a comment

Just like for activities, from eXo Platform 5.2, you can edit any comment you wrote.

To edit one of your comments, proceed as follows:

	Click on the pulldown menu at the right of the comment box : [image: image141]. Just like for activities, two entries appear:

[image: image142]

	Click on Edit –> Your comment’s text appears in the editor area allowing you to edit it.

[image: image143]

	Edit your comment and then click on Update button.

Note

The Update button remains disabled until you change the comment.

	If you click the Cancel button, your changes will be ignored.

Note

You can change an inserted link/image to your comment.

[image: image144]

Like for activities, after saving the change you made to your comment, a text appears near your name indicating that
an edit has been done:

[image: image145]

Warning

Comments generated from other aplications such as:

	Adding a topic or replying to a forum discussion

	Creating or joining a space

	Updating your profile

	Adding/Editing a wiki page

	Closing, opening or locking a topic in Forum application

	Adding a poll to a topic

	Editing an event in Calendar

	Moving a wiki page

	Editing a space’s description/avatar

	Connecting with a new user

are not editable, you just can delete them when you click on [image: image146] button.

Only activities generated following a document upload in Documents application are editable,
you can add a text message to that activity.

Liking comments

With eXo Platform 5, it is possible to express emotion on a user’s comment to
a status or any other activity by liking the comment.

Under the comment text, a like icon is displayed [image: image116] which has 2
statuses:

	The active status: When a user clicks on the like button, it turns to
blue color.

	The inactive status: The button is greyed when it is unclicked or
clicked twice i.e first for liking and the second for removing like.

Clicking on the like button adds a number between brackets which
indicates the number of users who already liked the comment. If the like
button is already clicked and the user reclicks on it, it becomes
inactive and the number is decreased by 1.

	Mousing over the number between brackets shows a popover which
indicates the persons who liked the comment.

[image: image117]

	If the number of likers is more than 10, the pop over shows 9
usernames and “X-9 more”. To view the full list of usernames, you
should click on the number between brackets.

[image: image118]

	Clicking on the number between brackets displays a popup named
People who liked which lists the users who clicked the comment. The
pop up contains:

	The user avatar.

	The user name.

	And one of these three buttons ahead each liker name:

	Remove connection to delete a user from your connections.

	Cancel Request to cancel a user invitation.

	Connect to send an invitation to a user or accept his
invitation.

[image: image119]

Liking comments on documents preview

The like on comments feature is available for the documents preview.

It behaves the same as in the activity stream:

	Mousing over the number between brackets displays a pop up with the
names of the likers in a list.

	To display the whole list when the number of likers exeeds 10, you
should click on the number between brackets which displays the form
People who liked.

[image: image120]

Replying to comments

In addition to Liking comments feature in eXo Platform, it is possible to reply to a comment.

Under each comment, a Reply button appears allowing you to reply to that
comment:

[image: image121]

When you click on the Reply link, a comment composer appears with your
avatar just below the last reply if it exists:

[image: image122]

When you click on the comment composer to type your message, a rich text
editor toolbar appears allowing you to format your text:

[image: image123]

When more than two replies are posted to a comment, the replies are
collapsed and a link to View all X replies (X is the total number of
replies) is displayed allowing to view the whole replies.

[image: image124]

Note

Some other details about the reply to comment feature:
- There is only one level of replies, it is the reply to comment. There is not a reply to a reply.
- Deleting a comment with replies induces the replies deletion.
- In addition to activity stream comments, the reply to comment feature is available for activities of these applications: Documents preview, forum and tasks.
- Same as for comments, it is possible to like replies except in tasks application.

Reply to comment for Forum application

As mentioned above, the reply to comment is also available for forum
posts activities:

	When you reply to a comment in the activity related to a forum, the
reply will appear as comment in the forum application which quotes
the original comment.

[image: image125]

	When you post a reply to forum topic and quote the previous post, it
will appear as a reply to the first comment of level 1 in the
corresponding activity.

Note

When you use the quote option [image: image126] of the CKeditor toolbar in the reply to comment, it will be considered as a simple quote.
[image: image127]

Reply to comment notifications

When someone replies to your comment, you receive an onsite notification
which contains:

	The avatar of the user who replied to your comment.

	A label: “UserA has replied on one of your comments”.

	The reply timestamping.

	The comment to which the user replied and if the comment is too long,
an ellipsis of it.

[image: image128]

All the watchers of the activity i.e it’s likers and the space’s members
if it is a space activity receive a simple comment notification.

When a user replies to an another user’s comment to your activity:

	The user who commented your activity receives a reply to comment
notification.

	You receive a simple comment notification.

If the email notification is enabled, you will receive an email when
someone replies to your comment which contains:

	The label “User X has replied to one of your comments. See below:”

	Your comment content.

	The source link i.e the platform link.

	The user name who replied followed by his reply.

[image: image129]

A new line in my notifications settings
is added to manage reply to comment notifications:

[image: image130]

Default values are:

	Send me an email right away: checked.

	Send me a digest email: Daily.

	See on site: checked.

Deleting a comment

You are allowed to delete your comments you wrote, and
those in your activity stream and in the space where your are the manager.

	Click on the pulldown menu on the top right of your comment you want to delete.
Two entries appear: Edit and Delete.

[image: image150]

	Click on Delete button –> A confirmation pop up appears.

[image: image151]

	Click Yes button in the confirmation message to accept your deletion.

Note

As an eXo Platform user, you can only delete your own comments.
If you are manager of a space, you can delete any comment posted in your space.

	If you click Cancel button, nothing happens.

Getting permalink of a comment

Just like for activities, click on the timestamp of the comment to get its permalink.

[image: image134]

This permalink will then take you to the activity in which the comment is highlighted.

Just like for edited activities, a tooltip appears when mousing over timestamp of edited comments
to display the original timestamp of the comment.

[image: image148]

Managing Your Personal Applications

eXo Platform features a list of personal applications which you can access quickly.
In this chapter, you will have opportunity to learn about them via the following topics:

Managing your profile

How to update your current position/avatar and to edit your information.

Managing your activity stream

Introduction to your own Activity Stream page.

Managing your connections

How to view profiles of your contacts, to send/revoke a connection request, to accept/deny connection requests and to disconnect from your contacts.

Working with your wiki

Introduction to your private Wiki.

Managing your dashboard

Details of managing your dashboard, a list of gadgets used in eXo Platform via dashboard, how to change gadget preferences and to add external gadgets from dashboard.

Managing your notifications

Details of which notification types you will receive.

To do the above actions, simply click your display name at the top navigation bar, then select either from the drop-down menu:

[image: image0]

Managing your profile

Your profile is always visible by all users of the portal that helps them understand more about you, so it is very necessary to have a profile with the full and clear information.

From eXo Platform 4.4, the profile page has been redesigned in order to enriche and better organize yout information.

This part introduces you how to:

	Access your profile

	Edit your profile

Access your profile

To access the My Profile page, simply click your display name on the top
right corner, and select My Profile from the drop-down menu.

[image: image1]

By default, your profile is just initialized with the basic account
information as below:

This layout enables you to view:

	your Status which is indicated by a round shape displayed next to
your name with corresponding colors:

	green - “Available”.

	red - “Do not disturb”.

	yellow - “Away”.

	grey - “Offline”.

	your Contact Information, such as email, gender.

	your Recent Activities that lists the latest activities
concerning yourself or with which you reacted (comment, like). You
can either click on each item of the list to jump to the
corresponding activity stream with full information, or select View
All button to go to the expanded list.

	your People that displays the most recent connections you have
made. From the scratch, if you do not have anyone in your network, a
message saying “You do not have connections yet.” will be
displayed. By clicking Find connections, you will be redirected
to the Search for contacts page.

Note

When you change the information of your profile at the first time, an activity will be created on the activity stream. Also, a comment informing your change is added to the activity. Your later changes will automatically create comments updated to the activity.

[image: image2]

Edit your profile

To build a profile as expected, click [image: image3] to jump to the Edit
Profile page:

[image: image4]

Note

In the Contact Information and Experience sections, click [image: image5] corresponding to one field which you want to add more or click [image: image6] to delete your input information.
After making changes, click Save or Cancel to respectively save or ignore them.

The followings are changeable information in each section.

Profile banner

When accessing to your profile, a banner is displayed in the top of the
page. By default it is grey. You can change it and select a profile
image.

To change the profile banner:

	Mouse over the top right of the grey banner, an icon will appearn [image: image7] and a tooltip indicating that the banner should have 130 pixels height.

[image: image8]

	Click on the icon [image: image9], an update button appears [image: image92].

	Click on the Update button, a drive from your hard disk will open.

	Select the desired profile banner image and double click on it.

	The profile banner image will be automatically loaded.

[image: image10]

To reset the profile banner, you just need to hover the right corner
again and this time, you will have two butons:

[image: image11]

	Update button which opens a drive from your hard disk and allows you to change your profile banner.

	Reset button to restore the default grey banner.

When scrolling down on your profile page and if you exceed the cover
section limit, the profile banner will be replaced by a new navigation
bar:

[image: image13]

This new navigation bar contains:

	Your avatar in a cercle form.

	Your display name and your chat status.

	The edit button [image: image14] allowing you to edit your profile.

	Your applications navigation bar.

	The More button [image: image15] which appears when applications display
exceed the navigation bar limit.

[image: image16]

In mobile devices, when scrolling down your profile page, the
applications navigation bar is scrollable left and right.

[image: image17]

About Me

A brief introduction of yourself with 1500 characters in maximum,
telling people who you are and what you do. If this section is empty, it
will not be displayed on your profile page.

Contact Information

	Field

	Description

	First Name

	The first name that should be from 1 to 45
characters, and contains letters and space only.

	Last Name

	The last name that should be from 1 to 45
characters, and contains letter and space only.

	Email

	The email address that should be in a valid format,
for example, johnsmith@exoplatform.com (see more
details about the Email Address format
here.)

Note

You can also change the above information in the Account Profiles
tab by clicking your display name, then select Settings from the
drop-down menu. These changes will be automatically synchronized
with details in the Contact information of your profile and vice versa.

	Avatar

	The representative picture of user. If it is not
defined, the default avatar is used.

	Job Title

	The job position. Note that the information entered
in the field will be retrieved when you
search for contacts

	Gender

	The gender of user. Select your gender from the
select box, either male, female or empty.

	Phone

	The phone numbers at work, home or at other sites
which must be from 3 to 20 numeric characters.

	IM

	The nickname of either IM services that must be
between 3 to 60 characters.

	URL

	The website address which must be in the correct
format, for example, http://exoplatform.com/.

To change your avatar:

The first way:

	Click on [image: image18] button then on Change Avatar from the section Contact Information to open the Upload an Avatar form.

[image: image19]

	Click Select File to pick up an image from your local device.

	Select your desired image, then click Open button, or double-click the image to upload.

Note

The uploaded image must be smaller than 2 MB.

	Click Confirm to open the Avatar Preview form to see some related information, such as file name, file type, and image size.

[image: image20]

	Click Save to accept your changes.

The second way:

	Mouse over your profile avatar, an icon [image: image21] will appear.

	Click on that icon, an Update button appears [image: image93].

	Click on the Update button. This will prompt you to pick a file from your computer.

	Double click on the desired image.

	The profile icon will be automatically changed.

Note

	This second way is only available in web version. On mobile devices, you should follow the first way to update/edit your profile avatar.

	Your image will be automatically resized to a specified value to correspond to the image allowed size.

After setting a profile icon, you can update it again or reset it to the default one by clicking on [image: image94]
and then clickig on one of the buttons that appear [image: image95].

Experience

	Field

	Description

	Organization

	Where you have worked.

	Job Title

	The job position.

	Job Details

	Brief description of your job.

	Skills Used

	Skills for your job.

	Start Date

	The start date of your work.

	End Date

	The end date of your work.

	Still in this
position

	Indicates that you are currently at the described
position.

Note

The information entered in the Skill Used field will be retrieved when you search for contacts.

Managing your activity stream

From the drop-down menu of your display name, select My Activities. You
will be redirected to your own activity stream page.

[image: image23]

Here, you can see your activities (inside and outside a space) and
activities where you were mentioned, liked or left comments.

The activities in My Activities are similar to those in My Activities of the Social Intranet homepage.

Note

	Your activity stream page (../activities/[username]) is visible

	to anyone even if they are not your connections. They can comment or
like on your activity stream page. However, only your connections
can see the Activity Composer that enables them to post on your stream.

Managing your connections

Building connections between you and other users in the system is very
important. It will not only help you follow their activities on the
activity stream, but also improve your communication and collaboration.

This section shows you how to make connection with your desired users
via the following topics:

	Viewing profile of other contacts

	Sending connection requests

	Revoking a connection request

	Accepting/Denying a connection request

	Disconnecting from your contacts

To build your connections, you first need to click your display name on
the top navigation bar and select My Connections from the drop-down
menu.

[image: image24]

The My Connections page appears.

Note

If there are so many connections, the Show More bar will appear at the page bottom. Click Show More to see more connections.

This page consists of the following tabs:

	Everyone: lists users who have registered in the eXo Platform system.

	My Connections: lists users who have established connections with you. You can remove these connections by clicking Remove Connection.

Note

The suspended users will not be listed in the Everyone and My Connections applications.

	Requests Received: lists users who have sent you connection request. You can click Confirm to accept being as his/her contact or Ignore to refuse.

	Requests Pending: lists users to whom you have sent connection
requests. You can also click Cancel Request to revoke your request.

Note

You can also view your connections by clicking People on the left pane to open the People Directory page which lists all users registered in the portal.
However, when the number of users in the network is bigger and bigger, you should select the relevant tabs (My Connections, Requests Received, and Requests Pending) to do actions more quickly and conveniently.

Viewing profile of other contacts

To view all information of a contact, simply click his/her name. You
will be redirected to his/her profile page.

[image: image25]

You can also see his/her recent activities, connections, Wiki pages,
connection status with you and current status.

	To see all his/her activities, click Activities on the navigation
bar.

	To see all his/her connections, click Connections on the navigation
bar.

	To see his/her Wiki pages, click Wiki on the navigation bar. However,
you can only access this Wiki if it has been made public
by the owner or when you are granted as an administrator.

	To return his/her profile page, click Profile on the navigation bar.

Note

Regardless of being an administrator, you do not have right to edit profiles of other contacts.

If you are not yet connected to the user, you will see in his profile page the connect button in his profile banner:

[image: image84]

Clicking on that button sends him a connection request, and the button changes to Cancel request.

[image: image85]

When you access a user’s profile who sent you a connection request, a dropdown appears in his profile banner allowing either to accept or to deny his request:

[image: image86]

Sending connection requests

After specifying your desired contact,
you can send a connection request via one of two ways.

The first way

Click Connect under the contact name to send your connection request, or
hover your cursor over the contact name and click Connect button.

[image: image26]

The second way

Access the profile page of the contact to whom you want to send a connection request, then click Connect button on their profile banner.

[image: image87]

Note

The Connect button will become Cancel Request.

[image: image88]

Revoking a connection request

After sending connection requests to other users and they are not
accepted yet, you still can remove the requests by doing one of the
following ways:

The first way

	Select the Requests Pending tab in the My Connections page.

	Click Cancel Request under the contact name, or hover your cursor over the contact name and click Cancel Request to revoke the connection request.

The second way

Access the profile page of the contact to whom you sent a connection request, then click Cancel Request.

[image: image89]

Accepting/Denying a connection request

You can perform these actions by doing one of the following ways:

The first way

Use the Invitations application on the Social Intranet homepage. See here for more details.

The second way

	Select the Requests Received tab in the My Connections page.

[image: image27]

	Click Confirm/ Ignore under the contact name to accept/deny the request respectively.

Note

You can also accept the request by hovering your cursor over the contact name, then click Confirm.

The third way

Access the profile page of the contact who sent you a connection request, then click the dropdown button which contains:

	Accept button as first choice

	Deny button as second choice

[image: image28]

To revoke the connection request, click on Deny button.

	At the first time when you connect to a user in the network, a new
activity will be created on the activity stream. This activity always
shows the total number of your connections, for example, “I’m now
connected with 10 users”. Additionally, a comment which informs that
you are connecting with him is added to the activity. Each of your
later connection will also create a new comment added to the
activity.

[image: image29]

	If you remove your connection with a user, the number of your connections will be updated to the activity.

Disconnecting from your contacts

In the My Connections or Everyone tab, you can remove the connections
between you and the users who are your contacts via one of two following
ways.

Click Remove Connection under the contact name; or hover your cursor
over the contact name and click Remove Connection to remove your
established connection.

[image: image30]

Working with your wiki

Every user has his own wiki where he stores his private Wiki pages or
works on drafts before being published on the public Wiki. From the
drop-down menu of your display name, select My Wiki to be redirected to
your own Wiki page. See the Working With Wikis chapter for the full details.

[image: image31]

Note

Your wiki page is private by default. This means only you and your administrator can access this via the link (.../wiki/user/[username]).
However, if you have made public for your own wiki, anyone can access, read and edit it via the link.

Managing your dashboard

This section represents the way to use the dashboard
workspace and to add more external gadgets from Dashboard.
Also, you will know how to manage your dashboard effectively via the
following topics:

	Built-in gadgets

	Changing gadget preferences

This portlet is to host mini-applications known as gadgets. The
dashboard uses a variety of graphical effects for displaying, opening
and using gadgets.

Note

You can open many gadgets with different settings at once.

Using the dashboard workspace

1- Click your display name on the top
navigation bar, then click My Dashboard from the drop-down menu to
access the My Dashboard portlet.
[image: image32]

2- Click Add Gadgets to open the Dashboard
Workspace window which lists all available gadgets.
[image: image33]

3- Select a gadget in the Dashboard Workspace window and drag and drop it into the My Dashboard page.

Adding more external gadgets from Dashboard

1- Obtain the URL (.xml or .rss) of the gadget you want to add from the gadgets source. For
example, *http://bejeweledg.googlecode.com/svn/trunk/bejeweled.xml.

Note

Remote gadgets can be only created using an .xml link or RSS URL.
However, if you use a link that generates an RSS feed (for example,
http://feeds.feedburner.com/gatein), a new RSS reader gadget will be
created automatically even if the URL does not end with .rss.

2- Open the Dashboard Workspace window.

3- Paste the URL in Step 1 into the textbox.
[image: image34]

4- Click [image: image35] to add the new gadget to the page.

Built-in gadgets

This section will introduce you to all built-in gadgets used in eXo Platform via the dashboard.

Login History

The Login History gadget records users’ login history and provides
statistics.

[image: image36]

There are three tabs in this gadget:

	Login History: Lists all of the last sessions opened on the intranet.

	Statistics: Shows the total number of logins in the graphic format.

	History: Shows all logins of all users by period (Today, Earlier this
week, Earlier this month, or Earlier).

In the Login History tab, you can look up the login history of a
specific user by entering his username in the Search box and press the
Enter key.

Template Statistics

The Template Statistics gadget lists all information related to the
execution time of all templates in the portal, therefore administrators
and developers will know how fast templates are and which ones should be
optimized.

[image: image37]

The gadget consists of two tabs:

	10 Slowest: lists 10 slowest templates in the portal.

	All: shows the total number of templates and a list of the templates
in the portal.

Each template provides you with the following information:

	The full path of the template when you hover your cursor over its
name.

	The average execution time (in ms) highlighted next to the template
name.

	The time will be highlighted with the yellow color if it is more
than 1000 ms and less than 5000 ms.

	The time will be highlighted with the red color if it is more than
5000 ms.

	exec: The number of executions of the template.

	min: The minimum execution time of the template.

	max: The maximum execution time of the template.

Featured Poll

[image: image38]

The Featured Poll gadget displays the latest created poll in the Forum
that you have permission to vote. You can directly vote and see results
on the gadget. This gadget also allows you to discuss about the poll
topic in the Forum.

	Vote for a specific poll: Normally, the latest poll will be
displayed on this gadget. However, you can indicate another poll to
vote by clicking [image: image39], then select one from the drop-down list.

Tick your selection, then click Vote.

	Discuss in Forum:

To discuss about the poll topic in the forum, just click the Discuss
in Forum and you will be redirected to the forum,

Bookmarks

The Bookmarks gadget is a simple link management one which displays your
bookmarked links in the portal and allows you to quickly access them by
clicking them. You can add, edit or remove any bookmarks.

	To add a new bookmark, click [image: image40] on the title bar of the gadget.

[image: image41]

Add the Title and URL into the input text fields, then click Add to
accept creating the bookmark.

	To edit a bookmark, hover your cursor over your desired bookmark,
then click [image: image42] corresponding to it.

[image: image43]

Edit the title and URL and click OK to accept your changes.

	To delete a bookmark, hover your cursor over your desired bookmark,
then click
corresponding to it.

Favorite Documents

[image: image44]

The Favorite Documents gadget lists all of your documents which are
added to favorites, so you can quickly access
them.

You can go the Favorites folder in the Personal Documents drive by clicking [image: image45].

Note

The Login History and Template Statistics gadgets are for the
administrators to manage and improve the portal better.

Changing gadget preferences

The Edit icon on gadgets only displays if the gadgets have some gadget
preferences. This icon enables users to display the Edit form and change
preferences of a gadget.

[image: image46]

The following is an example of changing preferences of the Latest Forum
Posts gadget.

	Click [image: image47] to open the Edit form of the Latest Forum Posts gadget.

[image: image48]

	Fill in all the fields of the form.

	Click Save to accept your changes.

Managing your notifications

eXo Platform provides you a complete notification function which helps you to
avoid missing anything in your organization. As from eXo Platform 5.1, there
are 3 notification types that you can use.

On-site

This real-time notification helps you receive new information without a
browser refresh. Whenever there is a new activity happening within your
network, it will be pushed into your notifications menu accompanied by
the number of unread messages as follows:

[image: image49]

When you click the Notification icon, all notifications will be listed
starting from the most recent one:

[image: image50]

By clicking each notification item, you will be redirected to the
corresponding activity stream or you can select View All to see all
notifications. Besides, the Mark all as read function allows you to
change all messages on this menu into the read status. Finally, to
remove any notification item, simply click the corresponding [image: image51].

Note

You can also view all your notifications in the page My Notifications accessible by clicking on
your username then on My Notifications:

[image: image90]

It is possible to mark all your unread notifications as read simply by cliking on Mark all as read on the top of the page:

[image: image91]

Tip

When you are not on the platform web page and you receive On-site notifications,
to grab your attention, a number appears in the web browser tab indicating the number of unread
notifications.

If the platform browser tab is pinned, an indication appears near the favicon to attract
your attention about unread notifications.

[image: image96]

Mobile push notifications

A push notification is a real-time notification that pops up on a mobile
device (iOS and Android). It is pushed instantly when the action is
done.

The push notification displays the same content as the on-site
notification. It also displays the eXo Mobile application logo, the
site’s name (eXo community for example) and the receipt time.
Clicking on it opens directly the concerned activity.

[image: pushNotif1]

Via emails

Besides on-site notifications, you are totally able to keep track of
activities and events via emails. In eXo Platform, it is easy to control your
own email notifications from a single location in the user settings.
When this function is enabled, you will receive emails in 2 ways:

	A notification email with different content for each event type. For
example, for the activity embedding a video, the message will be
represented as a thumbnail image of the embedded media, like below:

[image: image52]

By clicking the Watch the video link, you will be redirected to
the activity stream where you can play the embedded video.

	A digest email that collects all notifications during a certain
period and is sent once per day or per week.

[image: image53]

Note

To receive notification and digest emails as well as on-site notifications, your administrator must enable notification plugins first. See Notification administration for details.

This section shows you how to manage your notifications via the
following topics:

	
	Notifications settings

	How to choose specific settings for email and on-site notification.

	
	Managing notification streams

	How to manage different notification streams via email and on-site.

	
	Actions in email notifications

	Describes different actions in the email notifications.

Notifications settings

To enable this function, you need to change notifications settings as
below:

1. Select My Notifications from the drop-down menu of your display name on
the top navigation bar. You will be redirected to the Notifications
Settings page.

[image: image54]

Note

The My Tasks settings are available only if the Task Management add-on is installed by the administrator.

	Select notification options as desired. In particular:

[image: 1]: Allows to enable or disable one or namy notifications channels by switching the button between Yes and No:

	Notify me by email: If you choose No option, the functions
concerning email notification will be hidden.

	Notify me on-site: If you choose No option, the functions
concerning on-site notification will be hidden.

	Notify me on mobile: If you choose No option, the functions
concerning mobile notifications will be hidden.

	[image: 2]: Send me an email right away: Indicates whether you want to receive email notifications instantly or not.

	[image: 3]: Send me a digest email: Specifies whether notifications of selected types are included in the digest emails or not. Three frequencies exist:

	Never: Not include notifications of the selected types in any digest email.

	Daily: Includes notifications of the selected types in the
daily digest email.

	Weekly: Includes notifications of the selected types in the
weekly digest email.

	[image: 4]: See on mobile: Indicates whether you want to receive push notifications on your mobile or not.

	[image: 5]: See on site: Indicates whether you want to receive notifications on-site or not.

	Click Save button to save your new notification settings.

Or, click Reset button at the bottom to reset to default values for all your
notification settings.

Managing notification streams

eXo Platform provides you various notification streams which help you to keep
track of all activities and events within your organization. You now can
choose your own way to receive information by email or directly on-site.
In this section, the following notification streams will be presented:

	New users

	Connection request

	Space invitation

	Request to join your space

	Mention

	Comment on activity

	Like activity

	Post on your activity stream

	Post in your space

	Task Management activities

New users

You will receive the New user notification when any new user signs
up or is added to your network.

	By email:

[image: image55]

Click Connect now. You will be taken to her/his profile page where
you can cancel your connection request by clicking Revoke.

	Or directly on-site:

[image: image56]

If you wish to connect with this user, click on this notification
stream to go to her/his profile page.

Connection request

You will receive the New connection request notification when any
user wants to connect with you.

	By email:

[image: image57]

Click Accept to approve the connection. You will be taken to the
activity stream of your new connection.

Click Refuse to deny the connection. You will be taken to the list of
received requests.

	Or directly on-site:

[image: image58]

Invitation to join a space

You will receive the New space invitation notification when you are
invited to join a space.

	By email:

[image: image59]

Click Accept to approve the invitation. You will become a member of
the space and be taken to the activity stream of the space.

Click Refuse to deny the invitation. You will be taken to the list of
all spaces.

	Or directly on-site:

[image: image60]

Request to join your space

You will receive the New request to join a space notification when
someone requests to join a space where you are the manager.

	By email:

[image: image61]

Click Validate or Refuse to accept or deny the request respectively.
You will be taken to the Members tab of Space Settings of that space.

	Or directly on-site:

[image: image62]

Click Accept or Refuse to accept or deny the request respectively.

Mention

You will receive the New mention of you notification when someone
mentions (@) you in the activity stream.

	By email:

[image: image63]

Click Reply. You will be taken to the activity with the comment box
that is ready for your reply. If the mention is made in a comment,
all comments are expanded and the comment is highlighted.

Click View the full discussion. You will be taken to the activity
with all comments expanded. If the mention is made in a comment, the
comment is highlighted.

	Or directly on-site:

[image: image64]

By clicking on this notification stream, you will be redirected to
the full discussion.

Comment on activity

You will receive the New comment on your activity notification when
someone comments on your activity or any activity where you have already
commented or liked.

	By email:

[image: image65]

Click Reply. You will be taken to the activity with all comments
expanded and the comment box opened that is ready for your reply. The
comment of this notification is highlighted.

Click View the full discussion. You will be taken to the activity
with all comments expanded and the comment of this notification is
highlighted.

	Or directly on-site:

[image: image66]

By clicking on this notification stream, you will be redirected to
the full discussion.

Like activity

You will receive the New like on your activity stream notification
when someone likes your activity.

	By email:

[image: image67]

Click Reply. You will be taken to the activity with the comment box
opened that is ready for your reply.

Click View the full discussion. You will be taken to the activity
with all comments expanded.

	Or directly on-site:

[image: image68]

Click on the notification stream, you will be taken to the activity
with all comments expanded.

Post on your activity stream

You will receive the New post on your activity stream notification
when someone posts on your activity stream.

	By email:

[image: image69]

Click Reply. You will be taken to the activity with the comment box
opened that is ready for your reply.

Click View the full discussion. You will be taken to the activity
with all comments expanded.

	Or directly on-site:

[image: image70]

Click on the notification stream, you will be taken to the activity
with all comments expanded.

Post in your space

You will receive the New post in your space notification when
someone posts on the activity streams of your spaces:

	By Email:

[image: image71]

Click Reply. You will be taken to the activity with the comment box
opened that is ready for your reply.

Click View the full discussion. You will be taken to the activity
with all comments expanded.

	On-site:

[image: image72]

Click on the notification stream, you will be taken to the activity
with all comments expanded.

	On All Notifications page:

[image: image73]

Click on View All on the notification stream, you will be taken to
the All Notifications page.

Task Management activities

These notifications are available only if the Task Management add-on is installed by your administrator.

Assigned Task

You will receive the Assigned Task notification when someone assigns
a task to you.

	By email:

[image: image74]

Click Open Task. You will be taken to the detailed task pane in the
Task Management application.

	Or directly on-site:

[image: image75]

Click on the notification stream, you will be taken to the detailed
task pane in the Task Management application.

Coworker

You will receive the Coworker notification when someone adds you as
a coworker of a task.

	By email:

[image: image76]

Click Open Task. You will be taken to the detailed task pane in the
Task Management application.

	Or directly on-site:

[image: image77]

Click on the notification stream, you will be taken to the detailed
task pane in the Task Management application.

Task Due Date

You will receive the Task Due Date notification when someone changes
the due date of your tasks.

	By email:

[image: image78]

Click Open Task. You will be taken to the detailed task pane in the
Task Management application.

	Or directly on-site:

[image: image79]

Click on the notification stream, you will be taken to the detailed
task pane in the Task Management application.

Completed Task

You will receive the Completed Task notification when someone marks
your tasks as completed.

	By email:

[image: image80]

Click Open Task. You will be taken to the detailed task pane in the
Task Management application.

	Or directly on-site:

[image: image81]

Click on the notification stream, you will be taken to the detailed
task pane in the Task Management application.

Email notification actions

When receiving notifications related to an activity on any content, the
email message contains shortcut actions to interact with the activity or
the content:

[image: image82]

	View the full discussion: Clicking on that button redirects you to
the activity that invoked the email sending.

	Reply: Clicking on that button redirets you to the activity and lets
you directly comment it.

	Open: Clicking on that button opens the content that generated this
activity in its context. This button is available for activities
that are related to a content change. More details below.

For space invitations, two other buttons exist:

[image: image83]

	Accept: To accept the space invitation and join the space. Clicking
on that button redirects you to the space.

	Refuse: To decline the invitation.

Open action for Email notifications

An action button is added to email notifications for some activity types
such as:

	Status updates with file attachment or file sharing:
For this kind of notification, Open button opens the file in
Documents application.

	Calendar events: Open
action opens the event in the Calendar application. If the event
belongs to a space, the space’s calendar is opened.

	Tasks: Open action opens the
task in the Tasks application.

	Wiki pages: Open action opens
the corresponding wiki page in the Wiki application. If the wiki page
belongs to a space, the space’s wiki is opened.

	Forums and Polls: Open action
opens the corresponding topic in the Forum application with an anchor
set at the corresponding reply. In case of a space discussion, the
space’s forum is opened.

	Answers: Open action opens the
corresponding topic in the Answers application with an anchor set at
the corresponding question or answer.

	Web Contents:
Open actions opens the content in the Sites Explorer.

Working With Tasks

In this chapter, you will be introduced to the
Task Management application which allows you to manage all
collaborative activities under tasks. This application is aimed at
improving the way that a team focuses their efforts on a project and
communicates to get work done.

In this chapter:

Task Management overview

Managing Tasks

Managing Projects

Managing Labels

Managing Views

Task management overview

To use your Tasks management application effectively, there are
some terms that you should be aware of:

	Projects: Containers of tasks.

	Management views: Two views (Board and List) that provide you
with different ways to manipulate your tasks.

	Project workflow: The list of statuses that tasks in a project
can take. By default, a new project will have the following workflow:
To Do, In Progress, Waiting On and Done. Alternatively, you can
change the project workflow later in the Board view.

	To Do: tasks which will be done in the future.

	In Progress: tasks being handled at that time.

	Waiting on: tasks waiting a decision or a validation i.e. awaiting a third party.

	Done: tasks on which work is ended.

Note

Changing the default workflow for new projects is done only by
the administrator, see this section
for more details.

	Sub-project: A project can have any number of sub-projects and a
sub-project can also have an unlimited number of smaller
sub-projects. These sub-projects will inherit permission and workflow
from their parent project at the creation time and you can change
them later.

	Space project: For each new space, a project with the same name
will be automatically created when the Tasks management
application is added to the space.

The Tasks management overview is divided into three main areas,
including left, central and right panes.

[image: image0]

The left pane

[image: image1]

This pane includes three sections:

	Tasks: manages tasks individually by left filters. These filters
are:

	Incoming: filters tasks that are not yet assigned to a project.
This filter also excludes completed tasks by default, but you can
change this by using the top Filter feature.

	All Tasks: shows unfiltered list of all tasks assigned to the
current user.

	Overdue: filters tasks with a past due date.

	Today: filters tasks that are due today.

	Tomorrow: filters tasks that are due tomorrow.

	Upcoming: filters tasks that are due in future.

	Projects: manages tasks by projects. Specifically, you can manage
the workflow of tasks that are assigned to a project.

	Labels: manages tasks by labels. You can set any label on a task
to classify it for you to manage your tasks more easily.

The central pane

This pane is used to display tasks filtered via the left pane and
top Filter. In case you are in a project, a Board
view is provided so that you can manage the project’s tasks more easily.

The right pane

This pane displays details of the task that is selected from the central
pane where you can modify any information of the task.

Note

Inside spaces, the Tasks management overview is similar as
above, but the project list is filtered to display only projects
that are accessible for the members of the spaces. Besides, there
will be no Incoming filter on the left menu and clicking on a
label will display only the tasks with the selected labels in the
spaces’ projects.

Tasks permissions

Task Management application comes with different roles and permissions allowing users to better manage their tasks and projects:

	The reporter: is the task’s creator, able to add, edit and comment any of his tasks.

	The project participant: he maybe the task’s assignee or coworker, able to comment, edit add and delete tasks on the project. He can not delete tasks he not the creator.

	The project manager: he could be the project creator, the space manager or the platform manager (i.e the super user root or from platform/adminstrators group). Users having this role have the same permissions as a project participants and they are also able to edit the workflow, create subprojects and also delete any task in the project.

	The observer: is a user who have been mentioned in the task and is not a participant, is just able to view the task.

Note

In tasks application under a space, all space members get automatically the participant role.

Managing tasks

This part introduces you how to:

	Create a task

	Edit a task

	Schedule a task

	Get permalink of a task

	Clone a task

	Delete a task

	Filtering tasks

Creating a task

Note

Anyone can create personal tasks. In project’s frame, managers and participants are able to create tasks under their projects.

Creating a task in eXo Platform is designed as an effortless operation, so
you just need to follow one of the following ways.

Via Tasks management overview

	Click any items (except Overdue) under the Tasks, Projects or Labels sections.

	Enter the task title into the single line text box under the New Task button:

[image: image2]

	Hit Enter key to create this task.

Note

	If you choose to create the task in a filter, it will be put into

that filter and automatically assigned to the currently logged-in
user. Note that for the Upcoming filter, the due date will be
the next seven days, while for the Today and Tomorrow
filters, the due date will be today and tomorrow respectively.

	If you choose to create the task in a project or label, it will

belong to that project or labelled to that label. Besides, by
default it will not be assigned to anyone.

Via Activity stream

You can even create a task outside the Tasks Management application by
using the following syntaxes on the Activity stream:

	Creating a task: ++task_title.

	Setting priority: !task_priority. Recognized priorities include
High, Medium and Low.

	Assigning: @task_assignee @task_coworker_1
@task_coworker_2

	Setting due date: ^due_date. Recognized syntaxes include Today,
Tomorrow, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
Sunday, Next Week, Next Month and dd-mon (e.g 12-apr for 12th
April).

	Tag: #tag. The tag will be created if it does not exist.

See this example:

[image: image3]

Or via comment:

[image: image4]

You will see that there are two new tasks created as below:

[image: image5]

Note

	Anyone that has access permission to a task can do anything on the task.

	By default, tasks inherit permissions from the project they are in. Therefore, all members and managers of the project are able to access these tasks.
In case they are not assigned to any project, only the creator, assignee and coworkers are granted the access permission.

Editing a task

Note

Task’s edit permission is granted to:

	The task’s creator

	The project manager

	The space manager (for space’s tasks application)

	The platform manager (super user and platform/administrators members

	The project participants

	The task’s assignee

	The task’s assignee cowroker

After creating a task, the right pane will be opened for you to edit the
task directly (if you create the new task via the overview interface) or
you can choose any other task from the central pane. The details of a
task are as follows:

[image: image6]

In which:

	[image: image7]: the name of the project that the task belongs to. In case
the task is not assigned to any project, this field says “No
Project”.

Note

	To select a project for a task, you must have permission on

that project. Besides, a task should belong to only one
project, so you should remove the existing project from the
task before adding a new one.

	If you move a task to another project, its status will be set
to the same one in the new project workflow (statuses must
match alphabetically to be considered the same). If no status
matches in the new project workflow, the status is set to the
first one in the new project workflow.

	[image: image8]: the labels that are assigned to the task.

	[image: image9]: the title of the task which should be from 1 to 250
characters.

	[image: image10]: the due date of the task. You can choose among 4 options,
including None, Today, Tomorrow and Next Week or specify any
other due date.

	[image: image11]: the assignee and co-workers that are assigned to the task.
Only one assignee is accepted, while you can add multiple co-workers.

	[image: image12]: the status of the task in the project workflow. Note that
this information is available only for the tasks that are assigned to
a specific project.

	[image: image13]: the task description.

	[image: image14]: the schedule of the task. If no schedule is specified,
this field says “Unscheduled”. To remove the current schedule,
hover cursor over it and select the deletion icon that appears.

	[image: image15]: the task priority. You can choose between 4 values,
including High, Normal, Low and None.

	[image: image16]: the Comments tab allows people to discuss about the
task, while the Changes tab shows all changes history of the
task.

[image: image17]

	[image: image18]: the Mark as completed feature, clicking this icon will
mark the task as completed and it will disappear from the List and
Board views unless Filter is set to show completed
tasks.

Note

A formatting toolbar appears once you click in the comment composer.
It allows you to change the formatting of your message, attaching
images and links and preview how it will look once posted. (like
what we have for the activity stream composer)

To edit the task:

	Hover cursor over any information and click it that you want to edit.

	Make changes on the task, then hit Enter key or just click out the edited field.

Scheduling a task

After creating a task or being assigned one, you can schedule it by
following these steps:

[image: image19]

	[image: image20]: Select the list of tasks by clicking on All Tasks.

	[image: image21]: Select one of the assigned/created tasks.

	[image: image22]: Click on Unscheduled.

Two calendars appear to select From and To dates.

[image: image23]

After saving the selected dates, a message is displayed under the task’s
description indicating the time interval chosen with a note about the
schedule:

	If the To date is chosen after the due date, a message appears to
warn that you may miss the deadline because you planned the work too
late.

[image: image24]

	If the To date is chosen before the due date, the message that
appears indicates that the work is planned between the chosen dates.

[image: image25]

Note

	When the today’s date is the task’s due date, a blue exclamation mark [image: image26] precedes the task’s name in the list/board view.

	When the task’s due date has already expired, i.e. today’s date is after the due date and the task is not yet finished, it is preceded with a red exclamation mark: [image: image27]

[image: image28]

Getting permalink of a task

Click the link icon at the top right corner of the task pane:

[image: image29]

You will get the permalink to share the task.

Cloning a task

1. Click the down arrow at the top right corner of the task pane, a
drop-down menu will appear as follows:

[image: image30]

2. Select Clone to clone the task. The cloned task will have the same name
with the original task and be prefixed by “Copy of”.

Deleting a task

Note

You can delete a task only if you have one of these roles:

	The task’s creator

	The project manager or the space manager (for tasks application under a space)

	The platform manager (the super userand platform/administrators members)

	Select Delete from the dropdown menu:

[image: image31]

	Click OK in the confirmation message to delete the task.

[image: image32]

Note

This action is available to the task creator and the project manager only.

Filtering tasks

The central pane by default will list all the tasks depending on which
task filter, project or label is selected. This could be difficult for
you if there are too many tasks available. The Tasks management
application offers you a useful tool to narrow these tasks by specific
information.

[image: image33]

1. [image: image34] Click the filter icon [image: image35] at the top right corner of
the central pane.

	[image: image36] The Filter form will be shown on the right pane.

In which:

	Contains: filters tasks that have the title or description matching
the input text.

	Labels: filters tasks that contain the input labels.

	Due: filters tasks by due date.

	Priority: filters tasks that have the selected priority.

	Show completed tasks: filters tasks that are completed. Unchecking
this box will show uncompleted tasks.

Note

Depending on the view you select from the left pane such as Task filters,
Projects or Labels views, some of the options above may be disabled.

2. Change any information above. The central panel will reflect instantly
to list only the matched tasks.

3. A Close icon [image: image37] on top-right corner of the filter panel closes
it. But the values are remembered and filter remains active.

The filter icon has two statuses:

	It turns blue [image: image38] when it is activated which means that the
central panel is filtered.

	It is grey [image: image39] when it is inactive which means that the central
panel is not filtered.

Managing projects

This part introduces you how to:

	Create a project/sub-project

	Edit a project

	Share a project

	Change project color

	Clone a project

	Show/Hide a project

	Delete a project

Creating a project/sub-project

1. Click the plus sign icon on the Projects section, a pop-up menu will
appear as below:

[image: image40]

Alternatively, you can hover cursor over any project under the Projects
section, then click the right arrow that appears:

[image: image41]

2. Select Add Project, a pop-up form will appear for you to enter your
project information.

3. Change the parent project if needed, by clicking the parent project
field:

[image: image42]

	Select a project from the drop-down list:

[image: image43]

	Fill in the name and description of the project, for instance:

[image: image44]

If you wish this project and its tasks to be displayed and synchronized
in the Calendar application, check the box that says
“Enable Calendar Integration”.

Note

	The length of project name should be less than 100 characters.

	Sub-projects DO NOT inherit the task calendar from their parent. Instead, they come with their own calendar if the Calendar integration is enabled.

	Click Save to finish creating your project.

Editing a project

1. Hover cursor over the project that you want to edit, then click the
right arrow. A dropdown menu will appear as follows:

[image: image45]

	Click Edit to view its details.

[image: image46]

3. Change any information by clicking it, except the manager of the project
that can not be modified.

Note

For a space project, by default the manager of the project and its space is the same.

	Click Save button to save your changes.

Sharing a project

	Select Share from the dropdown menu:

[image: image47]

A pop-up will appear as below:

[image: image48]

In which, you can choose to share your project to others via Manager
and Participant permissions.

	Participant permission: allows to add, edit, view and comment on
tasks of the project.

	Manager permission: in addition to the Participant permission,
allows to edit, delete and share workflow of the project.

	Click [image: image49] corresponding to each permission to add more users.

Note

	Space members automatically get Participant permission to space projects.

	Space managers automatically get Manager permission to space projects.

	In case a user has share permission on a sub-project but does not have permission on the parent, the parent is still visible in the project list on the left pane but it is impossible to see in details.

	Click Close button to close the pop-up.

Changing project color

To easily distinguish between your projects, you can color them by a
vertical bar on the left. For instance:

[image: image50]

To do this, just simply select the desired color from the dropdown menu:

[image: image51]

Cloning a project

	Select Clone from the dropdown menu:

[image: image52]

A confirmation pop-up will be displayed as follows:

[image: image53]

	Tick the checkbox that says “also clone uncompleted tasks.” if you want to clone all uncompleted tasks of the project as well.

	Click Clone to finish cloning the project. The cloned project will have the same name with the original one and be prefixed by “Copy of”.

Note

A cloned project inherits the workflow, permission, description, color, due date and parent project of the original one.

Showing/Hiding a project

Hiding a project

To hide a project, simply select Hide from the dropdown menu:

[image: image54]

This project and its sub-projects will disappear from the left menu.

Note

Hiding projects is just a personal display setting, therefore it is not applied for other users.

Showing hidden projects

To show hidden projects, click the plus sign icon on the Projects pane,
then choose Show Hidden Projects:

[image: image55]

You will see all hidden projects like this:

[image: image56]

From here, you will be able to show these projects again by clicking
Show from the dropdown menu:

[image: image57]

Note

To show a hidden sub-project, you should show its parent first.

Deleting a project

	Click Delete button from the dropdown menu:

[image: image58]

A confirmation pop-up will appear as follows:

[image: image59]

2. Tick the checkbox that says “also delete all sub-projects.” if you
want to delete all sub-projects or untick it to move all sub-projects to
the grandparent project.

	Click Delete button to finish deleting this project or Cancel to skip this.

Managing labels

The Task Management application provides you with another tool
to classify tasks on your own, which is called Labels. You will be
able to personally label your tasks and this will not affect other users
as well as noone can see them but you.

This part introduces you how to:

	Create a label/sub-label

	Edit a label

	Show/Hide a label

	Change label color

	Delete a label

Creating a label/sub-label

	Click the plus sign icon on the Labels section, then select Add Label:

[image: image60]

Alternatively, you can click the right arrow corresponding to any label
under the Labels section, then select Add Label:

[image: image61]

Note

In the second way, the created label will be a sub-label under the corresponding label.

2 Fill the label name in the text box that appears, for instance:

[image: image62]

3. Press Enter key or just click out the box, you will see the newly
created label.

Editing a label

1. Click the arrow corresponding to the label that you want to edit, then
select Edit from the dropdown menu:

[image: image63]

A pop-up form will appear as follows:

[image: image64]

2. Change the parent and/or name of the label. Note that the label name
should be less than 100 characters.

	Click Save button to save your changes or Cancel to skip this.

Showing/Hiding a label

Hiding a label

To hide a label, simply select Hide from the drop-down menu:

[image: image65]

This label and its sub-labels will disappear from the left menu.

Showing hidden labels

To show hidden labels, click the plus sign icon in the Labels section,
then choose Show Hidden Labels:

[image: image66]

You will see all hidden labels like this:

[image: image67]

From here, you will be able to show these labels again by clicking Show
from the dropdown menu:

[image: image68]

Note

To show a hidden sub-label, you should show its parent first.

Changing a label color

To easily distinguish between your labels, you can color them by a
vertical bar on the left. For instance:

[image: image69]

To do this, just simply select the desired color from the drop-down
menu:

[image: image70]

Deleting a label

	Click Delete button from the drop-down menu:

[image: image71]

A confirmation pop-up will appear as follows:

[image: image72]

	Click Delete button to finish deleting this label and its sub-labels or Cancel to skip this.

Managing views

eXo Platform supports two views which are:

	List view

	Board view

list View

By default, when you access any item on the left pane, the corresponding
tasks in the central pane will be displayed in a simple list like this:

[image: image73]

In which:

	The ! symbol in red indicates overdue tasks that have not been
completed on time.

	The ! symbol in blue indicates tasks that need to be done today.

In this view, you can do the followings:

Marking a task as completed:

Hover cursor over the task that you want to mark it as completed and
click the tick icon that appears:

[image: image74]

The task will disappear from the List view unless
Filter is set to show completed tasks.

Sorting/Grouping tasks

At the top right corner of the central pane, there are two options under
the top filter that help you to sort and group tasks in categories.

[image: image75]

You can arrange these tasks by the following options:

	Created Date: sorts by the created date of tasks, with the most
recent tasks on top.

	Due Date: sorts by the due date of tasks, with the oldest tasks on
top.

	Title: sorts by the task titles in alphabetical order.

	Priority: sorts by the task priority, with the highest on top.

	Rank: sorts by the task rank.

In addition to sorting tasks by the above options, you can also group
the tasks by:

	Assignee: groups by the tasks’ assignee.

	Label: groups by the tasks’ label.

	Due Date: groups by the tasks’ due date.

	Project: groups by projects.

	Status: groups by the tasks’s status in a project.

	None: ungroups tasks.

Note

Depending on the view you select from the left pane, such as Task
filters, Projects or Labels views, some of the options above may be disabled.

Board view

This view is designed only for projects, therefore you need to go to a
specific project to see this view. In this view, you can manage tasks as
well as the project workflow:

[image: image76]

In which:

	Each column corresponds to a status of the project workflow.

	The color of a task card depends on its priority: High - Light Red,
Medium/Normal - Light Orange, Low - Light Green, None priority -
Light Gray.

	The number of tasks in a column is displayed next to the status name.

Creating new tasks:

In addition to creating new tasks by this way, you can quickly do this via the Board view as follows:

1. Hover cursor over the last task of a column (or grouping), an editable
field will appear:

[image: image77]

2. Type the task title in this field, then press Enter key. Your new task
will be created immediately in the corresponding column.

Sorting/Grouping tasks:

[image: image78]

You can sort these tasks by the Due Date, Priority and Rank options
as well as group them by the Assignee, Label and None options as in
this view.

Moving tasks

You can drag/drop tasks back and forth between assignees, labels and
statuses.

	Between statuses:

[image: image79]

	Between assignees:

[image: image80]

	Between labels:

[image: image81]

Managing project workflow

By default, your project will have a workflow with four statuses
including To Do - In Progress - Waiting On - Done and you can change
it on your own.

	To modify a status, double-click the status name in the Board view,
and type the new name in the editable field that appears:

[image: image82]

Press Enter key to finish updating.

	To delete a status, hover cursor over the status name in the Board
view, and select the delete icon that appears:

[image: image83]

Note

	All tasks assigned to the deleted status are affected to the previous status (the column on the left in the Board view).

	If the status is the first of the list (the first column in the Board view), the tasks will be assigned to the next status (the next column on the right in the Board view).

	The last status cannot be deleted.

Discussing in Chat

eXo Chat is an instant messaging application that allows users to
sync up and take action quickly. Tightly integrated since eXo
Platform 4, eXo Chat empowers the real-time collaboration among
teams and individuals.

Here is summary of what eXo Chat brings:

	Discussions: Create quick conversation with your contacts,
from group to specific person.

	Status: Don’t want to be interrupted, or not in the mood for
a chat? Simply change your status from the Chat menu or directly
in the chat window.

	Favorites: Add or remove your contacts to/from the favorites
list with one click.

	Collaboration: Leverage collaboration with a set of actions
(creating an event/task, sharing a link/file, asking a question
or raising your hand), directly within eXo Chat.

	Notifications: Follow notifications sent to you in real time,
read and answer messages immediately or later when you are free.

	Recording: Save your discussions from the beginning to the
end that can be exported to a wiki page or sent to emails.

In this chapter:

Setting your status

Mini chat window

Creating/Editing a group chat

Sending an instant message

Receiving an instant message

Actions on a sent message

Recording a discussion

Collabrative actions

Desktop notifications

Organizing your Contacts

Chat messages history

Using eXo Chat on Mobile

Setting your status

By setting your status, you will let your contacts know if you are
available to chat or not. Your selected status is shown next to your
name.

	From the top navigation bar, click [image: image0] to open the Chat menu,
then select one status.

[image: image1]

	If you are in the Chat window, click your current status icon under
your name, and select one from the drop-down menu.

[image: image2]

	Status

	Description

	[image: image7]
Available

	You are online and available to talk or get instant
messages from another. When you use eXo Chat for the
first time, your status is available by default.

	[image: image8] Do
not disturb

	You are online but don’t want to be disturbed. Another
can still send instant messages and call you.

	[image: image9]
Away

	You are online, and another can talk to you, but you will
not reply for now.

	[image: image10]
Invisible

	You appear to be offline, but another can send messages
to you.

Mini chat window

When you receive an instant message in eXo Chat, an icon showing the
number of messages received appears next to the chat icon [image: image11].
Clicking on that icon opens the chat list menu in which the received
message appears:

[image: image12]

When you click on the message, the mini chat window appears:

[image: image13]

	[image: image14] To minimize the mini chat window.

	[image: image15] To open the chat in another tab i.e it does the same as
clicking on the button Open Chat.

	[image: image16] To close the mini chat window.

	[image: image17] Where the message is composed. Clicking Enter on the
keyboard sends the message.

	[image: image18] The display name near the avatar of the user who sent the
message.

	[image: image19] The message content.

Tip

When you scroll up into the mini chat discussion and that your
interlocutor sends you new chat messages, a badge with the
number of unread messages appears near to the display name:

[image: image144]

Note

	The mini chat window could also be opened by:

	Clicking on chat button [image: image20] on the user profile.

	Clicking on chat button on user and spaces popovers:

[image: image21]

	The mini chat window behaves on mobile devices the same as
for web:

[image: image22]

	When your mini chat window is collapsed and you receive an
instant message, the number of unread messages appears in
the collapsed mini chat window near the user’s name:

[image: image23]

Creating/Editing a group chat

By creating a group chat, you can share work, knowledge and plans with
your colleagues more efficiently. In eXo Chat, the “group chat”
denotes discussion among space/team members. Your spaces (that you are
owner or member) are auto-listed into the Spaces pane.

[image: image24]

Creating a new chat room

	From the top navigation bar, click [image: image25] –> Open Chat to open
the chat window.

	In the left pane, at the header section select [image: image26] to create a
new chat room.

[image: image27]

	Enter the first letters from usernames you want to invite to the room.
A suggestion list appears to facilitate the selection.
This suggestion list proposes your connections at first level $
followed by other usernames sorted in alphabetical order.
You can also remove a chosen username by clicking on [image: image28] near
his name.

	Click Save to finish.

	The room is created and a message is displayed indicating the members added.

Editing a chat room

For the chat room that you have created , you have right to change its
name and add/remove members as follows:

[image: image29]

	[image: image30] Select Rooms filter as follows:

[image: roomFilter]

	[image: image31] Select the room you want to edit.

	[image: image33] Click on the more actions button [image: edit].

	[image: image117] Select “Edit room” button.

An edit chat room form appears in which you can make these actions:

	Rrename the chat room.

	Add more members (Same way as on creating a new chat room).

	Remove members by clicking the corresponding [image: image35].

Note

The list that appears after clicking on [image: image36] contains
the list of actions that you can make on the chat room.

Only the chat room creator is able to edit the room.

Chat room user list

For chat rooms, a collapsible panel contains the list of the chat room
members.

[image: image37]

	The side panel indicates the total number of members of the room, it
displays a number next to “Participants”.

	In the side panel, people avatars are displayed combined with their
presence badge.

	People avatars are sorted by presence, then alphabetic order. The
order used for presence is : Available, Away, Do not disturb, Offline

	All users are displayed by default. To display only online users, you
need to filter them [image: image38].

Sending an instant message

	Find the contact you want to send message from your lists. The chat
conversation is opened in the right pane.

[image: image39]

	Type your message into the input box, then hit the Enter key.

Also, you can make your messages more lively by:

Adding emotions

[image: image40]

The selected emotions will be displayed on the chat zone.

Receiving an instant message

If someone sends messages to you, you will see the number of newly
received ones on the Chat menu:

[image: image44]

or, next to the contacts in the left lists:

[image: image45]

To check them, simply hover cursor over the Chat icon.

[image: image46]

Click one message to see the full content in the mini chat.
Alternatively, if you are in the chat window, click the contact that you
see the icon of unread messages.

Actions on a sent message

Hover cursor near the chat text to show “More actions” button [image: image118].

[image: image47]

Note that Edit and Delete actions are only shown for your own
chat texts. For ones of another, you only can Save notes and Quote.

[image: image119]

Saving notes

Click Save notes to save your discussion as a note. There are 2
options: Send meeting notes and Save as wiki that is similar to Recording.

Editing

Click Edit message and make changes in the Edit message form.

[image: image48]

After clicking Save, your new content will be updated on the chat zone
with a pen icon ([image: image49]) on the right.

Deleting

Click Delete to remove your sent message from the thread. A
confirmation popup appears:

[image: image120]

When you click on “Confirm” button, an information message is displayed
in place of the deleted message with a pen icon on the right.

[image: image50]

Quoting

Click Quote to append one message in the input box.

[image: image51]

On the chat zone, the quoted message will look like below.

[image: image52]

Recording a discussion

	Click [image: image53] on the top header of the chat window to start recording.

[image: image54]

The [image: image55] is now changed into [image: image56], and the record starts. The
information message will be shown on the chat zone.

[image: image57]

2. Click [image: image58] to stop the meeting and save notes at any time with 2
options:

[image: image59]

	If you select Save notes, the notes will be sent to your email.
One information message is shown on the chat zone.

[image: image60]

	If you select Save as wiki, one wiki page link is displayed.

[image: image61]

By clicking the wiki page link, you will be redirected to Wiki Home
where the wiki page containing the notes is displayed as a child
page.

Leave Chat room

When you are no more interested in a chat room discussion where you were
invited by the room creator, you can leave this room by following these
simple steps:

	Open the chat room you want to leave.

	Click on the dropdown button [image: image113] to display the list of choices.

	Click on Leave room button [image: image114], a popup is displayed:

[image: image115]

	Confirm the chat room leave by clicking on Yes button.

If you click on No button, nothing happens and you still being a
member in the chat room.

Note

	The room creator does not have the Leave room button to prevent having orphan rooms.

	The Leave room button is not available on spaces chat rooms. To leave a space’s chat room, you should leave the space itself.

	Leaving a chat room deletes it from your chat rooms list and you will
no longer have access to the discussion.

	When you leave a chat room, a message “$First Last Name left the room”
will appear to all the chat room members:

Note

When you leave a space, you automatically leave its chat room, but no message is displayed.

[image: image116]

	If the chat room creator send you again an invitation to join the
room, you will be able again to see old discussions.

Collaborative actions

During a conversation, some collaborative actions are available on
[image: image62] icon in the left of the message input box.

[image: image63]

After clicking on collaboration actions button, it turns to [image: image121]
which enables you to close the collaborative actions window.

Adding an event

	Select Add Event from the list of collaborative actions.

[image: image64]

	Fill in the form fields, including the event title, dates and time,
location.

	If you choose wrong dates, for example, when the end date To precedes
the start date From, an error message is displayed indicating that
the dates are erroneous.

If you do not fill in all the needed fields, an error message appears
indicating to fill in the whole form.

	Click Post button. The newly created event will be displayed on the
discussion area with a calendar icon [image: image133] in the right corner.

[image: image65]

Assigning a task

Note

This action is available only when the Tasks add-on is available.

	Select Assign Task from the list of collaborative actions.

[image: image66]

	Fill in the form fields including the task title, assignee, and due
date.

	Click Post button. The newly created task will be displayed in the
discussion area with a task icon [image: image132] in the corner.

[image: image67]

Sharing a link

	Select Share Link from the list of collaborative actions.

[image: image68]

	Enter a valid URL, then click Share. The shared link is displayed in
discussion area with an icon [image: image69] in the corner.

[image: image70]

Uploading a file

	Select Upload File from the list of collaborative actions.

[image: image71]

	Drag and drop the file into the DROP YOUR FILE HERE area, or
click Select Manually to select a file from your computer.

	The uploaded file is displayed on the discussion area with the upload
icon in the right corner [image: image130].

[image: image131]

Note

When the file does not have a thumbnail icon, it will be displayed as a clickable label allowing to open the file
in preview mode.

[image: image73]

Asking a question

	Select Ask a Question from the list of collaborative actions.

[image: image74]

	Enter your question into the field, then click Ask to submit your
question. The question is displayed on the discussion area with
[image: image75].

[image: image76]

Raising hand

	Select Raise Hand from the list of collaborative actions.

[image: image77]

	Enter your idea in the text field, then click Raise your hand. Your
idea is displayed on the discussion area.
In the right corner of the Raising hand message, a hand icon
[image: image129] is dislayed.

[image: image79]

Desktop notifications

Users don’t stay all the time on the chat page, that’s why eXo Platform has
added desktop notifications to alert users on a new message received in
the chat, even when the browser window is minimized or hidden by another
one.

A desktop notification is a small popup displayed to the user to alert
him on a new message received in the chat.

Desktop notifications are sent only if you gave the permission to
recieve notifications through the web browser. You are requested to give
your permission the first time you access to chat application.

In case of a one to one chat room, the desktop notification contains:

	the avatar of the user who sent the chat message,

	the display name of the user who sent the chat message,

	the beginning of the message,

	a link at the bottom indicating the website from where the
notification is coming from.

[image: image80]

In case of a group chat (room or space), the desktop notification
contains:

	the avatar of the group in which the chat message was sent,

	the name of the chat group,

	the name of the user who sent the message followed by the beginning
of the message,

	a link at the bottom indicating the website from where the
notification is coming from.

[image: image81]

When you receive the notification, clicking on it redirects you to the
corresponding conversation in the Chat application.

Global Notification Settings

Desktop notifications complement other ways to draw your attention to
new messages like the on-site counter and the bips. You can enable or
disable these channels through the Preferences screen.

[image: image82]

	You can enable/disable a notification channel by changing the
position of the toggle on/off. By default, all the notification
channels are enabled.

	A Close button allows to dismiss the Preferences screen. The chat
application displays the previously displayed room’s conversation.

	It is also possible to enable or disable notifications for Do Not
Disturb chat status in the Preferences screen. By default, it is set
to off.

	If you enable notifications for Do Not Disturb status, this means
that whatever your chat status is, you will receive notifications.

Tip

You don’t need to save the settings, they are immediately saved and applied.

In addition to the preferences that could be set for global chat
notifications, it is also possible to parameter notifications for each
room. For that purpose, follow these steps:

[image: image83]

	[image: image84] Filter to select the “Rooms” list

	[image: image85] Select the room that you want to parameter it’s
notifications. You can select either one to one chat room or a group
chat room.

	[image: image122] Click on [image: image86] to display actions that you can do on
that room.

	[image: image87] Select Notifications from the list.

A screen appears enabling you to set the chat room notifications
settings:

	Normal: When you want to receive notifications for the chat room.

	Silence: When you don’t want to receive notifications for the
chat room.

	Alert on: When you want to receive notifications for the chat
room if an another user send a message containing a keyword.

Organizing your contacts

When your contacts list becomes so long, it will be difficult to control
all. Here are some tips commonly used to keep your contacts list
well-organized and easy to find.

Sort discussions by messages status

[image: image123]

You can sort your discussions by selecting one of these messages
statuses:

	Recent: sorts discussions starting by the most recent one.

	Unread: sorts discussions starting by the ones that contain unread
messages and by the most recent received.

Mark as read

When you have many messages in your discussions that you are not
interested to deep on them, you can simply mark them as read:

[image: image124]

This action will remove all the numbers of unread messages near the
corresponding discussions.

Adding to favorites

To find quickly a contact or group chat you often chat with, hover over
one and click [image: image92] to save as a favorite.

The star will move to “yellow” color to distinguish favorites contacts:

[image: image125]

To remove one contact from your favorites, hover over the contact and
select [image: image93].

You can also click on [image: image140] then select “Add to favorites”:

[image: image141]

After clicking on it, it turns to “Remove from favorites”:

[image: image142]

Filter by discussions category

[image: image126]

You can select a discussion category:

	All: lists all your discussions.

	People: to list only one-to-one discussions.

	Rooms: to list only rooms discussions.

	Spaces: to list only space discussions.

	Favorites: to list the favorite contacts/group discussions.

Using search bar

	If you want to find a contact discussion or a chat room discussion, type some letters following in the
search bar. The discussions will be filtered accordingly.

[image: image94]

	No matter whether you remember the beginning of a group name, the
first name or the last name of someone, the search will always return
the best match.

[image: image96]

Tip

A clear icon [image: image143] appears when you type at least one letter on the search bar.
This clear icon allows you to clear your filter by only one click.
You can also clear your filter by clicking on the escape button of your keyboard.

Chat messages history

Discussing in eXo Chat by Sending and recieving
instant messages induces to register the chat messages history which
could be easily accessible later through the chat room.

To visualize old chat messages, all you need to do is to scroll up the
chat window, a loading icon [image: image127] appears the time to load up to
200 old message. When the loading icon [image: image128] disapears this means
that the 200 messages was loaded and you can read them.

Note

The number of loaded chat messages is set by default to 200, it could be configurable in exo.properties.

Using eXo Chat on Mobile

Tip

eXo Chat on mobile has the same features as for the desktop version.

To open eXo Chat in a mobile device, you just need to click on the chat icon in the top navigation of eXo Platform.

When you click on the Chat button, a new chat room view is displayed containing last discussions sorted by the most recent updated (received or sent).

The discussion contains:

	the timestamp of the last message received or sent.

	the user avatar in a circular form.

	the number of unread messages received.

	the availability icon on the avatar’s bottom right corner.

	the favorite star icon(to display only when the contact is selected
as favorite and displayed just after the discussion label: user full
name, space name or room).

[image: image99]

It is also possible to add a chat room via a mobile device, simply click
on the [image: image100] icon to get the room creation form:

[image: image101]

To manage a created room or to make an action on a room in which you are
a member, you need to click on the [image: image102] button to get the list of
the feasible actions on that chat room:

[image: image103]

Note

A back button [image: image104] allows you to return to the list of your chat rooms.

To view the list of participants in a defined chat room, after making
the last action, select Show participants:

[image: image105]

You can filter them to show only online users:

[image: image134]

Clicking on [image: image106] opens this screen:

[image: image107]

which allows you either to change eXo Chat notification settings by
clicking on [image: image108] or back to intranet homepage by clicking on:
[image: image109]

Clicking on [image: image110] allows you to choose the notification channel for
a defined chat room (either one to one chat room or group chat room).
More details in Chat notifications section.

[image: image111]

You can also update your status via the eXo Chat mobile application,
you just need to click on the current status to display the list of
possible chat statuses.
Select the desired status that will instantly change.

[image: image112]

Same as for desktop version, it is possible to filter your discussions
on mobile, simply by clicking the filter icon [image: image135]:

[image: image136]

Filtering options are:

	Sort by discussion status: recent or Unread.

	Filter by discussion category: All, people, rooms, spaces, favorites.

It is also possible to mark your discussions as read by ticking the
option Mark all as read.

Note

You should click on “Save” to conserve your filter criterias.
If you click on Cancel [image: image137], no of your selections will be considered.

Searching discussions on mobile is also feasible. You just need to click
the [image: image138] icon, then type your keyword to filter your
discussions in accordance to it:

[image: image139]

Working With Spaces

The “team work” concept becomes very familiar in business
environment. By establishing one specific team or group, you and
your collaborators can work together on important projects. Based on
the importance of team working, eXo Platform develops the Space
application, allowing you to collaborate with specific people. The
scope of using spaces is so flexible that can be applied for teams,
themes, communities or any kind of informal groups to your business
requirements. For example, if you want to work on a team project,
you can create a space for your team members to make organizations,
share links and information related to the project.

This chapter covers the following topics:

Accessing a space

How to access a space and its page via its URL.

Space banner and avatar

How to define a space banner and avatar.

Creating a space

Steps to create a new space with new settings, permission and members.

Managing space settings

Ways to access Space Settings and steps to modify the space information and visibility, to manage members and space applications, or to manage space navigation bar.

Joining/Leaving a space

How to join/leave a space, or to revoke your request.

Deleting a space

How to delete a space where you are the manager.

Accepting/Ignoring invitations

Steps to accept or ignore a request/invitation.

Sharing in Space

How to share content in a space.

Accessing a space

After logging in eXo Platform successfully, you will see a list of your
spaces under MY SPACES on the left pane of the page.

[image: image0]

Details:

	[image: image1] The Search box which allows you to quickly search for a
space from your spaces list.

	[image: image2] The list of spaces where you are a member or manager.

	[image: image3] Allows you to access the Spaces page which displays all the
spaces in the portal. Here, you can quickly join a space or search
for your desired space.

Note

You can also see all your spaces by directly clicking the [image: image4] link or clicking Join a space to open the Spaces page, then selecting the My Spaces tab.

[image: image5]

The Space navigation includes the following tabs:

	All Spaces: All spaces, including your spaces, visible
spaces, and hidden spaces where
you are invited to become members.

	My Spaces: Spaces where you are a member or manager.

	Invitations Received: Spaces where you are invited to become members
by space managers.

	Requests Pending: Spaces where you have requested for becoming their
members.

To access a specific space, just click the space name.

Tip

You can quickly find out your desired space from the list of your spaces by typing its name/description into the Search Spaces box on the left pane or using the Search feature in the Space application.
See the Searching for spaces <Search-Space section for more details.

Accessing via URL

When you try to access a space or a space page via its URL while you are
not its member yet, you will receive various instructions as follows:

	For an Open space, click Join to join that space first.

[image: image6]

	For a Visible space with Validation Registration, click Request to
Join to send the join request first.

[image: image7]

	For a Hidden or Not existing space, click Find Spaces to open the
All Spaces page.

[image: image8]

	For a Closed space, you just can access it when being invited by your
administrator.

[image: image9]

Note

Super User, who has the highest permission, can see and access all spaces for the administration purpose.

Space banner and avatar

After creating a space, by default it has the default banner (in grey color) and the default space’s icon.
You can choose different images for the banner and the avatar.

Space banner

To change the banner just mouse over in the top right corner of the
space banner, an icon [image: image10] and a tooltip will appear.

When you click on the icon [image: image68], an Update button [image: image69] appears
allowing you to pick up an image from your computer.

The tooltip indicates you the banner size which should be 130 pixels height minimum.

[image: image11]

Having chosen the banner and if you click again on the button [image: image70]
in the top right, two buttons appear:

[image: image12]

	Update: Allows you to pick up another banner image from your computer.

	Reset: Allows you to delete the current banner image and restore
the default grey banner.

Space avatar

Same as for the banner, you can choose an another space avatar, just click on
[image: image15] and an Upload button appears allowing you to pick up an image
from your hard disk:

[image: image16]

Pick up an image by double-clicking on it. The image will be loaded in
the space’s avatar.

After setting a space avtar, when you click again on [image: image71], you can:

	Update the image by selecting an another one from your computer or

	Reset to restore the default space icon.

[image: image72]

When scrolling down in the space’s activity stream and when you exceed
the cover section limit, the banner image is collapsed and a new space’s
navigation bar still appear. It allows you to see all the space’s tabs.

[image: image17]

The new navigation bar contains:

	The space’s avatar in a cercle form.

	The space’s name allowing you to know in which space you are.

	The chat button allowing you to start a conversation with the space’s
members.

	The space’s applications.

	The More button [image: image18] appears when the number of applications
exceeds the number that the navigation bar is able to display or when
the spae’s name is long.

[image: image19]

Clicking on it displays the list of the remaining applications.

[image: image20]

In mobile devices, applications navigation bar is scrollable right and
left.

[image: image21]

Creating a space

After going to the Spaces page, you can add a new space so that you and
your collaborators can work together or discuss specific topics as
follows:

	Click [image: image22] at the top left corner of the Space page to open the Add New Space form.

	In the Settings tab, enter a space name (required and from 3 to 200 characters)
and description (from 0 to 255 characters).

[image: image23]

Note

Special characters are not allowed on space names. Only the character & is allowed.

[image: image75]

	In the Access & Edit tab, select an access level.

[image: image31]

	Visibility: By default, the Visibility value is set to be Visible.

	Visible: The space is always visible in the public spaces list.

	Hidden: The space is not visible in the public spaces list.

	Registration: By default, the Registration value is set as
Validation.

	Open: The users sending their requests can join the space without
any validation.

	Validation: The membership must be validated by the space manager.

	Close: The user cannot request for joining, but only the space
manager can invite him.

4. In the Invite users from group tab, select all members of a specific
group for your space where you are already ‘manager’.

One of the two following cases occurs when you select this tab.

	The first instance: You have been already the manager of a group. It means that you have created at least a space.

[image: image24]

	i. Tick the Select a group of people to invite in your space checkbox to open the form below.

[image: image32]

	ii. Select the group in the left pane, then its child group in
the right pane.

You will see your selected group as below.

[image: image25]

Note

To remove the selected groups, untick the Select a group of people to invite in your space checkbox.

After you have selected one existing group, all users in that group will be invited to join your newly created space.

	The second instance: You have not been a manager of any group yet. It means that this is the first time you create a space, so you cannot select a target group.

[image: image26]

	Click Create Space button to finish adding your new space. The new space appears.

[image: image27]

Sapce banner and avatar

By default, the space banner is grey (it is empty) and the space
avatar contains the general space image:

[image: image28]

You can redefine the space banner and the space avatar by mousing
over and then clicking on [image: image29] allowing you to pick an image from
your computer.

More details about how to redefine space banner and profile here.

Space applications

By default, the space is featured with some default applications
pages on the space navigation bar. Simply click each application to
use its functions. See Managing space navigation bar for more details.

	Activity Stream: Displays changes on the space information and all
the activities of space members. See Using the Activity Stream for more details.

	Forums: Allows space members to exchange their opinions on a
subject. See Building Your Forum for more details.

	Wiki: Allows space members to work on the same Wiki pages of the
space, such as editing a Wiki page. See Working With Wikis for more details.

	Documents: Allows space members to work on the same documents,
such as editing a document in the space. See Managing Your Documents for more details.

	Agenda: Allows space members to create/edit the same events/tasks
in the space calendar. See Managing Your Calendars for more details.

	Space Settings: Allows the space manager only to edit the space.
This application is invisible to space members, except the space
manager. See Managing space settings to know how to edit a space.

	Members: Displays the list of space members.

Note

When accessing the Members application of the space, you will
see a list of space members. If there are so many members, the
Show More bar will appear at the page bottom. Click Show More
to see more members.

Others

When a new space is created:

	A forum with the same name as this space is also created in the
Forums application of the portal. In case this forum is
removed from the Forums application, all members of the space
cannot see the space’s forum anymore when clicking Forums on the
navigation bar of space.

	A group calendar with the same name as the space is also created
under the Group Calendars in the Calendar application of the
portal.

	An activity is created on the Activity Stream and a comment is
added to the activity and informs that you have just joined the
space. In case you or other space members left the space, the
number of the space members will be updated to the activity.

[image: image30]

Note

When more than two space characters are input between words in the space name, these spaces will be converted to ONLY ONE space when
being displayed. With space characters at the beginning and end of space names, these space characters will be also omitted.
After being created, your space will be automatically added to the list of MY SPACES on the left panel. Therefore, you can access your space by clicking its name.

Managing space settings

If you are the creator or have the Manage permission on a space, you
can manage its initial settings in Space Settings, including:

	Space information/visibility

	Space members

	Space applications

	Space navigation bar

To edit a space, access the Space Settings page first by following one
of 2 ways:

	The first way

	Access your desired space, then select Space Settings on the space navigation bar.

[image: image33]

	The second way

	Go to the Spaces page <note-access-spaces-page>, then select the All Spaces or My Spaces tab.

	Click Edit under the space name which you want to edit.

[image: image34]

Changing space information/visibility

Changing space information

This function allows you to edit the basic information of a space.

	Select the Settings tab in the Space Settings page.

[image: image35]

	Change information in the Name, Description fields and the space avatar.

	To change the space avatar, click Change Picture below the avatar to
open the Upload an Image form. See Uploading your avatar for more details.

	Click Save to accept your changes.

Changing visibility

	Select the Access & Edit tab in the Space Settings page.

	Change values of Visibility and Registration if you want. For more details, see here.

	Click Save to accept your changes.

Managing members

Select the Members tab in Space Settings page.

[image: image58]

Here, you can do many actions on members as follows:

Inviting new members

You can invite other users to join your spaces as follows:

	Inviting users

	The first way

If you know the username of a person, simply enter his/her
username in the textbox, then click Invite.

To invite multiple people, use commas to separate your multiple
entered usernames.

	The second way

	Click [image: image36] to open the Select Users form.

[image: image37]

	Select your desired users by ticking their corresponding checkboxes, and click Add.

You can also search for your desired members in eXo Platform, do as follows:

	i. Enter a search term into the Search box.

	ii. Select a criterion you want to find in the combo box next to the Search box.

	iii. Click [image: image38] or press Enter to perform searching.

	Click Invite to invite your selected users.

	The third way

[image: image39]

	[image: image40] Go to Members application of the space.

2. [image: image41] Enter the username of the person you wish to invite to
the space. You can just type in the first letters and a list of
suggestions should appear. This list contains persons having those
letters in their username, First name or Last name. Press Enter on
keyboard to confirm the user selection.

If you entered a wrong username (i.e it doesn’t exist), it gets underlined in red:

[image: image42]

3. [image: image43] Choose one or more persons to invite from the list. You
can remove some persons by just clicking on [image: image10] in front of
the displayed named.

4. [image: image44] Click on Invite to send invitations to the chosen
persons.

If you press on Enter to confirm a wrong username and then click
on Invite, an error pop up appears indicating that the selected
username is not valid.

[image: image60]

	Inviting users from a group

	Click [image: image45] to open the Select a Group form.

	Select a group on the left pane, then select its sub-group on the right pane.

	Click Invite to invite your selected group.

After that, you will see the list of invited users. The invitees will
see your invitations in the Invitations application at the right panel of their homepage.

Revoking your invitations

If the invited users have not accepted your requests yet, you can revoke
your invitations by clicking [image: image46] corresponding to the users’ name.
The users will be removed from the Invited list.

Validating/Declining request

As a manager or creator of a space, you can validate other users’
requests for joining your space.

	To accept a user’s request for joining your space, click [image: image47] in
the Action column.

	To decline a user’s request for joining your space, click [image: image48]
in the Action column.

Promoting/Demoting a member

	To promote a member to the manager position, click [image: image49] in the
Manager column. The user will be automatically promoted as a manager
in the current space.

	To demote a member, click [image: image50].

Note

Be careful not to remove the rights for yourself; otherwise, you
will not be able to change your space’s settings anymore. Besides,
there should be at least one manager in a space, so the last manager
of the space is not permitted to be demoted.

Removing a member

Click [image: image51] corresponding to the member you want to delete in the
Members list. In case this member is the only manager of the space,
there will be a warning like this:

[image: image52]

That is, you should promote another member to the manager position
before you can delete that member.

Managing space applications

Select the Applications tab to go the Applications page which allows
you to manage space applications.

Here, you can:

Adding a new space application

	Click Add Application to open the Space Application Installer form.

[image: image53]

2. Click a category on the left panel to show its applications on the right
panel, then select the application you want to add by clicking Add
corresponding to it.

If there is no available application, ask your system administrator to
gain the access right.

Deleting an application

To remove an application, click [image: image54] corresponding to the
application name.

Renaming an application

As manager of a space, you are allowed to rename its applications except the Activity Stream.
To rename an application, simply double-click on its name:

[image: image73]

Managing space navigation bar

Each space is featured with some “pages” on the space navigation bar.
These pages may contain applications or any content. By clicking on each
page, you will be redirected to it.

[image: image55]

Also, you can easily manage these pages on the space navigation bar
through actions on the relevant navigation nodes. To do so, in Space
Settings, select the Navigations bar, then right-click the relevant
navigation node. See Managing navigation nodes
for more details.

[image: image56]

Creating a space page

To create a page that is accessible on the space navigation bar, simply
add a navigation node that links to your desired page in the Page
Selector tab. See Adding a new node
for more details.

[image: image57]

Also, you can create a space page using:

	Page Creation Wizard;
Or

	Pages Management.
In this case, Owner Type should be group, and Owner Id should be
/spaces/[space_node_name]. For example, if you want to add a
page to the space named PLF team, the Owner Id should be
/spaces/plf_team. Remember that in this way, you only create the
space page that is still not accessible. To make this page
accessible, create a node that links to this page (in the Page
Selector tab).

Editing a space page

To edit this space page, simply right-click the navigation node
containing the page and select Edit Node’s Page from the context menu.
The Edit Page window will be displayed in the Page Properties view.
See Editing a page for more details.

Removing a space page

If you right-click the node containing the page and select Delete Node
from the context menu, only the navigation node linking to the page will
be removed from the space navigation bar, but its page still exists. To
actually delete this page, see Deleting a page.

Joining/Leaving a space

Joining a space

Go to the Spaces page and you will see All Spaces tab which displays all your spaces and ones
whose Visibility is set to “Visible”.

There are two cases to join a space:

	The first instance: For spaces without validation required, click
Join corresponding to your desired space. You will automatically
become their members.

	The second instance: For spaces with validation required, after
clicking Request to Join, you have to wait for the validation from
the space’s manager who can accept or deny your request.

Revoking your request

	To revoke your request for joining a space that has not been
validated by its manager, simply click Cancel.

Leaving a space

	To leave a space, simply click Leave.

If you are the only leader of that space, the message which informs that
you cannot leave a space will appear as below.

[image: image61]

Deleting a space

Only the space managers have permission to delete their spaces.

	Open the Spaces pages, then select the All Spaces or My Spaces tab.

[image: image62]

	Click Delete under the space name which you want to delete.

	A confirmation message appears:

[image: image74]

	Click OK in the confirmation message to accept deleting the space.

Note

When a space is deleted, all information, contents (documents, tasks, events…) and
navigations related to that space are also deleted.

If you click on Cancel button of the confirmation message, nothing happens.

Accepting/Ignoring invitations

This function allows you to accept and/or deny invitations that you
received from others. You can see all spaces which are being waited for
your acceptance in the Invitations Received tab, or in the Invitations
application in the right pane of the Intranet homepage.

	To accept/ignore the invitations via the Invitations application, see here for more details.

	To accept/ignore the invitations in the Invitations Received tab, do as follows:

	Open the Invitations Received tab in the Spaces page.

[image: image63]

	Click Accept/ Ignore corresponding to your desired space to accept/deny joining the space respectively.

Sharing in Space

To share an update, a document or a link in a space, you must be a
member first. Then follow these steps:

	Access to the space in which you want to publish a post.

	Point to the space’s activity stream.

	Compose your text message or upload documents or attach a link in the activity composer. It is same as Sharing in activity stream.

[image: image64]

	Finally click on Post to share the status.

[image: image65]

When you mouse over the space name from the post, a popover is displayed
with the space name, the space avatar and the space description.

[image: image66]

If you are a member in the space and not an administrator or creator, in
addition to the previously cited components, a Leave button is displayed
in the popover allowing you to leave the space and Chat button allowing
you to start a discussion with the space members.

[image: image67]

Once you leave the space, you will not be able to see any activity, nor
receiving notifications of your former publications on this space

Only the space managers and authors of the posts can delete the
activities by clicking on the delete (1) icon in the corner. All
notifications related to that deleted activity in the space are also
deleted.

Managing Your Documents

This chapter gives you a tutorial of the Documents application
and step-by-step instructions on how to use basic actions via the
following main topics:

	Documents Interface
Overall introduction to the Documents interface, and common views which can be switched in the Documents application.

	Navigating through Documents
Ways to browse your documents in the Documents application, both in the Icons and List views.

	Document Viewer
Introduction to the document types and how the Document Viewer enhances the readability and the collaboration.

	Open in Office
Introduction to this feature, as well as compatibility and client
requirements that you need to know.

	Working with basic actions
Step-by-step instructions on how to do basic actions on your documents and folders.

	Organizing your content
Instructions on various ways for you to arrange your documents efficiently.

	Sharing your documents
Information about the Share and Auto-share features which are integrated into the Documents application.

	Extending your actions
Detailed instructions on how to extend some useful actions which are not set by default in the Documents application.

The content management is one of key strategies in the organizational
process of each enterprise. A good content management allows you to:

	Store, share and work on the same content efficiently.

	Trace changes of content intuitively and instantly.

	Simplify the way to manage your content.

The Enterprise Content Management system delivered by eXo Platform not only
satisfies basic demands (for example, uploading, previewing and
sharing/editing), but also makes useful capabilities available
(versioning, metadata, advanced searches, and more). These new
management solutions featured in the Documents application are built
on existing content management capabilities in a flexible and practical
way.

Note

	The “document” denotes a file, script, image or piece of information.

	The “folder” denotes a directory which contains a set of documents and even sub-folders.

	The “content” is used for denoting both document and folder.

Documents Interface

After logging into the Social Intranet homepage
successfully, you simply click Documents on the left panel to be
redirected to the Documents interface. As a normal user, you can
switch between Icons and List views by clicking [image: image0] or
[image: image1] respectively.

[image: image2]

If you are an administrator, you can see Documents in the Admin
view.

[image: image3]

The way to do actions on content is different between Icons and
List views as follows:

	In the Icons view, you can do actions via the Right-click action
or directly on the Action bar.

	In the List view, the Right-click action is disabled.

Depending on your various purposes, you are free to switch between the
Icons and List views just in one click. That is, if you want to
see your content as images, it is recommended you use the Icons
view.

[image: image4]

But in case you want to see more details directly in the view, the
List view is an optimal choice.

[image: image5]

Here’s what you can do in the List view:

	Seeing important details of your content, including name,
created/updated dates, creator, file size, directly in the view.
Other information (such as extension, version number) is also present
here, if any.

	Showing/Hiding children of content without going inside it. Thus, you
can have multiple folders opened in the view.

	Changing the current context for a specific content simply clicking
its name.

	Doing basic actions on your content.

Navigating through Documents

In the Documents application, you can store your content in both
drives and folders. However, to make ease for browsing your content, you
are advised to keep them in relevant folders. You can browse your
content in various ways, for example:

	In the Icons view, double-click the content to open it.

	In the List view, click [image: image6] to expand a specific folder that
allows you to see its children without going into the folder. To hide
its children, simple click [image: image7] to collapse this view.

	Enter the path of the relevant content directly into the address bar.

[image: image8]

You can come back to the previous content by clicking [image: image9].

	Browse your content from the left sidebar in the Icons view. In
the List and Admin views, the sidebar is disabled by default.
To browse in this way, refer to Hide explorer panel in sidebar.

	Switch to another drive by clicking [image: image10] on the Action bar. A
list of drives which are accessible to you will be shown.

Note

Depending on your role and permission, you will see various drives. See
Drives for more details.

Document Viewer

The viewable document types

The Documents application allows users to build custom content types and
provides some built-in content types. It also provides a viewer for
common file types so users can read Office documents, view images or
play videos directly from the activity stream.

When a document has a preview, a part of it is displayed, if not a
thumbnail icon is displayed:

[image: image11]

When clicking to preview, here is what we got in the two cases:

[image: image12]

The following types are viewable i.e has a preview:

	Printable files: pdf, doc (and other Office files) or any other
type of files JODConverter
supports. See the full list of types at JODConverter, Administrator
Guide.

	Images: png, jpg, jpeg, gif.

	Audios/Videos: mp3, mp4.

	ECMS content, either custom or built-in templates, such as a web
content template.

For these viewable types, when you click a document preview thumbnail in
the Activity Stream or select the View Document menu from Documents in
the left navigation pane, the Document Viewer opens. The viewer
provides a large viewing area and some functions, such as Search,
Download and Print.

Tip

To exit the Viewer, hit Esc key or click X icon at the top right corner.

Office documents and pdf files

You can always view pdf files, whereas Office documents require
JODConverter to be
installed on the server. If you cannot view an MS Word file, for
example, contact your administrators.

For these file types, the Document Viewer provides maximized reading
estate and all the functions listed.

[image: image13]

	Page Navigator

Although you can simply scroll to go to another page, the Page Navigator
provides many page selectors (e.g. previous, next, first and last page
links, page number selector). You can also show/hide the Page Thumbnail
pane by clicking the leftmost icon in the toolbar. Click it again to
close it.

[image: image14]

	Search: Click the Search icon [image: image15] to open the Search bar and
click it again to exit.

[image: image16]

	Download: Click the Donwload icon [image: image17] to download the file.

	Full screen mode: Click the Switch to Presentation Mode icon
[image: image18] to read in full screen. Hit Esc key to exit this mode.

	Print: Click the Tools icon [image: image19] then select Print.

	Comment: You will see the Comment area on the right side when you
open the viewer. If it is hidden, you can bring it back by clicking
the rightmost arrow icon.

[image: image20]

	Like: In the Comment area, click the Like icon [image: image21] to
like the post. Click it again to unlike.

Images, Audios and Videos

For viewable media types, the available functions are Download, Comment
and Like.

[image: image22]

ECMS Content

If the document is ECMS Content, it is viewable. The following
screenshot shows illustrated web content, which is one of the built-in
templates.

[image: image23]

Open in Office

With the Open in Office feature, you are able to easily edit documents,
spreadsheets and presentations in the native applications installed on
your client, without keeping a local copy.

In fact, this feature already existed before, but since PRODUCT 4.2,
more operating systems and browsers will be supported. You will be able
to open not only Office formats, but also virtually any file format as
long as an application is associated with it in your client.

Depending on the file type, a new contextual action appears as below:

	Open in Word for file types: .docx, .doc, .docm,
.dot, .dotm, .dotx.

[image: image24]

	Open in Excel for file types: .xltx, .xltm, .xlt,
.xlsx, .xlsm, .xlsb, .xls, .xll, .xlam,
.xla.

[image: image25]

	Open in Powerpoint for file types: .pptx, .pptm,
.ppt, .ppsx, .ppsm, .pps, .ppam, .ppa,
.potx, .potm, .pot.

[image: image26]

	Open on Desktop for Non-MS Office files that are different from
Word, Excel or Powerpoint files.

[image: image27]

Note

The labels used for these buttons can be set by an administrator.
See how-to in Administrator Guide.

This feature can be used not only in the Activity Stream (like above),
but also in many places:

	Admin and List views (directly on the Action bar):

[image: image28]

	Categories, Icons and Web views (on the right-click menu)

[image: image29]

	File Preview

By default, in some views (including Admin, Icons and List view),
these buttons will be displayed as an action on the Actions bar.
These buttons can be configured in any views (Categories, Web) like
any other actions by your administrator
(Administration –> Content –>Content Administration –> Explorer –> View–> [image: image30] –> Action tab –> [image: image31] –> Remote Edit checkbox).

Note

These buttons will not be displayed in case multiple files are selected.

How to use?

By clicking either of these buttons, you can open and edit that document
in one native application that is registered on your client. A new
version of the document will be automatically created when it is saved
within the Office application.

	When one document is currently opened by one user, the Lock icon will
appear next to that file: [image: image32]. If you still want to open this
file, one message saying that you can open it in the Read-only format will appear.

[image: image33]

	In case there is no application registered for one file type, one
message appears, saying that you have no application registered to
open that file.

Note

To make this feature work well, you need to learn about Compatibility
as well as Client requirements.

Compatibility

Basic compatibility

eXo Platform core has a basic compatibility for Microsoft environments. So,
if you are using Windows (7, 8 or 10) with Microsoft Office 2016
installed, you can work with Word, Excel and Powerpoint files in many
browsers: IE11, Firefox, Google Chrome and Edge.

Enhanced compatibility

For editing more file types and in various platforms, it is required
your administrator install the Remote Edit add-on on eXo Platform server
(by the command: addon install exo-remote-edit). With this
installation, you can start using Open in Office in more various
environments. Here are the client environments that are currently
supported in eXo Platform:

	OS

	Browsers

	Office suites

	Windows 7, Windows
8, Windows 10

	IE11, Firefox, Chrome,
Edge

	Microsoft Office 2016
(Recommended), Microsoft
Office 2010 and 2013
(Supported)

	MAC OS 10.9+

	Firefox, Safari

	Microsoft Office for Mac
2016 (Recommended),
Microsoft Office for Mac
2011 (Compatible)

	Ubuntu 17.04

	Firefox

	LibreOffice 5.4
(Supported), OpenOffice
4.1 (Compatible)

Note

	It is recommended to use the latest versions of Firefox and Chrome.

	Google chrome browser is incompatible for Ubuntu OS.

	For Chrome in Windows and MAC OS, you need to enable NPAPI, as said here [https://java.com/en/download/faq/chrome.xml#npapichrome].

Client requirements

In client side, you need to pay attention to the following environment
requirements before using this feature.

Note

For all OSs/browsers, it is recommended you install and make sure
Java Applet enabled. This is required for opening Non-MS Office
files. You can visit http://javatester.org/ to make sure Java Plugin
already installed on your browser.

Windows

Note 1. Allowing to open and edit MS Office file types.

	Configure WebDAV Redirector on the client.

	On Windows 7, click Start, type regedit in the Start Search
box, and then press Enter. If you are in Windows 8, hold the Windows
key (WINKEY) + F, highlight Apps in the Menu bar, type regedit
in the Search box, and press Enter.

	Locate to the following:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WebClient\Parameters.

	On the Edit menu, point to New, and then click DWORD Value.

	Type BasicAuthLevel, and then press Enter.

	Right-click BasicAuthLevel, and then click Modify.

	In the Value data box, type 2, and click OK.

	Update the Registry on the client.

	Locate to the following:
HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Common\Internet
(for MS Office 2010) or
HKEY_CURRENT_USER\Software\Microsoft\Office\15.0\Common\Internet
(for MS Office 2013).

	On the Edit menu, create BasicAuthLevel with the same value as in
Configure WebDAV Redirector on the client.

	Exit Registry Editor, and restart your client.

Note 2. On Chrome browser

If you install both Microsoft Office and OpenOffice, you need to choose
Microsoft Office as default application for office files.

Note 3. For Non-MS Office files

When you open/edit a Non-MS Office file, one NPE exception is thrown on
eXo Platform server and even when the file is opened successfully, the
client gets very slow. See here [http://stackoverflow.com/questions/27416798/it-hit-webdav-open-non-office-files]
for understanding the problem.

Linux

On Firefox, to open/edit one file, you need to install davfs2 that
allows mounting a WebDav server as a disk drive:

$ sudo apt-get install davfs2

To open a document using untrusted SSL, you should export your server
certification and then register and trust it on davfs2 by following
these steps:

	To export the server certification, use this command:

$ openssl s_client -connect ${REMHOST}:${REMPORT} | sed -ne '/-BEGIN CERTIFICATE-/,/-END CERTIFICATE-/p' > myserver.pem

	Register the certification on davfs by copiying it to davfs2/certs/:

$ sudo cp myserver.pem /etc/davfs2/certs/

	Trust the certication on davfs2 by editing the file /etc/davfs2/davfs2.conf and adding this content:

$ trust_server_cert /etc/davfs2/certs/myserver.pem

MAC

	Enable BasicAuth None SSL with the command:

$ defaults -currentHost write com.microsoft.registrationDB hkey_current_user\\hkey_local_machine\\software\\microsoft\\office\\14.0\\common\\internet\\basicauthlevel -int 2

	In case you cannot open Microsoft Office files, you should close or
force closing Microsoft Office Application, then re-open it.

	In MAC OS 10.9, to edit a text file, it is recommended you use
TextWrangler (not default TextEditor) to edit it.

Working with basic actions

eXo Platform features some ways for you to do actions on your content
flexibly, regardless of in which view you are using.

Before doing any actions on your content, it is recommended that you
clarify the following points:

	In the Icons view, you can right-click the content that shows a
drop-down menu.

[image: image34]

	In the List view, you cannot right-click the content. Instead,
click anywhere under a specific area of the content (marked with the
ticked checkbox). You will see a list of actions on the Action bar
that are similar to those from the Right-click menu.

[image: image35]

Note

Depending on the display width of your device, some actions (for
example, Download And Allow Edition and Copy URL To Clipboard)
may be grouped in the More drop-down menu.

	The available actions shown in the Action bar when you double-click
the content in the Icons view are quite similar to those when you
click directly the content title in the List view. The difference
is that the Overload Thumbnail function is only featured in the
Icons view.

	See the comparison table as below to have an overview of actions:

Uploading files

Uploading files from your local devices is a fast and efficient method
to create and store your documents in Documents.

Note

You now can upload multiple files from your local devices by holding
Ctrl (on Windows) or Command (on Mac) to select them at the same time.

There are 2 available ways to upload:

	Using the Upload button.

	Dragging and dropping.

When you start your upload, you will see the Upload Status window at
the bottom. In this window, the progress bar will appear next to the
files which are being uploaded.

[image: image39]

	Abort all uploads by clicking Abort all.

	See necessary information of upload by clicking [image: image36].

	After your uploads are finished, you can click [image: image37] at the right
top corner of the dropzone to close it.

	Cancel your progressing upload by clicking [image: image38] next to the
progress bar.

Note

	The upload size depends on the size limit that your administrator set up in the ‘Edit’ mode of Sites Explorer. If your file size exceeds the limit, the alert message will appear.

	If the name of your uploaded file is the same as that of an existing file in the same location into which you are going to upload, you will receive one warning in the dropzone that your file is already in use.
Here you can decide to keep both (your uploaded file and the existing file), replace the existing file with your uploaded file or cancel your file upload.

Using the Upload button

1. Define the folder where your files will be
stored. Click Upload on the Action bar to open the File Upload
window. Browse and select your desired document, then click Open to
start uploading your selected files.

Dragging and dropping

	Simply drag and drop files from your local device to your desired
folder.

	Or, drag and drop files to the dropzone which appears when there are
files ready to be dropped at the bottom.

Creating a folder

To make your content management neat and easy to find, you should create
appropriate folders to store them.

	Go to the location that your want to create a folder.

	Select [image: image40] to open the New Folder form.

[image: image41]

If you create a new folder in a drive which allows creating more than
one folder type, you will see the Use a custom type of folder checkbox.
For example, in the Collaboration drive:

[image: image42]

	By default, if you do not select the Use a custom type of folder
checkbox, a Document Folder type will be created. Tick this checkbox,
then select another folder type from the drop-down menu.

	Enter a folder name, then click Create Folder to finish.

Note

	The name of a folder may be the same as that of the existing ones. In this case, an index will be added to your newly created folder that can be seen on the address bar.

[image: image43]

	The list of available folder types which can be created in each drive is different depending on the drive configuration.

	Child folders will have the same folder type as that of their parent folders.

Viewing a document/Editing document properties

Viewing a document

	Define the document, then select [image: image44] from the Right-click menu
or on the Action bar.

Your selected document is opened in another tab with the link
containing the document path.

	Simply double-click the document in the Icons view, or click the
document title in the List view. Your document will be opened
directly in the main panel with its path at the address bar.

[image: image45]

	Here, you can also save your opened document as a PDF file or
download it to your local device.

Editing document properties

1. Select Edit Document Properties from the Action bar to open the File
form.

[image: image46]

	Change information for your document, except the Name field.

Note

You can edit the Categories field only by clicking [image: image47].

3. Click Save to commit your changes, or Save & Close to save and close the
form, or Close to cancel your changes.

Copying/Cutting & Pasting

These functions are used to make a content copy (including its children
and references) to other places.

There are 2 ways to cut/copy & paste content:

The first way

	Select [image: image48] or [image: image49] from the Right-click menu or on the Action bar.

	Select the destination where the copied/cut content is stored, then select [image: image50] from the Right-click menu or on the Action bar.

Note

The Paste function is enabled only after the Copy/Cut action is selected.

The copied/cut content (and its children) will be pasted into the new
selected path.

The second way

Note

To do this way, you have to enable the Show Sidebar checkbox.

	Select [image: image51] or [image: image52] from the Right-click menu or on the Action bar.

	Select the destination that you want to be the parent of the content which is copied/cut.

	Select [image: image53] on the Filter bar to open the Clipboard window.

[image: image54]

4. Click [image: image55] in the Clipboard window to paste the copied/cut content
into the selected destination.

	You can click [image: image56] to delete the specific content from Clipboard.

	You can also click the Clear All link to delete all from the list.

Note

	You only can take the Copy action if you have this right on the source content.

	You only can take the Paste action if you have the right on the destination.

	If the destination has the same name with the copied content, after being pasted, an index will be added to the name of the pasted destination, for example Live and Live[2].

	You cannot copy a “content” folder into a “document” folder.

	After taking the Copy action, you can take the Paste action on the different destinations before taking another Copy action.

Deleting

Note

	You can only take the Delete action if you have the permission on that drive.

	You can delete multiple content at the same time by holding theCtrl (on Windows) or Command (on Mac) key and clicking the desired files and folders.

	If any folder is deleted, it means its child folders and references (if any) will be deleted accordingly.

Deleting content

	Select [image: image0] from the Right-click menu or on the Action bar.

	Click Delete in the confirmation message.

Note

If the deleted content has a symlink, this will be also deleted.

Restoring content

	Once you have deleted the content, you will see a message at the top,
indicating that your deletion is completed successfully. If you want
to restore your deleted content immediately, click the Undo link.

	The deleted content is stored in the Trash drive. By going to
this drive and selecting Restore From Trash, you can restore your
deleted content.

Note

	Currently, only administrators have the right to access the Trash drive.

	Deleting any content from the Trash drive will remove them permanently.

Voting for a document

The Vote feature is used to assign a rating to a document. In eXo Platform,
you can vote for a document via the 5-star rating. The more stars you
select, the higher rating you evaluate.

1. Open the document for which you want to vote, then select [image: image58] on
the Action bar.

The Vote Document form appears.

[image: image59]

	Rate the document by clicking the appropriate star level.

After a vote has been added, the rating will appear at the bottom of the
document:

[image: image60]

	Avg. Rating: The average value of all votes assigned to the
document.

	Votes: The number of votes assigned to the document.

Tagging a document

A tag is a keyword or term associated with or assigned to a piece of
information (picture, geographic map, blog entry, clip, and more). Each
tag describes one item that enables the keyword-based classification and
search.

Note

All tags are in public. This means all users can view them. However,
to edit or delete them, you need to have the appropriate right granted by your administrators.

Adding a new tag

1. Open the document for which you want to tag, then select [image: image61] on the
Action bar to open the Tag Manager form.

[image: image62]

Details:

	Field

	Description

	Tag Names

	The tag names you want to add to your documents.

	Linked Tags

	List of all tags added to your documents.

	Input a value into the Tag Names field. You can add many tags to one document at one time by separating with commas.

	Click Add to accept, or Close to quit.

Note

	To view the whole list of tags, you just need to click on [image: image63] from the sidebar.

	In case many tags are added to the documents, the tags cloud is paginated:

[image: image64]

Removing a tag

1. Open the document for which you want to tag, then select [image: image65] on the
Action bar.

	Click [image: image66] to delete an added tag.

	Click OK in the confirmation message to delete the tag.

Adding a thumbnail

If you do not want to represent a content with an existing but boring
icon, you can change this by adding your desired thumbnail to your
content.

	Select content to which you want to add a thumbnail.

	Select [image: image67] on the Action bar to open the Add Thumbnail Image form.

[image: image68]

3. Click Choose Thumbnail Image to select the image which will be used as
the display icon for your selected content.

	Click Save to accept your changes.

For example, you have the folder with a default icon in the Icons
view as below:

[image: image69]

After you have overloaded your desired thumbnail, the folder will be
displayed:

[image: image70]

Watching/Unwatching a document

By using this function, you can follow all changes made on the document.

Watching a document

	Open the document you want to watch and click [image: image71] on the Action bar to open the Watch Document form.

[image: image72]

	Select the Email checkbox to receive the notification message via your email, then click Watch to finish.

One message of successful watching will display as below.

[image: image73]

Note

A notification message will be sent to your email address which is set in your profile.
However, if your account is suspended,
the function will stop working.

Unwatching a document

Simply open the watched document, then click Unwatch in the Watch
Document form.

One message of successful unwatching will display: [image: image74]

Versioning

A versioned document is one which can be recovered at any given time.
You need to clarify the following points:

	Once “Version” is activated for a document, this is called a
“versioned” document.

	The saved state of a document is called “version”.

	Versions created for a document behave as parts of the versions
history.

	The version on which you are currently working is called the “base”
version.

Versioning is an optional feature, so you need to activate this for
either an independent file or a whole folder.

Enabling versioning for a file

	Open the document you want to enable versioning.

	Click [image: image75] on the Action bar.

The following message will appear.

[image: image76]

	Click Activate to enable versioning for the document.

Enabling versioning for a folder

You can enable versioning for an entire folder instead of doing it on
every child document of the folder.

For example, here are steps to enable versioning of the folder
collaboration:/sites/test.

	In Sites Explorer, open the drive Collaboration, then select the folder.

	Switch to Admin view, and click Actions on the Action bar.

	Select the Add Action tab. On the dialog that appears, input:

	Create Action of Type: exo:autoVersioning.

	Name: Auto Versioning.

	Lifecycle: Content Addition.

	Is Deep: checked.

[image: image77]

4. Click the Search icon in the row Affected Node Types. Then check
Select All Document Types, and click Save.

	Click Save, then Close to finish.

Whenever you update a document in the folder, a version will be created.

Adding a version to document

Versioning files is done automatically whenever a user overwrites a
file. There are many ways in which eXo Platform will help you to create a new document version.

Via Documents application

In the Documents application, there are two ways to create a version
for a document. You can go to the folder that you want to create a new
document version and try one of the following ways.

The first way

Upload a file (or multiple files) to this folder by using the Upload
button on the Action bar or dragging/dropping this file directly from
your computer.

	If this is a totally new document and the versioning is enabled for
the folder or the drive that contains this folder, the first version
will be created as below:

[image: image78]

If the versioning is not enabled, no version is created.

	If there is an existing versioned document with the same name as the
uploaded file, a popup with the following suggestions is shown:

[image: image79]

In which:

	Keep both: no version of the existing document is created, but
a new document is created with the same name (as a sibling
document).

	Upload new version: a new version of the file is created with
other information, such as title or description of the old
document kept on the new version.

	Cancel: the upload is cancelled.

The second way

Copy and paste a document (or multiple documents) to a folder which
contains a document with the same name.

	If the document is versioned, there will be a confirmation popup like
this:

[image: image80]

In which, the options Keep Both, Save as new version and
Cancel are exactly the same as the Keep Both, Upload a new
version and Cancel options respectively in the first way.
Besides, if you upload multiple files, ticking the checkbox
“Remember my choice for all others versioned documents” will
apply the selected option for the remaining versioned files.

	If the document is not versioned, the options will be the same as those in the first way:

[image: image81]

Ticking the checkbox “Remember my choice for all other versioned
documents” will apply the selected option for the remaining not
versioned files.

Via File Upload

There is also an another case in which you probably need to create a
document version.

	Click [image: image82] in CKEditor of web content or illustrated web content file template.

	Upload a file to a folder that contains a document with the same name:

	If the document is versioned, there will be an alert like this:

[image: image83]

In which, the options Keep Both, Create a new version and
Cancel are exactly the same as the Keep Both, Upload new
version and Cancel options respectively in this case.

	If the document is not versioned, the options will be the same.

Via the Action bar

The first way

	Open a versioned document that you want to create a new version in the Preview Mode.

	Click the Upload a new version button on the Action bar.

3. Select a file to upload. Notice that the uploaded file does not need to
have the same name as the versioned document, but it should be the same
file type.

Once the file is selected, a new version with the same name as the
current document is automatically created. One success message will be
displayed.

The second way

1. Right-click the versioned document that you want to create a new
version.

	Select the Create a new version button from the popup menu.

This will automatically create a new version of the document based on
the current version so that you can change the document properties on
this version while its content is still kept.

Via WebDAV

It is pretty simple to create a version for a document via WebDAV. You
just need to access WebDAV and upload a file to a folder. Several cases
will happen as below:

	If this is a totally new document and versioning is enabled for the
folder or the drive that contains the folder, its first version is
created.

	If there is an existing not versioned document with the same name,
the new document will replace the existing one.

	If there is an existing versioned document with the same name, a new
version will be created.

Managing versions

You can manage your versions by comparing with the current version,
adding/removing labels, viewing/deleting versions or restoring to a
specific version. All such management actions will be done in the
Version History window.

[image: image84]

Comparing two versions

[image: image85]

	Check two versions among the versions list of the document/content.

	Click on Compare selected versions buttons.

3. A page appears to highlight changes done between the two selected
versions. If the update contains an addition, it is highlighted in
green. If the update contains a deletion, it is highlighted in red.

[image: image86]

Adding a summary

You can give a summary to each document version. For that purpose,
simply double click on the label Click here to add a summary, fill in
the text field then save by clicking on [image: image87]

You can abondon the summary addition by clicking on [image: image88].

Restoring a version

1. Define the version that you want to restore as the base version by
checking it among the version list.

2. Click [image: image89] from the column Action that is in the version’s line
to make the selected version become the base one.

Viewing a version

Simply click [image: image90] to view the document at the selected version.

Deleting a version

	Click [image: image91] corresponding to the version you want to delete.

Click OK in the confirmation message to accept your deletion.

Note

You cannot delete the base version.

Commenting on a document

This function is used to comment on a document.

	Open the document to which you want to add your comment.

	Click [image: image92] on the Action bar to open the Comment form.

	Add your comment, then click Save to commit.

The comments are shown at the bottom of the document.

[image: image93]

	Click the Show comments link to view comments.

[image: image94]

	Edit your comment by clicking [image: image95] or delete it by clicking [image: image96].

Note

A formatting toolbar appears once you click in the comment composer.
It allows you to change the formatting of your message, attaching
images and links and preview how it will look once posted. (like
what we have for the activity stream composer)

Note

	You can mention people in your comment by first typing “@” symbol then selecting the person name you want to mention. See Mentioning someone for more details.

	Document comments are displayed exactly like in the activity stream.

Managing permissions

This function allows you to manage permissions on content.

Select content, then click [image: image97] to open the Permission Management
form.

[image: image98]

Here, you can perform the following actions:

	Adding permissions

	Editing permissions

	Deleting permissions

Adding permissions

1. Select a user or a membership or everyone whom you want to assign
permissions by clicking [image: image99] or [image: image100] or [image: image101] respectively.

	Select right(s) you want to grants by ticking the corresponding checkboxes.

Note

	When you select Modify Right or Remove Right only, the Read Right will be ticked automatically.

	
	When ticking any permissions above (Modify, Remove or Read only), if you set the * membership for a group, this permission will be

	granted to all users of the group, regardless of their membership role.

	Click Save to accept your changes. The new permissions will appear in the permissions table above.

Editing permissions

Editing permissions allows you to add more or remove a specific right
granted to a user or membership.

	Define the permission of a user or membership in the permissions table.

2. Tick/Untick the checkboxes corresponding to the rights you want to grant
or remove respectively.

	Click Save to accept your changed rights.

Deleting permissions

	Select the permission of a user/membership in the permissions table.

	Click [image: image102], then select OK in the confirmation message.

Note

You cannot delete your own permissions.

Viewing document information & metadata

Viewing document information

eXo Plarform supports you to view all information of a document, such as
name, title, type, owner, created and modified dates.

To view information, simply select [image: image103] from the Right-click menu or
on the Action bar.

The View Information form appears as below.

[image: image104]

Viewing document metadata

This function allows you to view metadata attached to the uploaded file (nt:file).

	Open the document (nt:file).

	Click [image: image105] on the Action bar to open the View Metadata form.

[image: image106]

Adding/Editing metadata

1. Click Add/Edit at the bottom of the View Metadata form to add or edit
metadata to open the Add/Edit Properties form.

[image: image107]

	Complete the desired fields in the Add/Edit Properties form.

	Click [image: image108] to add further metadata for each field.

	Click [image: image109] to remove corresponding values.

	Click Save to accept your changes.

Renaming

This function is used to change the content name.

	Select [image: image110] from the Right-click menu or on the Action bar.

A mini-form which contains the current content name will pop up:

[image: image111]

Give the new name in the input field.

	Click Rename to accept your changes. The title of your content is changed into Renaming… while being in process.

Copying URL to clipboard

The Copy URL To Clipboard feature enables you to copy the WebDAV URL
of content. You then can view it using the WebDAV client as stated in
WebDAV.

1. Select the content you want to copy its URL, then click [image: image112] from
the Right-click menu or on the Action bar.

	Paste the URL on another tab.

You can view the content you copied its URL or download it to your local
device. You can also view other folders by clicking … above the
current folder to go up its root.

[image: image114]

Locking/Unlocking

This function is to avoid changes on a specific content and actions by
others, during a specific period.

Locking content

Select the content, then click [image: image115] from the Right-click menu or on
the Action bar. The selected content will be locked.

Note

	Only users with appropriate rights can lock the content.

	After being locked, other users can only view the content.

	
	The lock will be kept during the current session only. If the

	user who locks the content signs out, the content will be unlocked.

	
	Other users can copy the locked content (by using the Copy/Paste

	functions outlined above); however, the original content cannot
be removed or altered.

	If no action is taken on the locked content within 30 minutes, the lock will be automatically removed.

Unlocking content

Select the content which has been locked, then click [image: image116] from the
Right-click menu or on the Action bar. The content will then be unlocked
and other users can take actions on it.

Viewing WebDAV

WebDAV enables users to access, then read/write the content over the web
browser. Thanks to its benefits of easy, quick and flexible
manipulations and time-saving, WebDAV is often used to view the content.

	Select the content you want to view WebDAV.

	Click [image: image117] from the Right-click menu or on the Action bar.

With each type of content, the form to view in WebDAV will be different.
For example:

	For folder: The list of children under the current folder will be
displayed in WebDAV.

[image: image118]

	For nt:file: The content of the document will be shown.

In addition to web browser, you can access the content through another
WebDAV clients. See WebDAV for more details.

Organizing your content

One of the simplest ways of making your content management professional
and efficient is keeping them well-organized. In eXo Platform, you can
practice various ways to keep your content neat, accessible and easy to
search thanks to:

	Sorting/Paginating

	Adding to favorites

	Creating a symlink

	Customizing your preferences

	Filtering

Sorting/Paginating

Sorting your content

In the List view, your content can be found easily and quickly by
using the Sort option. You can arrange your content by sorting them
to Name, Date and Size in ascending or descending order.

[image: image119]

Note

If you select each Sort option again, the order type will be changed. This means “ascending” is changed into “descending” and vice versa.

Paginating

Instead of scrolling all your content in the long list, you can use
Paginator to organize them into separate pages.

[image: image120]

The Paginator value is set to “20” by default. This means the Paginator
button will be visible if the content number exceeds 20.

To change the Paginator value, simply click [image: image121] and pick another
one from the Nodes Per Page drop-down list.

Adding to favorites

By using the Add to favorite feature, you can easily find your preferred
documents easily in the Favorites folder. This is an efficient way
to manage your documents.

	Define the document you want to add as favorite.

	Select [image: image122] from the Right-click menu or on the Action bar.

A symlink of your favorite document will be created in the Favorites
folder.

Removing from favorites

	Define the document which has been added to the Favorites folder.

	Select [image: image123] from the Right-click menu or on the Action bar.

Note

You can go directly to the Favorites folder, then remove the document from it.

Creating a symlink

A symlink is a special type of document that points to one file or
folder.

To add a symlink, simply select [image: image124] from the Right-click menu or on
the Action bar. The symlink will be added to the selected document
immediately that is marked with [image: image125].

Note

	When you perform an action on a symlink, the action is also performed on the content to which the symlink points.

	When you delete a symlink, you delete the link’s content, not the content to which the symlink points.

Customizing your preferences

This function is used to set up your browsing preferences.

	Click [image: image126] on the right side of the Action bar.

The Preferences window will appear.

[image: image127]

Details:

	Field

	Description

	Sort by

	Sorts content in the list by Alphabetic, Type,
Created Date, or Modified Date that is associated
with the Ascending or Descending order.

	Show Sidebar

	Displays/Hides the sidebar.

	Enable Drag & Drop

	Enables/Disables the “drag and drop” action.

	Nodes Per Page

	Defines the number of content displayed per page.

	Show Non-document
Nodes

	Displays/Hides items that are non–document.

	Show Referenced
Documents

	Displays/Hides referenced documents.

	Show Hidden Nodes

	Displays/Hides hidden documents.

	Enable DMS Structure

	Displays/Hides documents in the tree structure.

	Query Type

	The query type.

	Configure the preferences to your desires and click Save to set them;

Or, click Close to quit without submitting changes.

Filtering

You can organize your content effectively based on the existing filters
on the sidebar in the main view. Thus, to filter your content, you need
to enable the sidebar first.

[image: image128]

Next, find out your content quickly by selecting:

	Owned by me to show your own ones.

	Favorites to show ones added to favorites.

	Hidden to show hidden ones.

	Filter By Type to show ones by various types, including: Content,
Document, Image, Music and Video.

Note

You can combine more than one filter at one time to find out your desired content.

Sharing your documents

The section provides you with the information related to sharing your
documents via the following topics:

	Sharing directly in the Documents application

Instructions on how to share your documents in your spaces using the
Share feature of the Documents application.

	Sharing via Activity Composer

Explanations on the automatic creation of a new activity on the
Activity Stream when you finish uploading or sharing a file and
information related to the update of the activity when you do some
changes on the document.

Sharing directly in the Documents application

To share a document in the Documents application, do as follows:

	Click Documents on the left panel, you will be redirected to the
Documents interface.

	Select any document that you would like to share. If you are in the
List view, a Share button will appear in the Actions bar:

[image: image129]

In case you are in the Icons view, right-click on the document to
see the Share button in the drop-down menu:

[image: image130]

Note

Only one file can be shared at a time, so you will not see the Share button if you choose more than one file simultaneously.

	Click on the Share button, you will see a sharing dialog.

[image: image131]

4. Type the first letter from the username/space to which you wish to
share the document. A drop-down list with the names of users and spaces
having that letter appears.

[image: image132]

	Select the users/spaces to which you want to share the document.

Tip

After selecting at least one user, the share button becomes enabled even without precising a permission.

	Select the permission: you can choose either can view [image: view] or can
edit [image: edit]:

	Can View [image: view1]: space members can only read the file.

	Can Edit [image: edit1]: space members can read and modify the file.

By default, the Can View permission is applied.

Note

If you do not have the Can Edit permission on this document, only the Can View right is available for setting permissions.

Who has access section

Note

The who has access section of the sharing dialog is alimented after the share action i.e. after clicking on Share button.

The Who has access section contains the list of spaces/users with whom
the document is shared and the persmission they have on it.

This list is sorted as follows:

[image: image134]

	The first entry of the list is the owner of the document, it cannot
be removed.

	After the document’s owner clicks on Share button, new entries
(users/spaces with the corresponding permission) will be added in the
bottom of the Who has access list.

	Other entries are displayed in a scrollable area. Each entry contains
: share target (user or space), permission (can edit or can view) and
a delete icon.

Note

If the user enters a username that is not valid, the share button becomes enabled but when clicking on it a warning appears indicating that the username is not valid.

[image: warning]

	Add some comments or descriptions about the shared document into the
succeeding text box. This step is not mandatory.

	Click Share to finish sharing this document with the selected users/
spaces or Cancel to skip sharing.

Note

	After a document is shared successfully, a symlink will be created in the destination spaces and put into a folder named Shared in the Documents folder (if the folder does not exist in these spaces, it will be automatically generated while sharing a file). Therefore, the document could be shared again by any member of these spaces.

	This sharing activity will be automatically updated on the Activity Stream. Refer to Sharing via Activity Composer for more details.

	If the original file is deleted, all its associated symlinks in all spaces will be removed.

Sharing via Activity Composer

eXo Platform continuously improves the pleasure and value in engaging with
the users’ community by integrating the Auto-share feature into the
Documents application. This integration fundamentally complies with
privacy rules; that is what made in folders (except Public) of the
Personal Documents drive will not be shared on Activity Stream.
Therefore, Auto-share is only featured in spaces, and you are
required to be owner or member of the space to see activities updated in
the space’s Activity Stream. At the same time, these activities are also
updated in the Social Intranet homepage.

Assume that you have created a space or are a member of a space named
PRODUCT TEAM, then start doing certain actions in the Documents
application of this space.

[image: image136]

Many of the actions (for example, uploading, editing or sharing a
document) will be automatically shared on Activity Stream although
you do not take direct actions to share them. As a result, another
members can see what you are doing on your content via Activity
Stream.

Creating a new activity

Once you have finished uploading or sharing a file to the Documents
application of the PRODUCT TEAM space, one new activity will be
created on Activity Stream.

[image: image137]

Here, you can see the following main information of the uploaded file:

	The file name [image: image138] or title [image: image139], if any.

	The file description [image: image140], if any.

	The file version [image: image141] and size [image: image142], if any.

Note

	If the uploaded file is an image, the preview image will be displayed on the activity content as a filetype icon.

	If the uploaded file is of PDF or Office, the preview image will be its first page.

	If the activity is a document sharing action, a label “shared a document” will be attached to the activity content.

From Activity Stream, you can:

	Click [image: image143] to view the document in a larger window.

	Click [image: image144] to download the document.

	Click [image: image145] to go directly into the Documents application and
edit this document.

	Click [image: image146] to give your idea.

	Click [image: image147] to show your liking to the uploaded document.

Share multiple documents in activity stream

With eXo Platform, it is possible to share activities with multiple
documents. In addition, the upload pop up is improved in order to make
easier and ergonomic the upload process.

Share multiple files in the activity stream

To publish an activity with multiple documents, follow these steps:

1. In the microblog, select File tab. The activity composer will suggest
you either to drop files from your computer using the mouse, to upload
manually from desktop or mobile or to select from existing uploads in
eXo Platform.

[image: image148]

	Drag and Drop: Allows you to drag and drop files from your hard disc.

[image: image149]

When droping the file, the area dedicated to the files upload is
greyed.

	upload manually: Allows you to select documents from your hard disc.

[image: image150]

Cliking on upload manually opens a window showing a drive from your
hard disk (it opens files drive for mobile devices) and allows you to
select one or many files.

	select from existing uploads: Allows you to select documents from
your eXo Platform drives.

[image: image151]

You can select documents from Personal Documents drive, it is opened
by default when clicking on select from existing uploads, or you can
change to any drive you want.

If the activity is in a space, the select from existing uploads
action will open by default the space’s drive. It is also possible to
change the drive.

[image: image152]

Note

	When you choose to upload manually or drag and drop files to the activity composer, these files will be added to the the folder /Public/Activity Stream Documents under the Personal Documents drive.

	If the activity is posted in a space’s activity stream, the files will be added to the folder /Activity Stream Documents under the space’s drive.

2. Choose the manner with which you will upload your files then select
one or more files.

An information box appears under the activity composer, it indicates
information about the file upload progress and displays the file size.

Note

By default, it is allowed to attach up to 20 files per activity and each file’s size should not exceed 200 MB. These parameters are configurable in exo.properties file. More details here.

[image: image153]

You can cancel the upload of a file by clicking on [image: image154] or remove
a fully uploaded file by clicking on [image: image155].

	Click on Post to publish documents in the activity stream.

Note

	When a user posts an activity in an another user’s profile, this user receives an email notification.

	When a user posts an activity in a space, all the space members will receive an email notification.

This email notification will contain all the shared files on a list with the file icon type, the file name and the file size. Clicking on a file name in the email notifications opens it in the Documents application.

Multiple files preview in the activity stream

While published, an activity appears displaying the attached files
ordred by selection order on the files list.

[image: image156]

Up to three files are previewed in the activity and a link containing
the number of the other files. Clicking on it opens the following file
from the list of uploaded files.

	When the user uploads only one file, the file’s container will take
100% of the file activity area.

	When two files are displyed in the activity, the file’s container
splitting will be 50% for File1 and 50% for File2.

	When three files are added in an activity post, the file’s container
splitting will be 50% for File1, 25% for File2 and 25% for File3.

	When the user displays more than three files, the file’s container
splitting will be 50% for File 1, 25% for File2 and 25% to display
(+X-2 more) link where X is the total number of files added.

Note

If the file uploaded has a preview (such as pdf, images, docx…), a part of it is displayed. If the file has not a preview (such as html, zip, war..), a thumbnail of its extension is dispalyed and a breadcrumb containing infomation about it.

[image: image157]

When the user hovers over the file’s container, information about the
attached file is displayed. We will have:

[image: image158]

	The filename.

	The file’s version (if it is different from the initial version).

	The file location as a breadcrumb (each element is clickable).

	The last update timestamp (including the creation date).

	The last user who made the latest update.

	The file size.

Each segment of the breadcrumb is clickable and clicking on one of them
opens the documents application in the corresponding location:

	Clicking on the filename of the breadcrumb opens the file in
Documents application.

	Clicking on the file’s version opens the version history of the file.

	Clicking on a segment of the file’s location opens the corresponding
drive/folder.

	Clicking on other details (update timestamp, User or size) opens the
file’s preview in activity stream.

For mobile devices, the breadcrumb also appears for shared files. When
any of the breadcrumb’s details exceeds the screen size, it is either
preceeded or followed by an ellipsis.

The breadcrumb behaves same as for web, its segments are clickable and
it redirects to the correcsponding location as described above.

[image: image159]

Note

A Download all button appears under the activity allowing to download all the files of the activity. It will generate a zip file named Activity_ID_Date.

Date can be in Frensh format if the user is using the Frensh language and in English format if the user is using English or any other language except Frensh.

You can navigate through the list of files by clicking on previous
[image: image160] and next [image: image161] buttons. For mobile devices, you should
scroll the screen left for next and right for previous. You can also
close the file preview by clicking on close button.

[image: image162]

Clicking on a file opens it to be previewed similar as Document viewer.

The breadcrumb appears also in the file’s preview but only the file’s
location is clickable.

Note

When an activity contains some files with permissions (i.e a UserA is not allowed to view some or all documents in the activity), this/these file(s) will not be displayed in the activity stream of users who don’t have the permission to view.

Deleting all files of an activity leads to the whole activity deletion
and deleting one or more files from the activity eliminates these files
from the display.

Multiple file sharing conditions

	If you attach more than the allowed number of files, a warning
appears indicating that you can attach only 20 files.

[image: image163]

	When selecting more than 20 files form existing uploads, a warning
appears in the drive indicating that only 20 files are allowed to be
attached.

[image: image164]

	If you attach a file or many files exceeding 200MB, a warning appears
to remember you the maximum size allowed.

[image: image165]

	When trying to attach the same file twice, a warning appears to
indicate you that the file is already attached.

[image: image166]

	If you have, in the same drive, two files having the same name and
you try to attach both of them, a warning appears indicating that the
file is already attached.

[image: image167]

Updating activity for document changes

Editing a document

Once you have made the following changes in the Edit form, new
comments will be auto-generated on the document activity.

	Adding/Removing a category [image: image168]

	Changing the document’s language [image: image169]

	Adding/Removing the file source [image: image170]

	Adding/Removing the document description [image: image171]

	Adding/Removing the document title[image: image172]

	Adding/Removing the document creator[image: image173]

For example:

[image: image174]

Note

For changes on the Content field, you need to pay attention to the followings:

	If you remove the document content, there will be no comment on the document activity. However, in case your document is of image, PDF, Office Document, the preview image will be disappeared from Activity Stream.

	If you upload a new content for this document, the activity content will be updated with a new comment.

Updating Metadata

Once you have made any changes on the document metadata, there will be a
new comment on the document activity. For example:

[image: image175]

Renaming a document

Once you have renamed a document, the new name will be updated on the
document activity with a new comment informing about that.

[image: image176]

Checking in a document

Checking in a document does not result in any new comment on the
document activity. However, a version number will be updated on the
document activity.

[image: image177]

Adding/Removing a tag

Once you have added or removed a tag from the document, there will be a
new comment on the activity for such changes.

[image: image178]

Commenting on a document

Once you have commented on a document, there will a new comment on the
document activity for such change.

[image: image179]

However, there will be no comment or no update on the document activity
if you edit or remove the comment from the document.

Moving a document

When you move a document to another folder, there will be a new comment
on the document activity for such change.

[image: image180]

Deleting a document

If you delete any document from the Documents application, all
activities related to this document on Activity Stream will be
deleted without any comment or notification.

Extending your actions

In addition to basic actions stated above, eXo Platform provides a list
of additional features for managing your content. Some of extended
features are set in the Admin view by default, or your administrator
can enable them for any specific views.

Note

This part is mostly for administrators who have right to access the Content Administration page where extended actions can be activated.

The followings are additional actions which are not accessible in the
List and Icons views, but are set by default in the Admin
view:

	Managing actions

	Activating document audit

	Viewing/Adding document properties

	Managing document relations

Besides, administrators can add more actions to any views. The
followings are recommended features you may discover.

	Exporting

	Importing

	Showing/Hiding document structure

	Viewing document types

	Hiding/Showing content

Note

In this section, assume that additional actions have been set in the List view by your administrator. Therefore, you will see them in the Action bar.

Managing actions

To manage actions, you first need to select the content, then click
[image: image181] on the Action bar to open the Manage Actions form.

Adding an action

	Select the Add Action tab.

[image: image182]

2. Select one type for your action from the Create Action of Type
drop-down menu, including:

	Type

	Description

	exo:AddMetadataAction

	Adds metadata.

	exo:autoVersioning

	Adds a version automatically.

	exo:enableVersioning

	Enables versioning.

	exo:taxonomyAction

	Creates categories.

3. Complete all the fields in the Add/Edit Action form. The Name and
Lifecycle fields are required.

Details:

	Field

	Description

	Name

	Name of the action. This name is internal to the
JCR explorer.

	Lifecycle

	Selects the lifecycle for this action. The action
will be executed, depending on the lifecycle:

	‘User Action’: The action is executed when you
right-click the folder and then select the
action.

	‘Content Addition’: The action will be executed
on a new document, but not on a subfolder when
the document or the subfolder is created in the
folder to which an action has been added. It is
also applied to a new document in the subfolder
of the folder.

	‘Property Addition’: The action will be
executed on a document when a property is added
to the document.

	‘Property Removal’: The action will be executed
on a document when a property is removed from
the document.

	‘Property Modification’: The action will be
executed on a document when a property of the
document is modified.

	Click Save to commit the action.

All actions of the content are listed in the Available Actions tab.

Once an action is added to the content, it is auto-added to any children
of the selected content.

If an action is added with the lifecycle named ‘User Action’, it will be
applied to the current content. If an action is added with other
lifecycles, it will be applied to the child content.

Note

Not all actions are listed in a Right-click menu of the content. Some actions can be performed immediately when that action is added.

Viewing an action

	Select the Available Actions tab.

	Click [image: image183] that corresponds to the action you want to view.

The details will be displayed in the Action Info tab.

Editing an action

	Select the Available Actions tab.

	Click [image: image184] that corresponds to the action you want to modify.

	Edit properties in the Action Form.

	Click Save to accept your changes.

Deleting an action

	Select the Available Actions tab.

2. Click [image: image185] corresponding to the action you want to delete,
then click OK in the confirmation message.

Activating document audit

This function logs property changes in documents.

1. Select the document, then click [image: image186] on the Action bar.
The Activate Auditing message appears.

[image: image187]

	Click Activate to enable auditing on the selected document.

Viewing audit information

Select the document which has enabled auditing, then click [image: image188] to
view the audit information of the selected document.

	If the document has no audit information, the form will appear as
below.

[image: image189]

	If any, the Auditing Information list appears.

[image: image190]

Viewing/Adding document properties

This function allows users to review all the properties and values of a
document. It can also be used to add values to a document.

Viewing document properties

	Select the document you want to review or add values to.

2. Click [image: image191] on the Action bar (or from the More drop-down menu
on the Action bar).

The Properties Management form opens with 2 tabs:

Properties

This tab displays all properties and values for the selected
document.

[image: image192]

Add New Property

This tab contains fields to add new properties to the selected
document.

[image: image193]

Adding document properties

1. Select the Add New Property tab to add new properties to the selected
document.

	Select the property type from the Add new Property drop-down menu.

	Enter a value for the property in the Value field.

	Click Save to accept your new values, or Reset to clear added values.

After you have made changes on a new property, you will be returned to
the Properties tab. The newly added values will be displayed.

In this form, you can edit a property by clicking [image: image194], or delete
it by clicking [image: image195].

Managing document relations

Adding a relation

You can use this function to create relations between documents.

1. Select the document to which you want to add a relation, then click
[image: image196] on the Action bar. The Add Relation form appears.

	Select the Select Relation tab to see a list of other documents.

[image: image197]

3. Click [image: image198] that corresponds to the documents related to the
document selected in the Step 1.

Documents linked to the original via a relation will be listed in the
Relation List tab.

Note

	Relations can only be added to document types.

	A document cannot have a relation to itself.

Deleting a relation

1. Select the document that has links to related documents, then click
[image: image199] on the Action bar.

2. Select the Relation List tab to view relations of the selected
document.

[image: image200]

	Click [image: image201] corresponding to the relation you want to remove.

	Click OK in the confirmation message to accept your deletion.

The related document will be removed from the list.

Viewing a relation

Note

You need to enable the sidebar first.

	Select a document that has links to related documents.

	Click [image: image202] on the Filter bar.

All documents related to the selected document will be displayed in
the Relations list in the left panel.

	Click the name of the related document to view the linked document.

Exporting

Content can be exported into either .xml or .zip file types.

	Select the content that you want to export.

	Click [image: image203] on the Action bar to show the Export form.

[image: image204]

Details:

	Fields

	Description

	Path to Export

	The path of content being exported. This field
will be pre-populated.

	Format

	The format of the original content.

	System View

Each content and its property are included in a
different tag.

	Document View

Each content is a tag and its properties are
considered to be elements of that tag.

	Zip

	If this field is checked, the content will be
exported as a .zip file.

	Click Export and select a location to save the exported file.

Note

The Export form can contain Export Version History if the exported content or any of its children is versioned.

This action exports all of the content’s version history.

Importing

Content which is in the .xml file format can be imported into the
JCR Explorer system.

	Select the location where you want to import the new content.

	Click [image: image205] on the Action bar to open the Import form.

[image: image206]

3. Select the file in the Upload File field and navigate to the file you
want to import.

4. Select one value from the UUID Behaviour drop-down menu. In case
there is UUID conflict - the situation when an imported node has the
same UUID as an existing node, the behavior will be applied for those
two nodes, as follows:

Create New

New UUID will be generated and assigned to the imported node. There
is no impact to the existing one.

Remove Existing

The already existing node (and its subtree) is removed from wherever
it may be in the workspace before the incoming node is added.

Replace Existing

The already existing node is replaced by the incoming node in the
same path as the existing node. This behavior may result in the
incoming subtree being disaggregated to different locations in the
workspace.

Throw Exception

The node is not imported. No impact to the existing one.

	Select the file for the Version History field.

	Click Import to import the file’s selected version.

Showing/Hiding document structure

This function allows you to view documents in a tree structure.

Showing the document structure

	Open a document.

	Click [image: image207] on the Action bar (or from the More drop-down menu).

Hiding the document Structure

	Select a document which is showing the content structure.

	Click [image: image208] on the Action bar (or from the More drop-down menu).

Hiding/Showing content

Content can be hidden or shown easily.

Hiding content

	Select the content you want to hide.

	Click [image: image209] on the Action bar to hide the document.

A confirmation message, which notifies that the document has been
hidden, will appear.

Showing hidden content

To show a hidden content, simply click [image: image210] again.

Viewing document types

This function allows you to view the detailed information of a document.

	Select a document that you want to view its detailed information.

2. Click [image: image211] on the Action bar (or from the More drop-down menu
on the Action bar).

3. Click the tabs at the top of the form to view categorized
information.

[image: image212]

Building Your Forum

The Forums application is designed for the group discussion and
user-generated content in which participants with common interests
can exchange their opinions on a subject.

The chapter provides you a guide to use all Forums features or
to make Forums work in your desired manner.

	Regular user

Detailed instructions on how to do common actions that are for
regular users, such as creating topics and posts, subscribing,
using BBCode, or changing user settings.

	Moderator

Introduction to the Moderation tasks that are for moderators, and
steps to perform them, including: moderating forums/topics/posts,
viewing all pending moderation tasks, or banning IPs.

	Administrator

Details about advanced tasks that are for administrators only,
including setting up the Forum portlet, managing
categories/forums/users and other administrative tasks.

In Forums, the role of each user group is clear and very important.
Each role has a set of tasks that they can execute. Administrators and
moderators are responsible for setting up and maintaining Forums.
With the highest rights, the administrators are in charge of the entire
management tasks, including form configurations, users management,
permissions, categories, forums, topics and messages. With sub-sets of
administrative permissions, the moderators will manage the respective
sub-sets of the forum.

The user interface will indicate which features are available to you,
based on your role.

	As a regular user, you will have the User bar and Action bar with the basic actions.

[image: image0]

	As a moderator, you will have the User bar and Action bar with a sub-set of certain capabilities.

[image: image1]

	As an administrator, you will have the Administration bar which is
basically the User bar with more administrative actions. You also see
the Action bar with the advanced actions on forums and categories.
Most of management tasks are shown via these bars.

[image: image2]

To have an overall look of actions which users of each role can do in
the Forums application, see the following table:

	Features

	Description

	Administra
tor

	Moderator

	Regular
user

	Guest

	Subscribing to RSS feeds

	Gets a link to a
forum for easy
sharing.

	[image: OK1]

	[image: OK2]

	[image: OK3]

	[image: OK4]

	Attaching a file

	Uploads an
attachment to a
topic/post,
previews and
downloads it.

	[image: OK5]

	[image: OK6]

	[image: OK7]

	[image: OK8]

	Bookmarks

	Bookmarks a
category, forum,
topic.

	[image: OK9]

	[image: OK10]

	[image: OK11]

	[image: NOK1]

	Creating a post

	Posts a reply,
quote, private
post, quick
reply.

	[image: OK12]

	[image: OK13]

	[image: OK14]

	[image: NOK2]

	Editing your post

	Edits a post,
quote and private
post.

	[image: OK15]

	[image: OK16]

	[image: OK17]

	[image: NOK3]

	Deleting your post

	Deletes a post
inside a specific
topic.

	[image: OK18]

	[image: OK19]

	[image: OK20]

	[image: NOK4]

	Creating a topic

	Starts a new
topic.

	[image: OK21]

	[image: OK22]

	[image: OK23]

	[image: NOK5]

	Editing a topic

	Edits a topic in
a specific forum.

	[image: OK26]

	[image: OK25]

	[image: OK24]

	[image: NOK6]

	Deleting a topic

	Deletes a topic
inside a specific

	[image: OK27]

	[image: OK29]

	[image: OK28]

	[image: NOK7]

	Locking/Unlocking a topic

	Locks/Unlocks a
topic inside a
specific forum.

	[image: OK30]

	[image: OK31]

	[image: NOK8]

	[image: NOK9]

	Adding a poll

	Adds a poll to a
topic.

	[image: OK32]

	[image: OK33]

	[image: OK34]

	[image: NOK10]

	Rating a topic

	Evaluates a topic
by rating stars.

	[image: OK35]

	[image: OK36]

	[image: OK37]

	[image: NOK11]

	Adding a tag

	Creates a new tag
and tags a topic.

	[image: OK38]

	[image: OK39]

	[image: OK40]

	[image: NOK12]

	Sending private messages

	Sends or receives
private messages.

	[image: OK41]

	[image: OK42]

	[image: OK43]

	[image: NOK13]

	Watching

	Subscribes to a
category, forum,
topic to receive
email
notifications of
new posts or
topics.

	[image: OK44]

	[image: OK45]

	[image: OK46]

	[image: NOK14]

	User settings

	Changes profile
settings,
personal forum
settings.

	[image: OK49]

	[image: OK48]

	[image: OK47]

	[image: NOK15]

	Sticking/Unsticking a topic

	Sticks/Unsticks a
topic inside a
specific forum.

	[image: OK50]

	[image: OK51]

	[image: OK52]

	[image: NOK16]

	Locking/Unlocking a topic

	Closes/Opens a
topic inside a
specific forum.

	[image: OK53]

	[image: OK54]

	[image: NOK18]

	[image: NOK17]

	Splitting a topic

	Divides one topic
into two separate
topics.

	[image: OK56]

	[image: OK55]

	[image: NOK19]

	[image: NOK20]

	Merging topics

	Combines two or
more topics into

one.

	[image: OK57]

	[image: OK58]

	[image: NOK22]

	[image: NOK21]

	Managing a poll

	Creates, edits,
deletes, closes
and reopens a
poll.

	[image: OK60]

	[image: OK59]

	[image: NOK23]

	[image: NOK24]

	Moving a topic

	Moves one
topic/post from a
forum/topic to
the other
forum/topic.

	[image: OK61]

	[image: OK62]

	[image: NOK26]

	[image: NOK25]

	Approving a topic

	Changes a new
topic/post from
pending status to
normal status so
that guests and
normal users can
view.

	[image: OK64]

	[image: OK63]

	[image: NOK27]

	[image: NOK28]

	Uncensoring a post

	Allows a topic
which has
censored content
to be displayed.

	[image: OK65]

	[image: OK66]

	[image: NOK30]

	[image: NOK29]

	Showing/Hiding a post

	Allows a post to
be shown/hidden.

	[image: OK68]

	[image: OK67]

	[image: NOK31]

	[image: NOK32]

	Managing pending tasks

	Manages all
topics/posts
waiting for
moderation in one
place.

	[image: OK69]

	[image: OK70]

	[image: NOK33]

	[image: NOK34]

	Managing a watch

	Manages the
subscription
(watch), edits
and deletes a
subscribed email.

	[image: OK72]

	[image: OK71]

	[image: NOK36]

	[image: NOK35]

	Banning users

	Bans users from
accessing
specific forums
or categories.

	[image: OK73]

	[image: NOK37]

	[image: NOK38]

	[image: NOK39]

	Adding a forum

	Adds a new forum
to a specific
category.

	[image: OK74]

	[image: NOK40]

	[image: NOK41]

	[image: NOK42]

	Editing a forum

	Changes the
title,
description,
moderator,
permissions of a
forum. However,
moderators cannot
set moderators
for a forum.

	[image: OK75]

	[image: OK76]

	[image: NOK43]

	[image: NOK44]

	Deleting a forum

	Deletes a forum
from a specific
category.

	[image: OK77]

	[image: NOK45]

	[image: NOK46]

	[image: NOK47]

	Locking/Unlocking a forum

	Locks a forum so
that it can be
viewed only.

	[image: OK78]

	[image: OK79]

	[image: NOK48]

	[image: NOK49]

	Closing/Opening a forum

	Closes/Opens a
forum. The closed
forums are still
manageable by
administrators
and moderators.

	[image: OK81]

	[image: OK80]

	[image: NOK51]

	[image: NOK50]

	Moving a forum

	Moves a forum
from one category
to the other.

	[image: OK82]

	[image: NOK52]

	[image: NOK53]

	[image: NOK54]

	Exporting a forum

	Exports a forum
in the format of
a .zip or
.xml file.

	[image: OK83]

	[image: OK84]

	[image: NOK56]

	[image: NOK57]

	Importing a forum

	Imports a forum
from a
.zip/.xml
file into the
Forums
application.

	[image: OK85]

	[image: NOK58]

	[image: NOK59]

	[image: NOK60]

	Adding a category

	Adds a new
category.

	[image: OK86]

	[image: NOK63]

	[image: NOK62]

	[image: NOK61]

	Editing a category

	Edits a category
and changes its
properties.

	[image: OK87]

	[image: NOK64]

	[image: NOK65]

	[image: NOK66]

	Exporting a category

	Exports
categories in the
format of a
.zip or
.xml file.

	[image: OK88]

	[image: NOK69]

	[image: NOK68]

	[image: NOK67]

	Importing a category

	Imports a
category from a
.zip/.xml
file into the
Forums
application.

	[image: OK89]

	[image: NOK70]

	[image: NOK71]

	[image: NOK72]

	Deleting a category

	Deletes a
category and all
forums, topics,
posts inside it.

	[image: OK90]

	[image: NOK75]

	[image: NOK74]

	[image: NOK73]

	Administrating Sorting

	Sorts forums,
topics according
to specific
conditions.

	[image: OK91]

	[image: NOK76]

	[image: NOK77]

	[image: NOK78]

	Administrating Censor

	Defines keywords
that will be
censored in a
forum.

	[image: OK92]

	[image: NOK81]

	[image: NOK80]

	[image: NOK79]

	Customizing an email
notification

	Defines content
of the email
notifications.

	[image: OK93]

	[image: NOK82]

	[image: NOK83]

	[image: NOK84]

	Customizing BBCodes

	Adds, edits and
deletes the
BBCode tags used
in writing
posts/topics.

	[image: OK94]

	[image: NOK87]

	[image: NOK86]

	[image: NOK85]

	Setting up auto-pruning

	Sets up
auto-pruning to
clean a large
amount of
obsolete and
inactive topics
based on
criteria.

	[image: OK95]

	[image: NOK88]

	[image: NOK89]

	[image: NOK90]

	Banning IPs

	Bans IPs in the
whole Forums
application (only
administrators)
and in specific
forums only
(administrators
and moderators).

	[image: OK96]

	[image: OK97]

	[image: NOK91]

	[image: NOK92]

	Managing users

	Manages user’s
profile, promotes
users, bans
users, views a
topic and post of
a specific user.

	[image: OK98]

	[image: NOK95]

	[image: NOK94]

	[image: NOK93]

Note

(*): Regular users can only edit/delete their own posts/topics.

Regular user

This section describes actions that a regular user can perform in the
Forums application of eXo Platform, including:

	Topics

Steps to create, edit, rate and tag/untag a topic, and how to create
a poll.

	Posts

Steps to post a quick/advanced/private reply, to reply with a quote,
to edit/delete a post.

	Using BBCodes

Details about BBCodes and how to use them.

	Private messages

Steps to send and receive a private message.

	Bookmarks

Steps to add/view and delete a bookmark.

	Subscribing to RSS feeds

The ways to get an RSS feed.

	Watching

How to watch your desired category/forum or topic.

	Getting
permalinks

Steps to get permalinks of a specific forum/topic/category and share
it with others

	User settings

Details about editing your profile, changing forum settings and
editing your subscription.

Topics

This section represents all actions related to topics that a regular
user can perform, including:

	Creating a topic

	Editing a topic

	Creating a poll

	Rating a topic

	Tagging a topic

Creating a topic

	Go into the forum where you want to start a new topic.

	Click [image: image3].

[image: topic]

3. Enter the topic title and its content. The title must be less than 100
characters (special characters are accepted). You may set other
optional properties if you want.

	Click Attach files to attach files to your message. The Attach File
form is displayed.

	Click Select File to select a file from your local device, then
click Save to accept attaching your file to the message. The
maximum size for the attachment is 20Mb.

	Click [image: image4] next to the attachment if you want to remove it.

	
	Use BBCodes to format text, or

	to insert images, videos and links.

4. Click Preview to see the topic before submitting, or click Submit to
complete your topic.

Sharing the topic on Activity Stream

When a topic is created, an activity containing the topic title and
content, the number of replies, and average rating is also created on
the Activity Stream.

Replies, rating [image: image5], information about the added/closed/removed
poll [image: image6] and information about the edited/locked/unlocked/closed
topic [image: image7] are added to the activity as comments.

When a comment is added to the activity from the Activity Stream, it
will be updated to the Forums application as a reply of the topic.

When the topic title and content is modified, the activity will be
updated and a comment is added to the activity.

[image: image8]

	Click the topic title to directly open it in the Forums
application.

	Click [image: image9] to jump to the Forums application with the New
Post form opening for you to reply the topic.

	Click [image: image10] to jump to the Forums application and view the
latest reply.

Note

	In a forum that enables moderation, new topics will need reviewing and approving by moderators before being published.

	You may not have right to start topics if the administrators/moderators set the Starting topic permission on the category and/or the forum for specific users/roles/groups only.

When creating a topic, you can also add extra properties to this topic:

	Setting the topic options.

	Controlling who can view or post in your topic by setting topic permissions.

Setting the topic options

Going to the Options tab, you can select status, state, type of the
topic and more.

[image: image11]

Details:

	Field

	Description

	Close the topic

	Sets the topic to open or close state.

	Lock the topic

	Sets the topic to locked or unlocked status.

	Stick the topic

	Checks this option to stick the topic. A sticky
topic will be located at the top of the topics
list. A sticky topic will not fall down in the
list if any new posts are added.

	Moderate the posts

	Checks this option if you want posts to be
moderated before being published.

	Notify on post

	Checks this option to enable the notification
email when there are new posts in your topic.

Setting topic permissions

You can allow specific users/roles/groups only to view and reply on your
topic by going to the Permissions tab. By default, all users can view
and reply on a topic.

[image: image12]

To set the permission to certain users, you can enter their usernames
manually;

Or, click

	[image: image13] to select users.

	[image: image14] to select users defined by specific roles. When ticking
Restrict who can view in this topic to or Restrict who can post in
this topic to, if you set the * membership for the selected group,
all users of that group will be restricted to only viewing or posting
in this topic.

	[image: image15] to select groups.

Then, click Add to perform adding the selected ones.

See here for more details.

Editing a topic

Regular users can only edit their own topic.

1. Open your desired topic and click [image: image16] on the Action bar. For
regular users, this button is only shown when you are the creator.

	Click Edit from the drop-down menu to open the Edit Topic form.

[image: image17]

3. Make changes to your desires. Also, leave the reason in the Reason
field if needed.

	Click Submit to finish.

Creating a poll

Each topic may have a poll question with pre-defined options for users
to select. As a regular user, you can only add a poll question to your
own topic. Meanwhile, administrator and moderator can add the poll to
any topics.

	Go to the topic you want to add a poll.

2. Click [image: image18] on the Action bar, then select Add Poll from the
drop-down menu.

	Enter the poll question and options.

Details:

[image: image19] Poll Question: Question raised for polling that is
required and must be less than 100 characters.

[image: image20] Poll Options: Options which allow users to select as their
answers. Click [image: image21] to remove a poll option. And, click [image: image22]
to add a poll option.

[image: image23] Close Poll: Period after which the poll is closed.

[image: image24] Users may change their votes: Allows users to change their
votes or not.

[image: image25] Allow Multiple Choices: Allows users to vote for multiple
options or not.

4. Click Submit Poll to complete. The topic that contains the poll is
marked with [image: image26] in the topics list.

[image: image27]

To perform further actions on this poll, simply left-click More Actions
on the Poll panel to open the drop-down menu. Here, you can edit,
close/reopen or remove the poll by clicking the relevant button.

[image: imagem]

Rating a topic

The Forums application provides an intuitive rating experience
through a five-star scale. Your choice of five stars means the highest
rating for the topic.

	Go to the topic you want to vote.

	Click [image: image28] on the Action bar.

The Rate This Topic form will appear.

[image: image29]

3. Rate the topic by clicking the star. The number of selected stars will
be changed from grey into yellow.

	Click Close to quit the form.

Note

Each user can only vote for a topic once. The function is disabled in closed topics and with banned users.

Tagging a topic

This function is for all logged-in users. Tags are keywords which are
used as labels to describe or categorize the topic content. One topic
may have several tag names. Using tags allows you to categorize topics
based on the actual content. Even, it can be a better way to find a
specific topic than a full-text search.

	Click [image: image30] on the Action bar.

An input text box will pop up.

[image: image31]

2. Enter a tag name or multiple tags separated by a space or select
existing tags in the suggestion list that appears when typing.

	Press Enter or click Add Tag button.

Tags which are assigned to the topic appear as below.

[image: image32]

Untagging a topic

The first way

	Simply click [image: image33] next to that tag.

The second way

This way allows you to untag one or multiple topics.

1. Click a tag name which you want to remove from all tagged topics. You
will be be directed to the tags management page which shows all topics
assigned a same tag.

	Tick your desired topic checkboxes from the topics list.

3. Click [image: image34] on the Action bar, then select Untag from the
drop-down menu.

	Click OK in the confirmation message to remove this tag.

Posting a reply

To post a reply, select the topic you want to reply to. You can reply to
any topic as long as it is not closed and restricted. While you are
viewing the topic, there are many ways to reply:

[image: image35]

	|image36| Clicking the Post Reply button that is at the top or bottom of the topic.

	[image: image37] Typing a message in the Quick Reply box at the bottom of the topic.

	[image: image38] Replying with a quote.

	[image: image39] Posting a private reply

Posting a reply with Rich text editor

You can post a reply with the Rich text editor as follows:

	Go to the topic you want to post a reply.

	Click [image: image40] on the top or bottom of the topic.

3. Enter your message in the textbox.
Use BBCodes to format texts, or insert
images, videos and links.

[image: image41]

Optionally, you can attach files to the topic by clicking Attach Files.
The attachment size must be less than 20Mb.

	Optionally, click Preview to view your reply before submitting it.

	Click Submit to finish.

Posting a quick reply

You can post a reply quickly with plain texts without taking into
account its format.

	Scroll down to the bottom of the topic to see the Quick Reply box.

2. Enter your message. Use BBCodes
to format text, or insert images, videos and links.

	Optionally, click Preview to view your reply before submitting it.

	Click Quick Reply to submit you message.

Replying with a quote

You can include a quote from the previous message in your reply to a
specific post. This may substantially increase the readability of the
discussion topics when it is used correctly.

	Click [image: image42] under the post you want to quote.

This will bring up the “Quote” form, with the previous message already
quoted in the textbox.

[image: image43]

	Enter your message. Edit the quotation if necessary.

The quoted content is wrapped between BBCodes tags [QUOTE][/QUOTE] which
is automatically generated. Add your message content before or after
this quoted content.

To add a block quotation to your text, simply click [image: image44] from the
WYSIWYG editor toolbar.

[image: image45]

The block quotation appears on the location of your cursor with the
format as below:

[image: image46]

	Click Submit to finish.

Posting a private reply

Note

This function is available only if the topic’s author is not suspended.

You can send a private reply in a topic, which only allows the responded
user to view the message content.

	Go into the topic you want to post the reply.

	Click [image: image47] under the post to open the Private Post form.

3. Enter your message and send it as described in the Posting a reply
with Rich text editor section.

Note

Private posts will not be checked for approval when they are posted in a topic that has the ‘Posts moderation’ enabled. Private posts are displayed with the ‘Post Private!’ label.

Editing/Deleting your post

Editing your post

This function is to make changes on the post which has been submitted.

	Click [image: image48] under the post you want to edit.

2. Make changes on the post, then click Submit to accept your changes.
When you edit your post, you also can upload attachments, or delete
existing ones.

Deleting your post

Simply click [image: image49] under your post that you want to delete, then
click OK in the confirmation message.

Using BBCodes

BBCodes (Bulletin Board Codes) are special tags in bulletin boards that
help users enrich their posts with formatting and inclusions. They are
useful to provide guarded formatting capabilities to the forum users
without the risk of breaking the HTML markup of the page. BBCode itself
is similar in style to HTML: tags are enclosed in square braces “[” and
“]” rather than “<” and “>” and it offers greater control over what and
how something is displayed.

Depending on the BBCode template customized
by administrators only, you may find it very easy to add BBCodes to your
posts through a toolbar above the message area on the posting form. You
can either type the BBCode tags manually or use the toolbar in the
posting form. To easily get the BBCode tags without typing them, simply
click the respective icon which is shown on the toolbar above the
message area.

[image: image50]

Click [image: image51] on the toolbar to get the full list of built-in BBCode
explanations and examples.

[image: image52]

Private messages

Private messages will not be moderated and only viewable for recipients.
Only logged-in users can do the following actions on private messages:

Sending a private message

1. Click the username or avatar of the user you want to send
message, then select Send Private Message from the drop-down menu.

[image: image53]

The Private Messages form will appear.

[image: image54]

	Enter the username of the other recipients;

Or, click the icons next to the Send to field to select more others (if
you want to send to many users at the same time). Note that if you
select a group with the * membership, all users of that group will
receive the message, regardless of their membership role.

	Type your message title and content.

	Click Send to send the message.

Receiving a private message

When you have received a private message, there will be a notification
on your User bar.

[image: image55]

Click [image: image56] to open the Private Messages form.

[image: image57]

Details:

[image: image58] Inbox: Where to view or delete received messages.

	Click the message title to see its content.

	Click [image: image59] to reply the message. You will be redirected to the
Compose New Message tab.

[image: image60]

Enter the message content into the Message field, then click Send.

Note

You can also send your message to other users. See here for more details.

	Click [image: image61] to delete the message.

[image: image62] Sent Messages: Where to view or delete your sent messages.

[image: image63] Compose New Message: Where to compose new messages.

Bookmarks

In the Forums application, the Bookmark function is to collect
links to a category, forum or topic you have visited, so that you can
return to that category, forum or topic directly. Bookmarks can be
created and managed by yourself through the following actions:

Adding a bookmark

This function is for all logged-in users to save links to categories,
forums or topics into the Forum Bookmark.

	Go into the object (category, forum or topic) you want to bookmark.

	Click [image: image64] on the Action bar;

Or, right-click the object title and select Bookmarks from the drop-down
menu. The bookmarked link will be added to your bookmarks list.

Viewing a bookmark

To view a bookmark, click [image: image65] on your User bar.
This will bring up the My Bookmarks form, with the list of your
bookmarked links.
To view a bookmark, click your desired bookmark title from the list.

[image: image66]

Deleting a bookmark

Simply click [image: image67] corresponding to the link that you want to delete.

The selected bookmarks will be removed from the bookmarks list.

Subscribing to RSS feeds

This function is for all users to subscribe to a specific category,
forum, topic. If there are any changes, the feed of the subscribed
category, forum or topic will be updated. To get the RSS feed, click
[image: image68] on the Action bar.

Or right-click the item you want to subscribe to and click RSS from the
drop-down menu.

[image: image69]

Depending on which browser you are using, the next step may be
different. The browser used in this example is Firefox 19, which use the
Firefox Live Bookmark.

[image: image70]

The RSS feed on Firefox will look like:

[image: image71]

	Category feeds contain all posts from all topics in all forums in a
category. The category feeds shows the title (title of the category),
description (category description), link (permalink to the category),
pubdate (creation date of the category).

	Forum feeds contain all posts in all topics in a forum. The forum
feeds show title (name of the forum), description (description of the
forum), link (permalink of the forum), pubdate (creation date of the
forum).

	Topic feeds contain all posts in a topic. The topic feeds show title
(title of the topic), description (the content of the topic’s initial
post), link (permalink to the topic), pubdate (the creation date of
the topic).

Watching

This function is for all logged-in users to keep track of changes in
categories, forums or topics via email notifications. Whenever there are
new changes, such as new categories, topics, posts created, you will
receive a notification.

Watching a desired object

Go into the object (category, forum or topic), then click [image: image72] on
the Action bar;

Or, right-click the object title and select Watch from the drop-down
menu.

[image: image73]

The watched objects are also listed in the My Subscriptions tab in the
Settings form. When being unwatched, they will automatically be removed
from this list.

You will receive the notification message of the successful watching.
You will receive the email notifications about new posts/replies of the
forum that you are watching as well. In the email notification, you will
be provided links that help you go directly to the topic or go to reply
to the post. After clicking this link, the new posts in your watched
topic will be highlighted.

Note

Once a category/forum or a topic has already been watched, the
Unwatch option will appear in the right-click menu or on the
Action bar, so you can unsubscribe from the object.

Getting permalinks

This function is for all users to view and copy the link of a specific
forum/topic/category and share it with others.

	Go into a forum/topic/category which you want to get the permalink.

2 Click the [image: image74] label at the right corner.

[image: image75]

Your browser will open a new tab with the permalink you want to get on
the address bar. You can copy and share it to others.

User settings

You may configure your preferences in Forums, such as personal profile,
Forums settings and subscriptions.

Click [image: image76] on the User bar to go to the Settings form. Once you
opened the Settings form, you can control your personal settings,
options and preferences via the following actions:

Editing your profile

By selecting the Profile tab, you can see your personal information and
other preferences.

[image: image77]

Here, you can:

	Edit your screen name and title displayed in forums in the Screen
Name and User Title fields. The User Title field allows
Administrators only to edit.

	Edit your signature which will be displayed at the bottom of your
post. Enter your signature in the Signature textbox. Tick/Untick the
Display Signature checkbox to enable/disable your signature.

	Change your avatar by clicking the Update link. Tick/Untick the
Display Avatar checkbox to show/hide your avatar.

	Follow your created topics by selecting the Watch topics I start
checkbox. You will receive email notifications when there are any new
posts added to your topics.

	Follow topics which you have posted by ticking the Watch topics I
post in checkbox. You will receive email notifications when there are
any new posts added to the topic.

Changing forum settings

Go to the Forum Settings tab in the Settings form. You can change
preferences, such as time zone, date and time formats, and other display
options.

[image: image78]

Editing your subscription

Go to the My Subscriptions tab in the Settings form, where you can
update or delete existing subscriptions.

[image: image79]

	In [image: image80] column, you can subscribe or unsubscribe your
subscriptions by selecting/deselecting the respective checkboxes,
then click Save. The selected objects (categories, forums, topics)
will be updated to the Your personal feed URL is field. You can use
this link to view the content of your subscriptions.

	In the [image: image81] column, you can edit your subscription email by
ticking the checkbox corresponding to it, then enter a new email
address into the Your watches are sent to field. Click Update to add
your entered email addresses in the [image: image82] column.

	Click [image: image83] to remove your watched category, topic, post. After
being removed, you will no longer receive any email notifications of
the removed object.

Moderator

Moderators of a forum are responsible for managing content of posts and
replies before and after they are posted to the category where they are
assigned as moderators.

As a moderator, you can do the followings:

	Moderating forums

Details about how to edit, lock/unlock, close/open and move a forum.

	Moderating topics

Details about how to approve, edit, close/open, move, delete,
lock/unlock, stick/unstick, and split a topic, or merge topics.

	Moderating posts

Details about how to approve, delete, move, hide, show and uncensor a
post.

	Viewing all pending moderation tasks

Information about pending moderation tasks, how to approve or delete
a pending topic/post.

	Banning IPs

Details about how to ban IPs on a specific forum.

Moderating forums

Note

Moderators can manage all the forums inside their assigned categories.

Moderating forums includes the following actions:

	Editing a forum

	Locking/Unlocking a forum

	Closing/Opening a forum

Editing a forum

	Go into the relevant forum.

2. Click [image: image84] on the Action bar, then click Edit from the drop-down
menu.

3. Edit the forum properties. See Managing forums
for more details.

[image: image85]

	Click Save to save all the changes.

Locking/Unlocking a forum

Locking a forum will prevent all members from creating new topics and
posting replies in this forum. All topics in a locked forum will be
locked also, but their content is still viewable. Moderators can only
lock/unlock the forum that they manage.

	Go into the forum.

2. Click [image: image86] on the Action bar, then click Lock/Unlock from the
drop-down menu.

Note

You can also lock/unlock a forum while editing the forum by selecting the Locked/Unlocked status.

Closing/Opening a forum

Closed forums are invisible to regular users. To administrators and
moderators, the content in a closed forum is still viewable, but
creating topics and comments is disabled. Moderators can only close the
forum that they are assigned to manage.

	Go into the forum you want to close or open.

2. Click [image: image87] on the Action bar, then select Close or Open from the
drop-down menu.

Note

You can also close/open a forum while editing the forum by selecting the Closed/Open state.

Moderating topics

Moderating topics includes the following actions:

	Approving a topic

	Editing a topic

	Closing/Opening a topic

	Moving a topic

	Deleting a topic

	Locking/Unlocking a topic

	Sticking/Unsticking a topic

	Merging topics

	Splitting a topic

Approving a topic

Moderators can approve pending topics in forums that enable the
Moderate Topic option. All new topics
added to these forums will be pending for approval. It means that nobody
can view these topics except administrators and moderators of the
forums. Pending topics are only viewable for regular users when they are
approved.

The administrator and moderator will know the total number of pending
topics at the right corner of their Forums Administration bar and User
bar.

[image: image88]

Moderator can view the list of topics to be moderated.
See Viewing all pending moderation tasks
for more details.

Approving a topic

The first way

1. Open the forum you moderate and tick topics with the Pending label, then
click [image: image89] on the Action bar.

Or, open a Pending topic, then click [image: image90] on the Action bar.

	Click Approve from the drop-down menu.

The second way

	Open the forum you moderate.

2. Click [image: image91] on the Action bar, then click Approve from the drop-down
menu. The Unapproved Topics List form opens.

3. Select checkboxes corresponding to the topics you want to approve.
You can preview the topic when hovering your cursor over the topic title.

[image: image92]

4. Click Approve to accept your approval. Approved topics are shown
normally for regular users to view and take some actions.

Editing a topic

The first way

	Select a topic to edit by ticking its respective checkbox.

2. Click [image: image93] on the Action bar, then click Edit from the drop-down
menu that appears.

[image: image94]

3. Make changes on the topic. Leave the reason for editing in the Reason
field if needed.

The second way

Follow the steps in the Editing a topic section
for regular users.

Closing/Opening a topic

Only administrators and moderators can perform these actions. Closed
topics will be invisible to regular users. Moderator can only close or
open topics in the category that he manages.

1. Select a topic by ticking its relevant checkbox, then click [image: image95] on
the Action bar if you are in a topics list;

Or, click [image: image96] on the Action bar if you are in a topic.

	Click Close or Open from the drop-down menu.

Note

You can also close/open a topic while editing the topic by ticking/unticking the Close the topic checkbox in the Options tab.

Moving a topic

Only administrators and moderators can perform this action. This
function is used to move topics from a forum to another one. Moderator
can only move topics between forums that he manages.

1. Select a topic by ticking its relevant checkbox, then click [image: image97] on
the Action bar if you are in a topics list;

Or, click [image: image98] on the Action bar if you are in a topic.

	Click Move from the drop-down menu.

	Click a destination forum to move.

[image: image99]

Note

The moderator of a forum will be checked for permission. The moderator cannot move topics to:

	Closed/locked forums that he does not manage.

	Forums to which he does not have the right to add topics.

	Forums which are in categories that he is restricted.

Therefore, only the forums to which the moderator can move topics are shown in the list of destination forums.

Deleting a topic

1. Select topics by ticking their corresponding checkboxes, then click
[image: image100] on the Action bar if you are in a topics list;

Or, click [image: image101] on the Action bar if you are already in a topic.

	Click Delete from the drop-down menu.

	Click OK in the confirmation message to accept your deletion.

Locking/Unlocking a topic

This function is for administrators and moderators only to lock
inappropriate topics. All posts in a locked topic are still viewable,
but posting replies will be disabled.

1. Select a topic by ticking its corresponding checkbox, then click
[image: image102] on the Action bar when you are in a topics list;

Or, click [image: image103] on the Action bar when you are in a topic.

	Click Lock or Unlock from the drop-down menu.

Note

You can also lock/unlock a topic while editing the topic by ticking/unticking the Lock the topic checkbox in the Options tab.

Sticking/Unsticking a topic

This function is for administrators and moderators only to stick topics
which will be located at the top of the topics list. The topics will not
fall down the list if any new posts are added.

1. Select a topic by ticking the corresponding checkbox, then click
[image: image104] on the Action bar when you are in a topics list.

Click [image: image105] on the Action bar if you are already in a topic which
you want to stick/unstick.

	Click Stick or Unstick from the drop-down menu that appears.

You can see the sticked topic in the top of the topics list.

[image: image106]

When creating a new topic, you can also make this topic sticked by
ticking the Sticky checkbox in the Options
tab.

Note

You can also stick/unstick a topic while editing the topic <EditingTopic> by ticking/unticking the Stick the topic checkbox in the Options tab.

Merging topics

When there are two or more related topics, you may want to merge these
topics into one.

	Go to the topics list.

	Select more than two topics to be merged by ticking their checkboxes.

	Click [image: image107] on the Action bar.

4. Click Merge from the drop-down menu that appears. The Merge Topics form
opens.

[image: image108]

5. Select a destination topic which will be the main entry of the merged
topic from the list of the existing topics.

6. Give one name for the new topic in the New Topic Title field if you
want.

	Click Save to accept.

After being merged, selected topics will be joined into one topic. All
posts of the other topics are displayed as posts below the main entry.

Splitting a topic

A topic with more than two posts can be split into separate topics.

	Go into the topic you want to split.

2. Click [image: image109] on the Action bar, and select Split from the drop-down
menu. The Split Topic form opens.

[image: image110]

	Enter the name for the new topic in the New Topic field.

	Select posts by ticking their respective checkboxes.

	Click Save to complete.

The new topic will be displayed in the topics list with the new name.
The last selected post will become the main entry of the new topic.

Moderating posts

As a moderator, you have some specific rights on a post. To moderate a
post, you need to select that post first by ticking its relevant
checkbox.

[image: image111]

Next, click [image: image112] on the Action bar and select your desired action
from the drop-down menu. All the moderation actions will be reached via
this menu.

[image: image113]

Approving a post

All posts in a topic that requires post moderation will not be viewable before approval.
This function is to approve posts which have the Pending for Approval!
label beside the topic title.

[image: image114]

You can select to approve a single post or multiple posts at the same
time. The moderator can view the list of tasks to be moderated. See
Viewing all pending moderation tasks
for more details.

The first way

	Select the posts to approve.

2. Click [image: image115] on the Action bar, and select Approve from the drop-down
menu.

The second way

1. Click [image: image116] on the Action bar, and click Approve from the drop-down
menu. The Posts to Approve form opens.

	Select checkboxes corresponding to the posts you want to approve.

Note

You can preview a post before approving by hovering your cursor over the post title or click the post title to open the View Post form, then click Close to quit this form.

	Click Approve to accept your approval.

Approved posts are shown normally for regular users to view and take
some actions.

Deleting a post

The first way: Delete one or many posts at the same time.

	Tick the checkboxes corresponding to the posts you want to delete.

2. Click [image: image117] on the Action bar, then select Delete from the
drop-down menu.

	Click OK in the confirmation message to accept your deletion.

The second way: Delete one post only.

	Click [image: image118] under the post you want to delete.

	Click OK in the confirmation message to accept your deletion.

Moving a post

You can move posts to a topic of your choice.

	Select the post that you would like to move.

2. Click [image: image119] on the Action bar, then select Move from the
drop-down menu.

	Select a destination topic in the topics list that appears.

The moderator will be checked for “Move” permission. He can only move
posts inside the forum that he manages. Therefore, at the destination
topics list, only the topics which the Moderator has the “move”
permission, are listed.

Hiding/Showing a post

Hiding a post

When a post is hidden, only administrators and moderators can view and
manage it.

	Tick checkboxes corresponding to posts which you want to hide.

[image: image120]

2. Select [image: image121] on the Action bar, and click Hide from the drop-down
menu.

After being hidden, the hidden posts are marked with the ‘Post Hidden!’
label which cannot be viewed by regular users.

Showing a post

You can show a single or multiple hidden posts at the same time:

The first way

	Select hidden posts and click [image: image122] on the Action bar,
then click Show from the drop-down menu.

The second way

1. Click [image: image123] on the Action bar, then select Show from the
drop-down menu.

	Select hidden posts by ticking their checkboxes.

	Click Show.

Uncensoring a post

The administrators and moderators can uncensor all topics, posts
containing censored keywords. These censored keywords are
specified by Administrator.
All topics and posts containing these keywords will be labeled with
Censored and Post Censored! respectively.

The first way

	Follow this method to uncensor a specific post/topic.

	Select censored posts/topics by ticking their checkboxes.

2. Select [image: image124] on the Action bar, then click Censor from the drop-down
menu.

The second way

	Follow this method to uncensor posts/topics in the list of existing
hidden posts/topics.

1. Click Moderation on the Action bar, then select Censor from the
drop-down menu. A list of hidden posts appears.

	Select hidden posts by ticking their relevant checkboxes.

	Click Approve.

Viewing all pending moderation tasks

Administrators and moderators can manage all pending tasks in Forums
easily. The total number of pending topic/posts that need to be
moderated are shown right on the User bar/Forums Administration bar.

[image: image125]

To open the list of pending tasks, click Pending on the User bar.

The pending topics and posts are shown in the Waiting for Approval form.

[image: image126]

This form lists all the pending topics, posts and the created dates.
From here, you can approve or delete topics/posts.

Approving a pending topic/post

	Click the topic/post title in the list.

	Click Approve to accept approving the topic/post.

Deleting a pending topic/post

	Click the topic/post title in the list.

	Click the Delete This Topic/Delete This Post button.

The pending topic/post will be removed completely from the pending list
and its forum.

Banning IPs

This function allows banning IPs that may be used by users who abuse the
forum functions or violate the forum rules and policies.

This function is similar to the Banning IPs tool used by
administrators.
However, the Ban IPs tool used by administrators can ban IP from all
forums, while moderators can only ban IP from forums which he manages.

Banning IP on a specific forum

	Go to the forum you want to ban IP.

2. Click [image: image127] on the Action bar, then select Banned IPs from the
drop-down menu. The Banned IPs form opens.

[image: image128]

Do the same actions as the
Banning IPs
section of Administrators.

Administrator

With the highest rights, administrators are in charge of the entire
management tasks. In other words, administrators have the global role of
doing significant jobs, including:

	Setting up the Forum portlet

Steps to configure the Forum portlet, how to specify the category
scoping, to enable/disable the Forum components and a bookmarkable
Forum URL.

	Managing categories

Steps to add, edit and delete a category.

	Managing forums

Steps to add a new forum, to configure the moderation settings and to
delete a forum.

	Managing users

Steps to promote a user, to modify the forum settings, and to ban
users.

	Administrative tasks

Details about how to configure Sort settings, to define censored
keywords, to customize email notifications/BBCodes, to set up
auto-pruning, to ban IPs, and to back up a category/forum.

Setting up the Forum portlet

You can set up the Forum portlet to make it work in your desired way.

	Open the Page Editor page by following one of two ways below:

The first way:

	Click [image: image129] –> Portal –> Pages.

[image: image130]

The Page Manager page will be displayed.

[image: image131]

	Click [image: image132] that corresponds to the Forum page in the pages
list.

The second way:

	
	Open the Forums application, then click [image: image133] –> Page –>

	Edit Layout.

The Page Editor page appears:

[image: image134]

2. Hover your cursor over the Forum portlet, then click [image: image135]
in the quick toolbar to open the Edit Mode tab.

[image: image136]

This form allows you to configure the Forum portlet in various
aspects via the following actions:

Specifying the category scoping

In the Scoping tab, you can show/hide categories and forums in the
Forum portlet by selecting or deselecting their respective
checkboxes.

Enabling/Disabling Forums components

In the Panels tab, you can enable/disable some components in the Forum
portlet by simply selecting/deselecting checkboxes of the components
respectively.

[image: image137]

The following components can be enabled/disabled:

	Show Poll

	Moderators

	Show Quick Reply

	Show Icons Legend

	Show Rules

	Show Statistics

Enabling/Disabling a bookmarkable Forums URL

Before doing this function, you first need to have knowledge of Ajax.
Ajax (Asynchronous JavaScript and XML) is used in the Forums
application, aiming at updating a whole webpage or a part of the
webpage.

[image: image138]

This feature defines how the links are generated in the Forum
portlet. You can select to use Ajax or not.

	By not using Ajax, Forums will generate plain URLs in the links.
The added benefit will be bookmarkability and better SEO as the links
will be permalinks.

	Using Ajax, the links will be Javascript based and generate Ajax
calls. This makes your browsing faster because the whole page is not
reloaded.

Managing categories

Only administrators can do categories-related management tasks. To
manage forums better, the administrators usually build a good forum
structure using categories. So, a category is a set of forums containing
all discussions about the same subject. See the following diagram to
learn about the typical structure of a forum.

[image: image139]

Adding a new category

Only when you are assigned as an administrator, you can do this
function. Normally, one category is created as public and it allows
everyone to access without any restrictions. Meanwhile, one
restricted category
only allows specific users/groups/memberships to access. Also, you can
assign moderators to your category and specify a set of permissions for
members in the category.

1. Click [image: image140] on the Forums Administration bar.
The Category form will be displayed.

2. Enter the category title into the Title field which is required. Its
length must be between 1 and 100 characters (Special characters and
spaces are accepted).

In the Category tab, optionally you can also:

	Enter the order of category in the numeric format into the Order
field.

	Give a brief description for your category into the Description
field.

	Create a category restricted which allows specific users/roles/groups
only to have access via one of the following ways:

	The first way

Enter names of users/groups/memberships into the Restricted
Audience textbox. The different values are separated by commas.

	The second way

Use selectors next to the Restricted Audience textbox.

Selecting a specific user: Click [image: image141] to open the Select
User form, then check your desired users and click Add to accept
your selection.

Selecting all users with a specific role in a group:

i. Click [image: image142] to open the Select Role form.

ii. Select a group on the left panel and a specific role on
the right panel.

..note:: If you select * on the right panel, it means that all members of the group are selected.

Selecting a group of users:

i. Click [image: image143] to open the Select Group form.

ii. Select a group on the left panel and its sub-group on the
right panel.

If the group on the left panel does not have any sub-groups and
you want to select it, click the Select this Group link.

Note

The Restricted Audience field is empty, it means any users can access the category.

	Optionally, set category permissions.

By default, all users have rights to start topics, add and view posts in
forums of a category. However, you can set these permissions and assign
the moderator role to specific users/roles/groups.

	Select the Permissions tab.

[image: image144]

	Do the same as setting the Restricted audiences
of a category.

	Click Add to add selected users/roles/groups to the permissions list.

	Tick the checkboxes corresponding to the rights you want to grant to
the users/roles/groups.

To remove permissions of the users/roles/groups from the list, click the
corresponding [image: image145] icon.

Note

	When granting the moderator to a specific user/role/group, to allow other users to start topics, add/view posts, you should uncheck these rights of the moderator. The moderator of a category can manage all forums in the category.

	When granting any permissions above, if you set the * membership for the selected group, this permission will be granted to all users of that group, regardless of their membership role.

	Click Save to finish.

Note

In eXo Platform, each space forum belongs to a category named “spaces” and there is only one forum per space. You cannot therefore create new categories within each space forum.

Editing a category

1. Select a category to edit from the Forums homepage, then click
[image: image146] on the Action bar when you are in the categories list.

	Click Edit from the drop-down menu.

	Make changes on the category properties.

	Click Save to save your changes.

Deleting a category

1. Select a category that you want to delete from the Forums
homepage, then click [image: image147] on the Action bar.

	Click Delete from the drop-down menu.

	Click OK in the confirmation message to accept your deletion.

Note

When a category is removed, all its forums are also removed.

Managing forums

Forums management can be performed through the following actions:

Adding a new forum

	Open the Forum form by following either of two ways below:

The first way

	Click [image: image148] on the Forums Administration bar.

The second way

	Go into the category to which you want to add a new forum.

	Click [image: image149] on the Forums Administration bar;

Or, click [image: image150] on the Action bar and select Add Forum.

[image: image151]

The Forum form will be displayed:

[image: image152]

2., Enter the forum title which is required. Its length must be less
than 50 characters, including spaces.

Optionally, you can:

	Select the category to which you want to add your forum by clicking
Add Forum to Category and selecting one from the categories list.

Note

If you follow this way, you cannot change the pre-selected category.

	Enter the order for your forum that must be in the positive integer
format.

	Select the forum state.

	Select the forum status.

	Give brief description for your forum.

	Click Save to finish.

The administrators and moderators of a forum may want to get updated of
what is new in forums under their management. This can be done when
creating a new forum.

Configuring the moderation settings

When creating a forum, you can set moderation-related options.

	Select the Moderation Options tab in the Forum form.

	Do actions in the relevant fields.

[image: image153]

Details:

	Field

	Description

	Auto-fill the moderator’s email

	Checks this option if you want the moderator’s email is auto-filled. The email address will be taken from the moderator profile.

	Email addresses to notify when there is a new post

	Enters the list of email addresses which will get the notification if any new post is created. This field will be filled automatically if the Auto-fill the moderator’s email is checked.

	Email addresses to notify when there is a new topic

	Enters the list of email addresses which will get the notification if any new topic is created. This field will be filled automatically if the Auto-fill the moderator’s email is checked.

	Moderate Topics

	By default, new topics must be always approved and visible to everyone. If this option is selected, new topics will be pending for approval before being viewable.

Setting forum permissions

While creating a new forum, you can assign the moderator role or
rights to start topics, add and view posts in the forum to specific
users/roles/groups. To do this, select the Permissions tab in the Forum
form and follow this step.

Note

	When granting the “moderator” role to a specific user/role/group, to allow other users to start topics, add/view posts, you should uncheck these rights. The moderator of a forum only has right to manage the forum.

	If you do not set the starting topics, posting, and viewing posts permissions for any users/roles/groups, and the category which includes the forum is not set permissions, it means all users can do these actions.

	When granting any permissions above (moderate, start topics, post or only view posts in a forum), if you set the * membership for the selected group, this permission will be granted to all users of that group, regardless of their membership role.

Deleting a forum

Only administrators can perform this action. When a forum is removed,
all of its topics will then be deleted.

	Go into the forum you want to remove.

2. Click [image: image154] on the Action bar, then select Delete from the
drop-down menu.

	Click OK in the confirmation message to accept your deletion.

Moving a forum

You can move a forum to another category as follows:

	Go into the forum you want to move.

2. Click [image: image155] on the Action bar, then select Move from the
drop-down menu.

A list of existing categories will appear. Select a destination category
to which your selected forum will be moved.

[image: image156]

Managing users

To take this action, click [image: image157] on the Forums Administration bar.
The Manage Community form will be displayed.

[image: image158]

Here, by clicking [image: image159], you can do the following management
actions:

	:ref:Promoting a user <ManagingUsers.PromotingUser>`

	:ref:Modifying user’s forum settings <ManagingUsers.ModifyingUserForumSettings>`

	:ref:Banning users <ManagingUsers.BanningUsers>`

Note

You can first search for your desired users to do the management actions quickly.

Promoting a user

[image: image160]

In the Profile tab, you can modify the user’s profile in the following
fields:

	Field

	Description

	Screen Name

	The name displayed in Forums.

	Title

	The title representing the role of user, by
default. However, you can enter anything you want.

Also, you can promote your selected user to an administrator or a
moderator by editing the following fields:

	Field

	Description

	Forum Administrator

	Grants the Administrator role to a selected user
or not. The Administration role of the default
administrator cannot be edited in the Manage
Community form.

	Moderator of
Categories

	The list of categories moderated by the selected
user. Click [image: image4] to select a category.

	Moderator of Forums

	The list of forums moderated by the selected user.
Click [image: image5] to select a forum.

Modifying user’s forum settings

You can modify the forum settings set by your selected user by going to
the Settings tab in the Manage Community form.

[image: image161]

For the detailed descriptions in the User Settings form, see User
settings.

Banning users

This function is to ban users from the Forums application or
specific forums and categories. To do so, go to the Ban User tab and
tick the Banned checkbox [image: image162].

[image: image163]

Details:

[image: image164] Duration: The interval during which the user will be
banned. This field is only edited when the ‘Banned’ field is ticked. In
the ban duration, the banned user only can view forums and topics but
he/she cannot post replies or send messages.

[image: image165] Reason: The reason for banning this user.

[image: image166] Ban Count: The number of times that this user was banned.

[image: image167] Ban Log: Other log information.

[image: image168] Ban Date: The date when the ban takes effect.

Administrative tasks

All of administrative tasks can be reached via the menu that appears
after clicking [image: image169] on the Forums Administration bar. You can select
a desired action from the following drop-down menu.

[image: image170]

The administrative tasks include the following actions:

	Configuring Sort Settings

	Defining censored keywords

	Customizing an email notificationtemplate

	Customizing BBCodes

	Setting up auto-pruning

	Banning IPs

	Backing up a category/forum

Configuring Sort Settings

Click [image: image171] on the Forums Administration bar, then click Sort
Settings from the drop-down menu. The Sort Settings form opens. Now, you
can set properties for how forums and topics are sorted in Forums.

[image: image172]

	Sort Forums by: Sort forums by several criteria: name, order, lock
status, creation date, modification date, topic count and post count.

	Direction: Sort forums in the Ascending or Descending order.

	Sort Topics by: Sort topics by name, lock status, creation date,
modification date, date of last post, post count, view count,
attachments count.

	Direction: Sort topics in the Ascending or Descending order.

Defining censored keywords

Censored keywords are those which are specified as inappropriate in the
Forums application. If any topics or posts contain censored
keywords, they will be hidden until being verified by Administrators or
Moderators. The Censor Keyword form will be displayed.

1. Click [image: image173] on the Forums Administration bar, then click Censor
Keywords from the drop-down menu. The Censor Keyword form appears:

[image: image174]

2. Entercensored keywords in the Censored Keywords field.
The keywords are separated by commas.

	Click Save to complete defining the censored keywords.

Customizing an email notification template

If there are new posts in the category, forum or topic that a user has
watched, the user will receive the email notification like this.

[image: image175]

This section will describe how to create and edit the email templates
that can be used to send email notifications to users.

Click [image: image176] on the Forums Administration bar and click Notifications
from the drop-down menu to open the Notifications form.

[image: image177]

The Notifications form consists of two tabs:

	New Posts Notification: Customizes the template of the email
notification when there is a new post/topic in
categories/forums/topics that users are watching.

	Moved Notification: Customizes the template of the email notification
when a category/forum/topic/post which is being watched is moved to
another location.

Details:

	Subject: The notification subject.

	Add a prefix to notifications: Ticks the checkbox to add a prefix to
the email notification.

	Content Notification: The template content of the email notification
of new topics/posts that can be modified with the built-in Editor.

The followings are variables which can be used in the template:

The common variables for both tabs:

	VIEWPOST_LINK: Will be replaced by the public link referring to the
new topic/post.

	$VIEWPOST_PRIVATE_LINK: Will be replaced by the private link
referring to the new topic/post.

	$REPLYPOST_LINK: Will be replaced by the private link referring to
the topic and a form to reply will be automatically opened.

The variables used in the New Post Notification tab:

	$OBJECT_WATCH_TYPE: Will be replaced by the watched object type
(category/forum/topic).

	$OBJECT_NAME: Will be replaced by the name of the watched object
(category/forum/topic).

	$ADD_TYPE: Will be replaced by the newly added object type
(topic/post).

	$ADD_NAME: Will be replaced by the newly added object name (topic
name/post name).

	$POSTER: Will be replaced by the topic/post owner.

	$POST_CONTENT: Will be replaced by the topic/post content.

	$TIME: Will be replaced by the time when the topic/post was added.

	$DATE: Will be replaced by the date when the topic/post was added.

	$CATEGORY: Will be replaced by the category name.

	$FORUM: Will be replaced by the forum name.

	$TOPIC: Will be replaced by the topic name.

The variables used in the Moved Notification tab:

	$OBJECT_PARENT_NAME: Will be replaced by the forum name (if moving
topics) or the topic name (if moving posts).

	$OBJECT_PARENT_TYPE: Will be replaced by the type of the moved
parent object, such as forum (if moving topics) or topic (if moving
posts).

	$OBJECT_NAME: Will be replaced by the name of the moved object
(topic name/post name).

	$OBJECT_TYPE: Will be replaced by the type of the moved object
(topic/post).

These variables are used to load the content dynamically. Thus, you
should not edit them. In case the template is changed unexpectedly, you
can go back to the default template by clicking [image: image178] . You can use
the text editor to format the template as you wish.

Customizing BBCodes

By default, there are some default BBCode tags that are initialized via
plugins: “[B]”, “[I]”, “[U]”, “[FONT]”, “[HIGHLIGHT]”, “[IMG]”, “[CSS]”,
“[URL]”, “[GOTO]”, “[QUOTE]”, “[LEFT]”, “[RIGHT]”, “[CENTER]”,
“[JUSTIFY]”, “[SIZE]”, “[COLOR]”, “[CSS]”, “[EMAIL]”, “[CODE]”,
“[LIST]”, “[WIKI], “[SLIDESHARE]”. You can add, edit or delete the
BBCode tags.

Click [image: image179] on the Forums Administration bar, then select BBCodes
from the drop-down menu to open the BBCode Manager form.

[image: image180]

Here, you can do the following actions:

	Adding a new BBCode

	Editing/Deleting a BBCode

	Activating/Deactivating a BBCode

Adding a new BBCode

	Click Add BBCode in the BBCode Manager form to open the Add BBCode form.

	Input values into the Add BBCode form.

[image: image181]

Details:

[image: image182] Tag: This is the text for BBCode, which goes inside the
square bracket.

[image: image183] Replacement: The HTML codes that replace the user-entered
BBCode.

[image: image184] Description: The brief description about this BBCode tag.

[image: image185] Example: The sample of the BBCode in use.

[image: image186] Use {option}: Allows BBCode tag to have option or not.

[image: image187]: Clicks this icon to preview your rendered BBCode.

[image: image188]: Clicks this icon to see descriptions of each field.

	Click Save to finish or Reset to clear all input fields.

Editing/Deleting a BBCode

Editing a BBCode

1. Click [image: image189] corresponding to the relevant BBCode tag in the
BBCode Manager form.

[image: image190]

	Make changes on the BBCode tag.

	Click Save to finish your changes.

Deleting a BBCode

Simply click [image: image191] corresponding to the BBCode you want to delete in
the BBCode Manager form, then select OK in the confirmation message
to accept your deletion.

Activating/Deactivating a BBCode

Any BBCode can be activated/deactivated.

[image: image192]

	To activate an existing BBCode tag, tick the relevant checkbox.

	To deactivate an existing BBCode tag, simply deselect the relevant
checkbox. The entered BBCode will be displayed as the plain text.

Setting up auto-pruning

The pruning allows you to clean a large amount of obsolete and inactive
topics based on criteria.

1. Click [image: image193] on the Forums Administration bar and click Pruning from
the drop-down menu to open the Auto Prune form.

[image: image194]

2. Click [image: image195] corresponding to the forum you want to set the prune
settings.

[image: image196]

	Specify the criteria.

	Click [image: image197] to check how many topics will be pruned.

	Click Save to accept settings.

After setting the prune successfully, the auto-prune will be run
automatically on the forum that has been set to check for the inactivate
topics.

Banning IPs

Administrators can ban IP addresses used by users who abuse the forum
functions or violate the forum rules and policies. All banned IPs cannot
be used to add posts to all forums in the Forums application. Any
users who use banned IPs to add post, will be recognized as the banned
user. As the result, the banned user can only view in Forums.

Click [image: image198] on the Forums Administration bar, then click Banned IPs
from the drop-down menu. The Banned IPs form appears.

[image: image199]

	To ban an IP, simply enter the IP address into the IP textboxes and
click Add. All banned IPs will be listed in the banned IPs table. You
can view all posts which are posted from the specific banned IP or
delete them from the banned IPs list.

	To view all posts submitted from a specific IP, click [image: image200] of
the respective IP. These posts can be viewed and deleted by the
administrator.

	To remove banned IPs from the banned IPs list, click [image: image201] of
the respective IP.

Besides, you can also filter the banned IPs if there are so many banned
IPs.

To filter banned IPs, enter a part of the IPs address into filter
textbox, all IPs matching with the filter term will be displayed.

Backing up a category & forum

The Export function is a best way to back up data in the Forums
application. This function allows you to export categories and forums in
the Forums application into the .zip or .xml file. When a
category/forum is exported, all of its forum, topics, posts and
properties are also exported. This exported file can be used to import
into the Forums application.

Backing up a category & forum includes the following actions:

	Exporting a category

	Exporting a forum

	Importing a category

	Importing a forum

Exporting a category

	Click [image: image202] on the Forums Administration bar.

2. Click Export from the drop-down menu to open the Export Categories
form.

[image: image203]

Details:

	Field

	Description

	File Name

	Name of the exported file.

	Export All

	Checks this option to export all data in Forums,
such as all categories, user profiles and forum
statistics.

	Only Categories

	Checks this option to export the selected categories
only.

	Select categories and enter the file name into the File Name field.

	Click Save.

Exporting a forum

This function is used to export forums and all topics inside the
Forums application into the .xml or .zip file.

The first way

1. Go into a forum you want to export and click [image: image206] on the Action
bar.

2. Click Export Forum from the drop-down menu to open the Export Forums
form.

[image: image204]

	Input the file name.

4. Tick the Compress checkbox to export the file into the .zip file or
leave it blank to export into .xml file.

	Click Save to get and store the exported file in your local device.

The second way

	Go into a category containing the forum you want to export.

2. Click [image: image205] on the Action bar, then click Export Forum from the
drop-down menu.

3. Select a forum you want to export by ticking the relevant checkbox.
The Compress checkbox is checked by default that means the file is
exported in the .zip format.

	Click Save to get and store the exported file in your local device.

Importing a category

1. Click [image: image207] on the Forums Administration bar, then click Import
from the drop-down menu to open the Import Category form.

[image: image208]

	Click Select File to browse and select the file to import.

	Click Save.

Importing a forum

	Go into one category, then click [image: image209] on the Action bar.

	Click Import Forum from the drop-down menu.

	Browse and upload the selected file in the Import Forum form.

	Click Save to accept importing.

After being imported successfully, the forum and topic data will be
displayed properly in the Forums homepage.

Managing Your Calendars

This chapter introduces you to the Calendar application and its
actions that allow you to schedule appointments and meetings,
establish recurring activities, create multiple calendars and share
calendars with others. With Calendar, it is easy to keep track
of all important events/tasks and collaborate with other people, all
in one place. This chapter is divided into the following topics:

	Calendar interface

Introduction to the Calendar interface and its main components.

	Creating a calendar

How to create a personal calendar, group calendar or remote
calendars.

	Editing a calendar

Steps to edit details and properties of a calendar, to set the
calendar color, and to delete a calendar.

	Exporting/Importing a calendar

How to import calendars or export calendars to a calendar
application that supports the iCalendar format.

	Sharing a personal calendar

Information about setting permissions on your shared calendar and
how to share your personal calendar with other users so that they
can participate in all activities of the calendar.

	Scheduling an event

How to to perform common actions with events in Calendar:
creating, editing, deleting, importing and exporting events.

	Editing Calendar settings

Steps to change the Calendar preferences.

	Generating RSS

Steps to publish your calendar as an RSS feed.

	Managing categories

Steps to add, edit and delete categories which are used to
classify events and tasks.

Calendar interface

The Calendar interface has 5 basic components.

In which:

	[image: image0]: The Toolbar contains most of actions in Calendar, such
as adding an event, switching between view modes and more.

	[image: image1]: The Search Pane where you can perform quick and
advanced searches.

	[image: image2]: The Mini calendar where you can go backward/forward
months by clicking [image: image3]/ [image: image4]. Also, you can jump to your
desired date by directly clicking that date.

	[image: image5]: The Calendar View pane where you can create events
quickly and view your own events.

	[image: image6]: The Calendars pane which includes 3 groups:

	Personal Calendars: Your private calendars.

	Group Calendars: Calendars of groups in which you are a member.

	Shared Calendars: Calendars which others share with you.

Note

If the Task Management application is installed by your administrator, you will see another Calendar group named “Task Calendars” below your Group Calendars. Each project from this application will have an individual calendar here but for view purpose only. Under the group, there will be also a Tasks calendar that displays all tasks assigned to you.

Creating a calendar

You may create a personal calendar
or group calendar
that can be shared with specific users or groups to your desires. You
can also create a calendar which is synchronized with a
remote calendar.

Creating a personal calendar

Note

All personal calendars will be put in the Personal Calendars pane.

	Click [image: image7], then select Add Calendar from the drop-down menu.

	Fill in fields of the Details tab.

[image: image8]

Details:

	Field

	Description

	Display Name

	The calendar name which is displayed.

	Description

	The brief description of the calendar.

	Time Zone

	The display time zone for the calendar activities
which cannot be edited. However, you can change
the time zone in your calendar
settings.

	Color

	The display color of the calendar activities that
can be personalized.

Note

If you select the Show in Groups tab, then click [image: image9] to define specific groups and click [image: image10], the calendar will be put in the Group Calendars category, not in the Personal Calendars category.

	Click Save to finish your creation.

Creating a group calendar

Note

All group calendars will be put in the Group Calendars pane.

	Follow steps as stated in Creating a personal calendar
to give details for your new calendar.

	Select the Show in Groups tab.

[image: image11]

	Select groups that contain your created calendar. The users of the
selected groups can only view this calendar.

	i. Click [image: image12] to open the Group Selector form. This form will

	help you select a group that you want to share.

[image: image13]

	ii. Click your desired group, then select [image: image14] to add the

	defined group.

iii. Click [image: image15] or [image: image16] to grant permissions to specific
users or memberships respectively from the selected group.

Note

	If you set the * membership in the User able to edit calendar column, all users of the selected group will be able to edit this calendar, regardless of their membership role.

	You can select more users/memberships by repeating the above steps. The selected users/memberships will be updated in corresponding textboxes.

	You can delete your selected users/memberships manually in the textboxes or click [image: image17] to remove the permissions.

	Click Save to finish creating your new group calendar.

Creating a remote calendar

Note

To create a remote calendar in the Calendar application successfully, you need to learn about the calendar settings of the relevant provider. For more information about types of remote calendars, see here.

	Click [image: image18], then select Remote Calendar from the drop-down menu.
The Subscribe Calendar form appears.

[image: image19]

	Select the type of the remote calendar: iCalendar or CalDAV.

	Enter the URL linking to your calendar server in the URL field.

	Click Next to go to the Remote Calendar form.

[image: image20]

	Fill in the fields. The asterisk (*) indicates the field is mandatory.

	Tick the Use Authentication checkbox, then enter the username and
password of your remote calendar server if the remote server requires
verification.

	Click Save to accept your creation.

Note

After creating a remote calendar, you can ONLY VIEW all events and tasks which are created in the remote calendar server right in the Calendar application by clicking it. To get the updates, hover your cursor over the remote calendar, then click [image: image21] to select Refresh from the drop-down menu.

More information about types of remote calendars

	iCalendar:

iCalendar provides a link to an online .ics file from another calendar
servers, such as Google Calendar, Yahoo Calendar, or eXo Calendar
(including public URL or private URL).

An example of a Google Calendar URL (in iCal format):

https://calendar.google.com/calendar/ical/en.tn%23holiday%40group.v.calendar.google.com/public/basic.ics [http://calendar.google.com/calendar/ical/en.tn%23holiday%40group.v.calendar.google.com/public/basic.ics]

	CalDAV:

CalDAV is an open protocol that allows you to access calendars via
WebDAV. With CalDAV, you can publish and subscribe to calendars, share
them collaboratively, synchronize among multiple users or devices.

Google: https://apidata.googleusercontent.com/caldav/v2/calid/events
where calid is the calendar id to be accessed.

Yahoo:
https://caldav.calendar.yahoo.com/dav/your_yahoo_account@yahoo.com/Calendar/calendar_name/

How to import a Google calendar?

Below an example of how to import a Google calendar to eXo Platform:

	Go to your Google calender interface and select the calendar you
wish to import to eXo Platform.

2. Click on options button [image: image22] of the chosen calendar and then
select Settings and sharing.

[image: image23]

	An interface Settings appears, scroll down to the section Integrate
calendar and copy your calendar’s public link in iCal format.

[image: image24]

	Go to the calendar interface in eXo Platform and click on the
[image: image25] then on Remote calendar.

	Paste the iCal link to the field URL.

	Click on Next to move to the form in calendar settings. Fill in the
needed fields.

Note

If the imported remote calendar is not public, you should input your google account credentials in the “Authentication” section to enable the import procedure.

Editing a calendar

Note

	You can ONLY edit personal calendars and group calendars that you created.

	For group calendars which are created by another users, you can ONLY edit them if you are granted the Edit permission. Meanwhile, for shared calendars, you cannot edit them. If you are granted the Edit permission on them by the calendar creators, you can ONLY have the right on their tasks or events (for example, adding/modifying/deleting, exporting/importing).

1. Hover your cursor over the calendar which you want to edit, then
click [image: image26] that appears.

	Click Edit from the drop-down menu. The form to edit the calendar
will be different, depending on your selected calendar type.
For example, if you select a personal calendar, the form only
contains the Details tab.

	Make changes on the calendar, then click Save to accept your changes.

The Calendar application allows you to select different colors for
all types of calendars to recognize them easily.

1. Hover your cursor over the calendar which you want to set the color,
then click [image: image27] that appears.

	Select one color from the available 24-color palette.

[image: image28]

This function allows you to remove any calendars and all their events.

Note

You cannot delete group calendars created by another users if you are not granted the Edit permission.

	Hover your cursor over the calendar which you want to delete, then
click [image: image29] that appears.

	Select Remove from the drop-down menu.

	Click Yes in the confirmation message.

Exporting/Importing a calendar

Note

You can only export the calendar which contains at least one event. Besides, for shared and group calendars, you can only export/import them if you have the Edit permission.

Exporting a calendar

This function allows you to export a calendar and its events into a
separate file on your device.

	Hover your cursor over the calendar which you want to export, then click
[image: image30] that appears.

	Click Export from the drop-down menu to open the Export Calendar form.

[image: image31]

	Enter the exported file name in the File Name field. The export format
is iCalendar by default.

	Click Save to finish your export.

Note

You can only open the exported file if you have an application installed on your device that supports its format.

Importing a calendar

This function allows you to import one calendar from your device to a
selected calendar in Calendar.

	Hover your cursor over the calendar which you want to import, then
click [image: image32] that appears.

	Click Import from the drop-down menu to open the Calendar form.

[image: image33]

	Select a format type from the Format drop-down menu. At present, only
the .ics and .csv formats are supported.

	Click Select File to open a window that allows you to browse your
selected file.

	Select your desired file from your local device, then click Open to
upload it.

	Click [image: image34] next to the name of your uploaded file if you want to
remove it and upload again.

	Click the Import in field to select the calendar in which you want to
import your uploaded file;

Or, create a new calendar where your uploaded file is imported by
clicking [image: image35] next to the Import in field.

	Click Save to finish your import.

Sharing a personal calendar

This function allows you to share your personal calendar with other
users, so that they can participate in all activities of this calendar.

You can set permissions on your shared calendar based on 2 levels:

	View permission allows shared users to view the shared calendar
and its events/tasks, but cannot change any information. It means
that the shared users cannot add/edit/delete events or tasks, or
edit, import and export the shared calendar.

	Edit permission allows shared users to view, import and export
the shared calendar or add, edit, delete events/tasks inside the
shared calendar. However, you cannot edit detailed information of a
shared calendar, such as its display name.

Note

If other users share their calendars with you, you will see them in the Shared Calendars category even after the users are suspended.

Sharing a personal calendar

	Hover your cursor over the calendar which you want to share, then
click [image: image36] that appears.

	Click Share from the drop-down menu to open the Share Calendar form:

[image: image37]

	Select users, memberships or users that you want to share by clicking
[image: image38] respectively,

Or enter name of users, memberships or users into the text-box manually,
separated by commas.

Note

If you set the * membership for a group, all users of the group will be able to access this calendar, regardless of their membership role.

	Click [image: image39] to add your selected ones.

	Check the Edit Permission checkbox if you want to grant the Edit
permission to the corresponding users/memberships/groups.

	Click Save to accept sharing your personal calendar.

	If you select to share with any group, you will see a popup showing
the sharing process:

	You cannot abort your sharing till the process is finished.

	The shared user/group can perform the following actions on the shared
calendar:

	Remove and Refresh, if the Read permission only is granted.

	Add Event, Add Task, Remove, Import, Export and Refresh, if the
Edit permission is granted.

Sharing a calendar using iCal

iCal provides a link that allows users to download a *.ics file which
contains all events and tasks of a calendar. iCal is supported by many
popular products, such as Microsoft Outlook, Google Calendar, Apple
iCal.

	Public URL: The Public URL link allows you to share your calendar
with other users. They do not need to have Calendar accounts to
download the file, but they must use a calendar application which
supports the .ics to open and view it. By default, Public URL is
empty and it is only accessible when public access is explicitly
enabled.

	Private URL: iCal is used for personal use. It means that as the
creator of the calendar, you can download it to your computer and use
any calendar applications which support the .ics format to open it.
You can also import it into another calendar.

Getting the link to download iCal

	Hover your cursor over the calendar which you want to get iCal, then
click [image: image40] that appears.

	Click Edit from the drop-down menu to open the Calendar form.

[image: image41]

	Get a Public URL or Private URL by clicking [image: image41].
For Public URL, you must assure that the iCal is public. If it is not
public, simply click the “Disable Public Access” link.

One Calendar Feed form will pop up.

	Copy the link in the Calendar Feed form, then send it to another
users.
The shared users can use this link to download the .ics file which
can be opened in popular calendar applications, such as Microsoft
Outlook, Google Calendar, Apple iCal.

Scheduling an event

This section consists of the following topics:

	Creating a new event

Ways to create new events, including Quick adding an event and
Adding a detailed event.

	Editing an event

Instructions on how to edit an event.

	Dragging and dropping an event

Steps to change the start date and time of an event conveniently via
the Drag and Drop feature.

	Exporting/Importing an event

Instructions on how to export and import an event.

	Deleting an event

Instructions on how to remove an event from a calendar.

Before learning to schedule an event, you should know how to view an
event of a specific calendar with its details:

The first way

Hover your cursor over the event to see its detailed view.

[image: image43]

The second way

Right-click the event in the Calendar View pane, then select View from
the drop-down menu.

The Preview form will appear.

[image: image44]

At the Preview form, if the event includes attachments, you can download
them by directly clicking its title. If the attachment is an image, you
can also click View to preview it.

Creating a new event

	Open the Add Event form via either of these 4 ways:

The first way

Click [image: image45] on the toolbar.

[image: image99]

The second way

Right-click the Calendar View pane, then select Add New Event from
the drop-down menu.

[image: image46]

The third way

	Hover your cursor over the calendar which you want to add new events, then click [image: image47] that appears.

	Click Add Event from the drop-down menu.

[image: image100]

The forth way

Click the appropriate time slot in the calendar view pane. Drag your
cursor to alter the length of the event. For more details, see
here.

==> The Add Event form appears in the right of the screen.

[image: image48]

Details:

	Field

	Description

	Title

	The event title which is required.

	Event Category

	The category which contains the event.

	From

	The start date and time of the event.

	To

	The end date and time of the event.

	All Day

	If the event does not have a specific time, select
the All Day option. This option allows setting the
event duration to be all day or not. If you do not
check this option, you have to define the start
date/time and end date/time. By default, the start
date and end date is the current date.

	Location

	The Place where the event will occur.

	Participants

	Persons to be invited to the event.

	Calendar

	The calendar which contains the event.

	Description

	The detailed description of the event.

	Attachments

	Files to attach to the event.

Tip

To create an event, you don’t have to fill all the fields cited above. You can just fill
mandatory fields to add an event in your personal calendar.

	Give necessary information for your event: title, time slot i.e. from
and to fields

Note

	When you right-click to add an event, the start date and time are
where the click occurs and the default duration is one hour. When you
click Event on the top left corner of Calendar or Add Event
by selecting [image: image49], the start date is the current one with
duration of 1 hour.

	When you select a start date/time, an end date/time will be
suggested. You can select another values to your desires.

	You can click “Save” to finish creating your new event in your persanal
calendar or you can fill in more fields for
a detailed event.

[image: image101]

To create a detailed event you can, in addition to required fields,
fill in these fields:

	[image: image102] Select the event’s category.

	[image: image103] Add the event’s location.

	[image: image104] Add participants to the event
and [image: image105] check their availability.

	[image: image106] Select the calendar where you wish to add your event.

	[image: image107] Create a reminder for upcoming events
with your own notification settings.

	[image: image108] Save time by creating a recurring event
rather than entering each instance separately.

	[image: image109] Add description of the event.

	[image: image110] Add attachments to the event

Note

You can attach a maximum of 10 files to an event. Also, the size of each file must be less than 10 MB.

Creating a recurring event

Tick the Repeat checkbox to open the Recurring Event form.

[image: image55]

Here, you can define the repeating time for your event as follows:

	Select the type of your repeating event from the Repeat option.

	Daily: The event will be repeated every day.

	Weekly: The event will be repeated every week that is set by default.

	Monthly: The event will be repeated every month.

	Yearly: The event will be repeated every year.

	Select the frequency and date for repeating your event in the Repeat every
and Repeat on fields respectively. The selected frequency will
work on the Repeat value. For example, if you set Weekly in Repeat,
5 in Repeat every and WE in Repeat on, the event will be
repeated every 5 weeks on Wednesdays.

	Select the option for ending your repeating event by ticking the
relevant checkbox.

	Never: Your repeating event will never end.

	After [X] occurrences: Your repeating event will end after a defined
number of occurrences.

	By this date: Your repeating event will end before your specified
date. Point your cursor over the textbox and select the date from the
drop-down calendar.

The recurring event will be shown as below:

[image: image56]

Creating a reminder for upcoming events

The Calendar application provides 2 options for reminding users who
will take part in events. A reminder includes the summary information of
the event, such as title, time and location. To use this feature, juts
activate the Reminder option.

[image: image57]

Details:

	Remind by Email: This option is to remind users of upcoming events
via emails. This option is set default. If you do not use this
option, simply untick the checkbox.

	Field

	Description

	Remind by Email before
the event starts

	The interval time that the reminder will be
repeated before an event starts.

	Display a
notification pop-up

	Remind users of upcoming events via pop-up
messages.

Adding participants to an event

If you want to invite people to attend at an event, fill in the
Participants field. When typing in the field, type-ahead suggestions
will appear below for easier selection of users.

[image: image111]

Participants will receive invitations via emails. Their statuses will be
updated in the Status column after they have answered the invitations
via emails.

	If the participants agree to participate (by clicking Yes in
their received invitation emails), their statuses will be yes.

	If the participants do not agree to participate (by clicking No),
their statuses will be no.

	If the participants have not decided to take part in the event (by
clicking Not sure), their statuses will be pending.

Also, participants can import the event directly into their calendars or
jump to the calendar by clicking the relevant links in the invitation
emails.

Viewing the availability time of participants

[image: image66]

Click on Find a time link on Add event form to select the
correct event’s start and end time, depending on participants’ availabilities.
By default, it is the start and end time of the event which you defined in
the Add event form.

Busy periods are displayed in red so you can easily detect the schedule
conflicts to manage the alternate meeting time that works best for all
participants.

You can schedule the event (its start/end time) by dragging and
dropping. The selected period is displayed in green.

Adding participants

Click [image: image67] in the left pane to select users from the Select Users
form.

Deleting participants

Tick the checkboxes corresponding to users in the Participants list,
then click [image: image68]. The deleted users will be removed from the
participants list.

Applying selected day

Note

It is required to have at least 1 user in the Participants list.

	Enter the time manually into the From and To fields;

Or, tick the All Day checkbox if your event will be hold for all day;

Or, hover your cursor over the time pane to visually select the
available time of users. The selected period will become green and
the corresponding time will be automatically updated into the From
and To fields.

Note

If you do not see any available time for your selected date in
the time pane, you can switch to another dates by clicking
[image: image69]/[image: image70] to check another time availability of users.

	Click the Apply Selected Day checkbox to accept applying your
selected date and time into the Details tab.

Editing an event

	Open the Edit Event form by doing one of two following ways:

The first way

Double-click the event you want to edit.

The second way

Right-click the event that you want to edit and select Edit from the
drop-down menu.

[image: image71]

The Edit Event form is displayed with information already filled
when adding your event.

	Edit information of your event, then click Save to complete.

	When you are editing the start time, the end time will remain the
same as previously selected.

	If you make changes on a recurring event, the Edit recurring event pop-up will be displayed:

[image: image72]

	Only this event: The changes will be applied into the
selected event only. This event will be marked with the text:
“Edited Recurring event”.

[image: image73]

	Following events: The changes will be applied into the
selected event and the following events of the series.

	All events: The changes will be applied into all events of
the series.

Note

	For shared and group calendars, you can only edit their events if you have the edit permission.

	When editing an event, you can add/remove the attachment files or download them by directly clicking
their titles.

	If you only want to change the start date and time of the event, you can also use the drag-and-drop
feature to edit the time for the event directly on the Calendar View pane.

Dragging and dropping an event

The drag-and-drop feature helps you change the start date and time of an
event more conveniently. You only need to click the event, drag and drop
it into another date or new time area in the Calendar View pane.

You also can hover your cursor over the Scroll button to alter the
event period.

[image: image76]

According to the features of the Calendar pane view, the drag-and-drop
feature can be applied to the date and time differently.

	In the Day view, all events are shown in a day, so you can change the
time of the event in one day only.

	In the Week and Work Week views, all events are shown in a week, so
you can change both the event time and the event date.

	In the Month view, all events are shown in a month, so you can change
the event date only. You can also change more events at the same time
by ticking their checkboxes and using the drag-and-drop feature.

Note

For shared and group calendars, you can only drag and drop their events if you have the Edit permission on these calendars. If you drag and drop an event of one calendar on which you do not have the edit permission, you will get a warning message.

Exporting/Importing an event

Exporting an event

This function allows you to export one event into a file on your device.
This file can be imported to use in another Calendar application.

	Right-click the event that you want to export, then select Export
from the drop-down menu.

[image: image77]

The Export Calendar form will appear.

[image: image78]

	Enter a file name, the export format is iCalendar by default.

	Click Save to accept exporting the event.

	Click OK in the confirmation message to save the exported file
into your device.

Note

In fact, exporting an event means exporting a calendar with one event only. Therefore, the exported file format and the way to export an event is similar to the way to export a calendar with multiple events.

Importing an event

You can import an event into a specific calendar. The process to import
an event is similar to importing a calendar. For more details, see
Importing a calendar.

Deleting an event

This function allows you to remove events from a calendar. To do this,
simply right-click the event you want to delete, then select Delete from
the drop-down menu.

Deleting a recurring event

If you delete a recurring event, the Delete Recurring Event popup will
be displayed:

[image: image79]

	Select Only this event to delete the selected event only.

	Select Following events to delete the selected event and following
events of the series.

	Select All events to delete all events of the series.

When you delete an edited recurring event in a space calendar, its
activity on the activity stream is also deleted and a comment informing
the date of the event cancelled is added to the main activity of the
series.

	If you select Only this event, a comment informing the date of the
event cancelled is added to the main activity of the series.

[image: image80]

	If you select Following events, and in case there are activities for
some future edited recurring events of the series, they are deleted
and a comment informing the date of repetition stop is added to the
main activity of the series.

[image: image81]

	If you select All events, the main activity of the series is deleted.

Deleting an event in the Month view

In the Month view, you can delete one or multiple events at the same
time.

	Tick the checkboxes corresponding to the events you want to delete.

	Click [image: image82] on the Month information bar.

[image: image83]

	Click Delete in the confirmation message.

Note

For shared and group calendars, you can only delete their events if you have the Edit permission on these calendars.

Editing Calendar settings

You can change the Calendar preferences as follows:

	Open the Calendar Settings form via either of the following ways:

	The first way: Click [image: image84] on the Calendar toolbar.

	The second way: Click [image: image85], then select Calendar Settings
from the drop-down menu.

The Calendar Settings form appears:

[image: image86]

	Change your desired preferences.

	i. In the Settings tab, you can change the Calendar general

	settings:

	Field

	Description

	Default View

	The view type of Calendar View pane. You can
define the default view type when you start
Calendar (Day, Week, Month, List, Work Week).

	Date Format

	The date format which is displayed in
Calendar, such as Starting date, Ending date
in events/tasks.

	Time Format

	The time format which is displayed in
Calendar, such as time of Starting date, or
Ending Date and time displayed in the Calendar
View pane.

	Time Zone

	The default time zone displayed in Calendar.

	Week Start on

	The first day of the week displayed in the
Week and Work Week views.

	Show Working Times

	Clicks the checkbox to display the working times
when viewing the calendar. The working time can
be defined by selecting Starting and Ending time.

	Send Event Invitations

	Ticks one checkbox to set the default action that
you want Calendar to perform once events have
been created. There are 3 options:

	Never: Calendar will not send invitations.

	Always: Calendar will send invitations
automatically to the participants.

	Asked: Calendar will ask you whether to
send invitations or not.

ii. In the Displayed Calendars tab, you can define which calendars
to be displayed in the Calendar application by simply ticking
checkboxes.

iii. In the Feeds tab, you can generate an RSS feed as stated in
Generating RSS.

Generating RSS

This function allows you to publish your calendar as an RSS feed. It
will build a URL that helps you keep track of all events via the RSS
reader.

	Follow Step 1 <EditingCalendarSettings> to open the Calendar
Settings form, then select the Feeds tab.

[image: image87]

	Click Add to open the Edit Feed form.

[image: image88]

Details:

	Field

	Description

	Name

	The name of the feed (required).

	URL

	The link of the feed (required).

	Calendar(s)

	The calendar(s) which you will get feeds.

	Add More

	Adds the calendar that you want to get RSS feed.

	Input the name of RSS in the Name field.

Click [image: image89] to generate the RSS link. The URL will be
automatically generated into the URL field. Click [image: image90] to reset
the RSS link.

	Select the calendar name that you want to get the RSS feed in the Add
More field, then click [image: image91] to add your selected calendar.

Click [image: image92] corresponding to the calendar name to delete your
added calendar.

	Click Save to accept generating the feed, then click OK in the
notification message.

The created feed will be shown as below.

[image: image93]

	Click [image: image94] to get the RSS feed link which can be used in an RSS
reader application to directly view your calendar events and tasks.

Managing categories

Categories are used to classify events and tasks. For example, you could
use a ‘Meeting’ category for all meetings with your colleagues or
customers in your company. By default, PRODUCT provides 6 available
categories in Calendar: All, Calls, Meeting, Holiday, Clients,
Anniversary. You can add and view events/tasks in default categories. In
addition, you also can edit, delete default categories or create new
categories by yourself.

To manage categories, click [image: image95], then select Add Event Category
from the drop-down menu.

The Event Categories form will appear.

[image: image96]

Adding a new category

Simply enter the category name (that does not contain special
characters, for example #,$) in the Event Category field, then click Add
to add this category.

Editing/Deleting a category

	Edit a category by clicking [image: image97]. Next, enter a new name in
the Event Category field, then click Update to apply your changes.

	Delete a category by clicking [image: image98]. Next, click Yes in the
confirmation message.

Note

The events/tasks under the deleted categories are still kept. These events will then be auto-assigned to the default All category.

Managing Your Websites

Content is a main part of a website that may consist of various
elements, such as texts, images, sounds, videos, animations, and
more. In eXo Platform, you can manage both structured and unstructured
content.

To create and manage the content more effectively and dynamically,
you need to pay attention to the structure of each content,
including:

	Main content contains all key content, such as texts, images,
links, tables, and more.

	Illustration is an image which is used to clarify or explain
the content. Also, a summary also can be added to this image.

	CSS Data are used to present the web content, such as layout,
font, color, and more.

	JS Data are used to make web content more animating and dynamic.

In this chapter, with the role as a web-contributor, you will know
how to effectively manage your websites via the following topics:

	
	Contributing content

	Introduction to the Edit mode, procedures to do actions in
InContext Editing, Inline Editing, CKEditor and
information about the publication process.

	
	Publication process

	Introduction to the publication process of content and how to
manage the publication.

	
	Managing content list viewer byquery

	Introduction to the Content By Query portlet and detailed
steps to add this portlet to a specific page.

	
	Managing categories

	Introduction to how to work with categories in Sites Explorer via
the Add category and Manage Categories actions added to the
Action bar.

	
	Creating content inside a category

	Steps to create content in a category.

	
	Managing content in a specific site

	Information about Web content, and detailed steps to create,
edit, delete, publish and search for web content via the Sites
Management drive.

	
	Adding translations to content

	Instructions on how to add multiple languages for content.

	
	Using WebDAV

	Two ways to access a website using WebDAV, how to add/delete
new web content in WebDAV.

	
	Managing content with Fast Content Creator

	Introduction to the Fast Content Creator portlet, steps to
configure this portlet and to create and view content with this
portlet.

	
	Managing category navigation

	Instructions on how to access and configure the Category
Navigation portlet.

	
	Managing SEO

	Introduction to Search Engine Optimization (SEO), steps to
manage SEO data of web pages, web content and optimize your
website for search engine.

	
	Searching content in a site

	Steps to search for content and to configure the Search
portlet.

	
	Printing content

	Steps to print any content in a site.

Contributing content

This function allows web-contributors to edit content, quickly access
content list folders from the homepage of the current site, publish
content without using the Manage Publication
function in Sites Explorer.

This section consists of the following topics:

	Edit mode
Introduction to the Edit mode in eXo Platform, how to enable and use this
mode.

	CKEditor
Introduction to the additional features of CKEditor in eXo Platform.

Edit mode

When you access the Agital site, by
default, the site content is in the published mode and you cannot
edit them.

However, eXo Platform provides you with the Edit mode which enables you
to edit all content of the Agital site by using the InContext Editing
and Inline Editing features.

When hovering your cursor over content, you can see [image: image0] which
enables you to quickly edit this content in Sites Explorer. You can take
advantage of this feature to submit content to a page.

To turn on the Edit mode, click Edit on the top navigation bar, then
select Content from the drop-down menu.

[image: image1]

For single content viewer (SCV), you can see the current state of the
content, the Edit Content icon and Preferences icon.

[image: image2]

For content list viewer (CLV), you can see the current state of the
content, the Edit Content icon, the Preferences icon, the Add Content
icon and the Manage Content icon.

[image: image3]

InContext Editing

By using the InContext Editing feature, the process of editing a
page becomes more intuitive. This feature allows you to edit content “in
context” without using the WYSIWYG editor, and the new content will
automatically override the old one.

To use InContext Editing, you first need to turn on the Edit Mode <TurningOnTheEditMode>.

Adding content

Note

Adding new content by using InContext Editing is enabled for the content list viewer (CLV) only.

	Turn on the Edit Mode, then hover your
cursor over the CLV to which you want to add new content.

	Click [image: image4] on the CLV.

You will be redirected to the Sites Explorer in the creation form of
the content having the same type as other contents in the CLV.

[image: image5]

Details:

	Field

	Description

	[image: image6]

	Maximizes/minimizes the screen.

	Close

	Closes the content creation form without saving
the content.

	Save and Close

	Saves the changes done and closes the creation
form.

	Save

	Saves the changes done without closing the
creation form.

	Fill all the fields in the form. The field name is required.

4.Click Save or Save & Close to save the content.

After closing the content form, you can view the content and do some
actions listed on the Action bar for the content. See the
Working with basic actions for more
details.

[image: image7]

Note

The folder, where a document is saved, is the path you have selected in the Managing preferences section.

Editing content

You can edit any content on the homepage for SCV and CLV with
InContext Editing.

	Turn on the Edit Mode, then hover your
cursor over the content you want to edit, and click [image: pencil] at the
right corner. You will be directed to Sites Explorer with the
document form for you to edit.

[image: image8]

	Make changes on the content, then click Save or Save & Close to
accept your changes.

After closing the Edit form, the content is in the Document View.

[image: image9]

	Click [image: image10] to return to the site. In the Edit mode, your new
content will be in the “Draft” state with its visible modifications.

[image: image11]

	Click [image: image12] to publish your edited content. Your content is now
in the “Published” state.

Note

You cannot see the edited content in the draft state when you turn off the Edit mode.

Managing content

With InContext Editing, you can easily manage a content list viewer
on the page. You can add new content, edit, delete an existing content
or copy/cut/paste in the CLV and take more actions in the right-click
menu.

Adding content in the CLV

	Turn on the Edit Mode.

	Hover your cursor over the CLV to which you want to add new content
on the homepage, and clicck [image: image13].

You will be directed to the Sites Explorer page.

[image: image14]

	Select [image: Add Document] on the Action bar.

	Do the same steps as in the Adding Content
section.

Do other actions

You can do many different actions for specific content in the CLV. See
the Working with basic actions section.

Managing preferences

Preferences enable you to edit content in the single content viewer
(SCV) and the content list viewer (CLV), reset the display of the
content in SCV and CLV and publish content.

Editing the single content viewer

	Turn on the Edit Mode.

	Hover your cursor over a single content viewer and select [image: image15]
of a single content viewer.

The Content Detail Preferences dialog appears.

[image: image16]

Details:

	Field

	Description

	The Content Selection
tab

	Content Path: Select the path of the content that
you want to show.

	The Display Settings
tab

	Configure the visibility of Title, Date and Option
Bar.

	Show Title: Select this checkbox to display the
title of the content.

	Show Date: Select this checkbox to display the
date of the content publication.

	Show Option Bar: Select this checkbox to
display the Option bar which is used to show
the print link.

	The Print Settings
tab

	
	Show in Page: The content is shown in the page.

	with: Parameters contain the content path.

	The Advanced tab

	This tab consists of two parts:

	Dynamic Navigation: Allow you to get a
parameter to configure the portlet by URL. It
means that the URL containing the content path
can be dynamically changed.

	Disable: The single content will be opened
by an URL containing the Content Path.

	Enable: This portlet is configured with the
provided parameter (“content-id” by default)
and the content.

	Content Visibility: Allow you to use a cache
shared between users to get content. If you
want to get content, which are displayed in CLV
or SCV, from one cache, select Restricted by
Authentication. If not, select Restricted by
User Roles. In most cases, you should not
switch to Restricted by User Roles as it
reduces the overall performance.

Note

Hover your cursor over [image: question mark] to see a quick help for each section.

	Click [image: image18] next to the Content Path to select another content.
The Select Content dialog appears.

	Select a folder in the left pane, and its content in the right pane.
The selected content will be displayed in the Content Path field.

	Tick the checkboxes, including Show Title, Show Date and Show Option
Bar, if you want to display the content title, the publication date
and the print button like the illustration below.

[image: image19]

i. In the Print Setting part, click [image: magnifying glass] to open the
UIPageSelector dialog.

ii. Click [image: magnifying glass1], then click a folder on the left and
select a page which will show the content on the right by clicking
[image: image20].

	Click Save to save all your changes.

Editing the content list viewer

	Turn on the Edit Mode, then hover your
cursor over a content list viewer and select [image: image23].

[image: image24]

The Content List Preferences dialog appears.

[image: image25]

Details:

	Field

	Description

	The Content Selection
tab

	Mode: This mode is to select web content for the
list viewer. There are two modes:

	By Folder: Allows selecting a content folder
in the Folder Path field.

	By Content: Allows selecting by the content
in a specific folder in Folder Path field.

Folder Path: The path to a location of a folder
that contains the content.

Order by: Sorts content in the List Viewer by
Title, Created Date, Modified Date, Published
Date, Event Date, or Index in the ascending or
descending order.

	The Display Settings tab

	Header: The title of all content that is shown
on the top of the content list viewer.

	Automatic Detection: Ticks this checkbox to
enable automatically detecting the header of
the content list viewer basing on the current
selection.

Template: The template which is used to view the
content list.

Paginator: The template which is used to view
each content in the list.

Items per Page: The number of items which will
be displayed per page.

The following options which can be shown or
hidden by ticking or unticking checkboxes
respectively.

	Show Title: Title of each published web
content/document.

	Show Header: Header of each published web
content/document.

	Show Refresh: The Refresh button at the left
bottom of the page.

	Show Image: The illustration of each
published web content/document.

	Show Date: The created date of each published
web content/document.

	Show More Links: The Read more link to read
all the content of web content and/or
document.

	Show Summary: The summary of each web
content/document.

	Show Link: The link of web content/document.

	Show RSS Link: The RSS link of all content of
web content/document.

	The Advanced tab

	Dynamic Navigation

	Disable: The single content will be opened by
an URL containing the Content Path.

	Enable: This portlet is configured with the
provided parameter (content-id by default).

	By: This parameter is the key in the URL to
let CLV know which really is the path in the
current URL.

	Show in Page: The single content in CLV will
be shown in a selected page. You can select
any page but should take one with a Content
Detail Portlet. The “Dynamic Navigation” is
enabled in the Content Detail Portlet that
interprets the URL and shows a single
content.

	With: This parameter is the key in the URL to
let SCV know which really is the path in the
current URL.

Content Visibility: Allows using a cache shared
between users to get content. If you want to get
content which is displayed in CLV or SCV from
one cache, select Restricted by Authentication
(default). If not, select Restricted by User
Roles. In most cases, you should not switch to
Restricted by User Roles as it reduces the
overall performance.

	Select the Content Selection tab:

	Select content you want to show on the content list viewer by
clicking [image: image26] next to the Folder Path field.

	If you select the By Folder mode, select an available site on the
left, then select a folder that contains content (documents and/or
web content) on the right by clicking the folder.

	If you select the By Content mode, select an available folder from
the left pane, all content in this folder will be listed in the
right pane. Click content on the right that you want to add to the
content list. There will be a message, informing that you have
successfully added it to the Content List. The selected content
will be listed in the Content List.

	Click the Order by field and select one criterion to sort the content
list in the ascending or descending order.

	Select the Display settings tab:

	Enter a header for the content list in the Header field if you want.

	Select a template to display the content list in the template list.

	Tick/Untick your desired options.

	Select the Advanced tab to activate the dynamic navigation and select
the content visibility.

	Click Save to accept your changes.

Inline Editing

The Inline Editing mode allows you to edit directly on the page
without going to a separate one. By using this mode, you can edit the
text in the same location in such an intuitive and convenient manner.

Do the Inline Editing

	Turn on the Edit Mode, then hover your
cursor over the area you want to edit. The editable area will be
highlighted.

	Click the area you want to edit.

[image: image27]

The Edit area will be displayed with the
CKEditor [http://ckeditor.com/demo] as below. (See more information
about CKEditor here.)

[image: image28]

	Make changes on your selected area.

	Click [image: image29] to accept, or [image: image30] to discard changes.

	After you have made changes on your content, it is in the Draft
state.

	Click [image: image31] to publish the content. Now, your edited content is
in the Published state.

CKEditor

When using CKEditor to write/edit a document in eXo Platform, you can also:

	Insert a site link to the document

	Insert a content link to the document

	Upload an image to the document

Inserting a site link

	Click [image: image32] to open the Insert link to a site page form.

[image: image33]

	Enter the site title of the link in the Title field.

	Enter the site URL manually, or you can also click Get portal link to
open a page containing all the sites in the same server, then select
one that you want.

	Click Preview to view the site.

	Click Save to accept inserting the site to the document.

Inserting a content link

	Click [image: image34] to open a page.

[image: image35]

	Click the plus before the document name, or click directly the
document name in the left pane to show the content in the right pane,
or click [image: image36] to upload a file from your local device.

	Click content that you want to insert to the document.

Image Upload through CKEditor

	Click [image: image37] to open the upload image form.

[image: image38]

	Click on Browse server to open the WCM Content selector allowing to
upload from desktop or to select an existing attached image.

	By default, the WCM content selector opens the folder where the
webcontent/Illustrated webcontent will be saved.

[image: image39]

In this case, the webcontent is added under
sites/intranet/web contents.

	If the WCM Content selector has already been opened and a file has
been selected then this last location will be displayed.

[image: image40]

As an example of this case:

	Go to file Explorer under /sites/intranet/web contents and create
a new webcontent.

	Click [image: image41] to insert an image and then Browse server.

	The WCM content selector opens the folder
/sites/intranet/web contents (the first case). Browse to get,
for example, under the path sites/intranet/medias, upload an
image and insert it to the webcontent.

	Reclick [image: image42] and then on Browse server, the WCM contents
selector will open the last location which is
sites/intranet/medias and not the default one
/sites/intranet/web contents.

	Select an image from the existing ones or click on [image: image43] to
upload an image from your desktop then select it.

	The image will be first previewed in the Image properties form.

[image: image44]

	Click OK, the image will be inserted in the webcontent.

	To finalize the webcontent/illustrated webcontent creation, click on
Save or Save and close.

[image: image45]

Publication process

After new content has been created, it is saved as draft and must be
approved before publishing by the web-contributors or administrator. The
publication process consists of three steps:

Request for Approval –> Approval –> Publish.

Sending approval request

If you want to publish your content without having the “Approve” or
“Publish” right, you first need to send a request for approval by
clicking [image: image46] on the Action bar.

Approving content

If you have the right to approve or publish content, you will see a list
of content waiting for your approval at the bottom of the Sites
Explorer.

[image: image47]

To approve the content, do as follows:

	Click the content to review.

	Click [image: image48] on the Action bar to approve the content.

Note

If you have the right to publish content, you can publish it immediately without the Approval step.
After being approved/published, the content is removed from the list of Waiting For My Approval at the bottom of the Sites Explorer.

Publishing content

You can an quickly publish content by opening your desired content, then
clicking [image: image49].

Managing publication

This function allows you to manage the content publication. You can
publish or unpublish any content or publish the content in a given
period. Also, you can review the publication history of the content.

	Select content (on the left or right pane) which you want to manage
its publication.

	Click [image: Manage Publications] on the Action bar.

The Manage Publication form appears.

[image: image50]

	The Revision tab displays some basic information and the current
state of the selected node.

	The [image: magnifying glass2] icon allows you to view the content of
the node.

	The [image: Restore Version] icon allows you to restore a version
of the node (refer to Activating document versioning
for more details).

	The Scheduled tab allows you to publish content in a period.

	The History tab allows you review the publication history of the
content.

	Set the status for the content by ticking the corresponding checkbox
in the Revision tab.

	Draft: The content is in draft.

	Pending: The content is waiting for approval to publish.

	Approved: The content is approved.

	Scheduled: The content is published in a period. When checking this
checkbox, you will see the Scheduled tab. Select this tab, then click
From/To to select the start and end dates for publication from a
mini-calendar.

[image: image51]

Click Save to accept publishing the content as the schedule.

Note

To publish your content forever, you should not set time in the To field.

	Published: The content is published immediately and permanently.

	Click Close to quit the form.

Managing content list viewer by query

The Content By Query portlet allows you to collect and display data
throughout a workspace by using a query instead of selecting items by a
folder or by content.

To use this portlet, first you need to add the Content By Query
portlet to a specific page as follows:

	Drag and drop the Content By Query portlet from the
Page Editor –> Applications –> Content
to the main pane. This can be done while creating a new page
or editing an existing page
or editing the layout of a site.

[image: image52]

	Edit the Content By Query portlet by hovering your cursor over
it, then click [image: pencil1] to edit the portlet.

[image: image53]

The form with the Edit Mode tab appears.

[image: image54]

To know the details about the fields in this form, see
here.

	In the Advanced tab, enter a valid query into the by query field to
get data that you want to display.

	Select a workspace where you want to get data.

	Click Save to complete adding the Content By Query portlet.

	Click [image: image55] to quit the Page Editor page and see the
displayed data.

Managing categories

As a web-contributors, you can easily work with categories in Sites
Explorer via the Add category and Manage Categories actions added to the
Action bar.

By default, these buttons are available in the Categories and Web views.
To know which drives have these views, see
here for more details.

Creating a new category

This function enables you to quickly create a new category in Sites
Explorer.

	Select a folder in which you want to create a new category.

	Select [image: Add category] on the Action bar to open the Add Category
form.

[image: image56]

	Enter a name for the category in the Category Name field.

	Click Save to accept creating the new category.

Assigning a category to content

You can assign available categories to content/document folders only.

	Select a content/document folder to which you want to assign a
category.

	Click [image: Manage Categories] on the Action bar.

The Add Category form appears.

	Select the Select Category tab to show the available categories.

[image: image57]

	Select a category tree for the content/folder.

	Click [image: green tick] next to Root Tree to add the category tree to
the content/folder.

Or/And click a category on the left, then click [image: green tick1]
corresponding to the child category on the right to add it to the
content/folder.

The categories added to the content/folder will be listed in the
Referenced Categories tab.

[image: image58]

Note

You can add many categories to content.

Viewing a category

Viewing a category allows you know which content is added to the
category and you can view it by double-clicking its name or do many
different actions in the right-click menu.

	Go to the drive which contains the category you have added. There
will be a list of categories available.

	Select your desired category. The content added to that category
will be listed.

[image: image59]

Note

To know which drives contain categories, see Categories in Content Administration.
When copying and pasting content in the category tree, a reference to the original content will be created. This reference is a symlink rather than a copy. This feature is used to preserve the disk space.

Removing a category from content

	Select content to which categories have been added.

	Click [image: Manage Categories] on the Action bar.

	Select the Referenced Categories tab.

	Click [image: trash can] that corresponds to the category you want to delete.

Creating content inside a category

In eXo Platform, you can create new content in any folders or directly
in a CLV with Incontext Editing. However, to facilitate the content
management, categories which are usually used to sort and organize
documents make your desired searches more quickly. Also, creating
content inside a category helps you manage and publish them effectively.

After creating a document, you should categorize it by adding it to a
category. Otherwise, documents should be created right in a category and
links to those documents will be automatically created in the category.
In eXo Platform, categories are stored in JCR.

Creating content in a category

	Click [image: image60] –> Content –> Sites Explorer on the top navigation
bar.

	Open the drives list, and select a drive that has categories, for
example, Collaboration.

[image: image61]

	Select a category where you want to add new content.

4. Click [image: image62] on the Action bar to create the new content. See the
Creating new web content
section to know how to add new content. The new content is stored in the
category as a symlink and also stored in also stored in another folder
depending on the target path configured while creating a category tree
by Administrator.

To view the content, simply click the Symlink.

[image: image63]

Managing content in a specific site

Web content is a key resource which is used for a site. Other resources
make a site more dynamic and animated by using layout, color, font, and
more. This section focuses on how to manage web content in a specific
site via the Sites Management drive which allows you to manage content
of all sites in the portal.

This section consists of the following topics:

	
	Creating new web content

	Instructions on how to create new web content in a specific site.

	
	Editing/Publishing/Deleting web content

	Instructions on how to edit/publish/delete web content.

Note

Only users who have the right to access the Sites Management drive can do it.

Creating new web content

	Go to the Sites Management drive, then select a site to which you want
to add web content.

	Select the web content folder on the left.

Note

In this step, you also can add new web content into another folders (documents and media folders) of a site but you are recommended to select the web content folder because:
- Managing web content of a site becomes more easily.
- You do not have to select many web content types in the list of document types. It makes adding new web content more flexibly.

	Click [image: image64] on the Action bar to open
a list of content templates,
including Illustrated Web Content and Web content.

	Select a template to present the web content by clicking one.

	Enter values in fields of the form.

	Click Save or Save & Close to save the content or Close to quit the
Add New Document form.

Tabs in the Add New Document form

	The Main Content tab

	Field

	Description

	Name

	The name of the web content.

	Language

	The language of the web content. At present, eXo
Platform supports 23 languages.

	Main Content

	The main content that you want to display when
publishing this web content.

	The Illustration tab allows you to upload an illustration that makes
the site’s content more attractive.

[image: image65]

Details:

	Field

	Description

	Illustration Image

	The path to an image which you want to upload into
a site. This image will be used like an
illustration of that site.

	Summary

	You can give a short description about the web
content because it will be displayed with the
illustration image when the web content is listed.
The main content will be shown when it is selected
to be viewed.

Uploading an image

	Browse a list of images on your local device by clicking the Select
File button, then select a specific location.

	Select an image in the list to upload.

	The Advanced tab includes two parts: CSS Data and JS Data.

Details:

	Field

	Description

	CSS Data

	Contains the CSS definition to present data in the
web content. You can optionally enter CSS data into
this field to specify the style.

	JS Data

	Contains the JS content to make the web content
more dynamic after being published. You can
optionally enter the JS content in this field.

When you create new content which is in draft, a new activity will be
created on your activity stream and on the Social Intranet homepage.
This activity shows the title [image: image66], summary (if any), type
[image: image67], version [image: image68] and current status [image: image69] of the
content, and the icon corresponding to the content type [image: image70].

[image: image71]

From the activity stream, you can:

	Click [image: image72] to view the content in a larger window.

	Click [image: image75] to edit the content directly into the Sites Explorer.

	Click [image: image73] to give your idea.

	Click [image: image74] to show your liking to the uploaded document.

	New comments will be automatically added to the activity when your
content has the following changes:

	The main content is edited [image: image76]

	A file is attached/removed to/from the content [image: image77]

	A tag is added/removed to/from the content [image: image78]

	A category is assigned/removed to/from the content [image: image79]

	Your comment is added to the content from the Sites Explorer
[image: image80]

[image: image81]

	Besides, the content of the activity will be updated with comments
when there are the following changes:
- The title and/or summary of the content [image: image82]
- The status of the content [image: image83]
- The number of version of the content is updated without a comment

[image: image84]

When the content is deleted, the activity is also removed from the
activity stream without any comment or notification.

Editing/Publishing/Deleting web content

Editing web content

This function is used to edit web content in a specific drive of an
existing site.

	Access the folder of a site which contains the web content that you
want to edit.

	Select the web content by double-clicking it in the left tree or in
the right pane. The detailed information of web content will be
viewed in the right pane.

	Click [image: Edit Document] on the Action bar to show the form to edit
the selected web content. This form is similar to that of creating a
new document.

	Make changes on current values in the fields of this form.

	Complete editing the selected web content by clicking Save or Save &
Close.

Note

When you click [image: Edit Document1], the web content will be auto-locked for your editing. After finishing, the content is back to the unlock status. You can manage “Locks” in the Unlocking a node section.

Publishing web content

This function helps you publish web content that you have added to the
web contents folder in Sites Explorer.

See the Publication process
section to know how to publish web content.

Deleting web content

This function is used to remove web content from the web contents folder
of a specific site’s drive.

	Right-click the name of the web content that you want to delete, then
select Delete from the drop-down menu.

	Click Delete to accept your deletion in the confirmation message.

Adding translations to content

This function enables you to add multiple languages for content. This
action is similar to adding a language.

	Select a document to which you want to add the translation. For
example, select a web content in English.

[image: image85]

	Click [image: Add Translation] on the Action bar to open the Add
Translation form.

[image: image86]

	Click Select Document to browse to the target content that has a
different language with the first content. For example, the Web
Content version in French.

[image: image87]

	Click Save on the Add Translation form.

	Select the document to which you have added the translation, then
click the [image: image88] button on the Filter bar.

You will see the available languages for the selected document. Click
the language on this pane to view the document in the corresponding
language version.

[image: image89]

Using WebDAV

In eXo Platform, you can use WebDAV to perform actions on a website easily,
quickly and efficiently without accessing it directly on web browsers.
Each website managed by WebDAV will be displayed as a folder.

To manage site content using WebDAV, follow either of two ways:

The first way

You need to connect to your WebDAV clients. See
WebDAV for more details.

It is assumed that you want to access the ACME site using WebDAV, simply
use the URL:
http://mycompany.com:port/rest/private/jcr/repository/collaboration/sites/acme [http://mycompany.com:8080/rest/private/jcr/repository/collaboration/sites/acme]
into the address bar. After successul login, the ACME site appears as a
folder.

[image: image90]

The second way

This way can be done through Sites Management.

	Click [image: image91] on the top navigation bar, then select Content –>
Sites Explorer from the drop-down menu.

	Click the Show Drives button, then select Sites Management.

[image: image92]

You will see all sites listed in the left sidebar.

[image: image93]

	Right-click your desired site to view with WebDAV, and select
Download and Allow Edition from the menu.

The selected site will be shown in WebDAV.

[image: image94]

In this view, you can access documents in the directories that are
linked to the web server.

Adding new content to a specific site

This function enables you to copy web content, such as an .html file,
from your local device to a web content folder of a site.

	Access a site via WebDAV, then go to a web content folder of the
site.

	Copy the web content on your local system into this folder.

The copied file will be converted to web content that is viewable by
WebDAV automatically. The content is converted to a directory containing
CSS, documents, js and media.

After the new content is added, it can be viewed as a folder in WebDAV
or as a page using a web browser.

Deleting web content

This function enables site administrators to delete web content files
separately or in batches.

	Navigate to the folder that contains the content you want to remove.

	Right-click the content files or directories (hold the Ctrl key to
select multiple files at once), and select Delete from the drop-down
menu.

The selected files will be removed from the site.

Managing content with Fast Content Creator

The Fast Content Creator portlet in PRODUCT enables you to quickly
create and save a new document with only one template in a specific
location without accessing Sites Explorer. This helps you save a lot
of time when creating a new document.

To use the Fast Content Creator portlet, you need to add it to a
specific page first by dragging and dropping the Fast Content Creator
portlet from Page Editor –> Applications –> Forms to the main
pane. This can be done when creating a new page
or editing an existing page
or editing the layout of a site.

[image: image95]

Configuring Fast Content Creator

	Hover your cursor over the portlet, then click [image: pencil2] to edit the
portlet.

[image: image96]

The form with the Edit Mode tab appears.

[image: image97]

Details:

	Field

	Description

	Location to Save

	Selects the location to save documents or
messages.

	Select Template

	Selects a template for the document. There are
different input fields corresponding to each
selected template.

	Custom Save Button

	Changes the label for the “Save” button.

	Custom Save Message

	Changes the content of custom message that informs
you have just saved a document.

	Redirect

	Allows you to redirect the path in the Redirect
Path field.

	Redirect Path

	Shows a path to which you will be directed after
clicking OK in the confirmation message.

	The Action pane

	Adds an action to the document and view actions
added to the document.

	Select a specific location to save documents.

i. Click [image: magnifying glass3] next to the Location to Save field to
open the Select Location form.

[image: image98]

	ii. Select the parent node in the left pane, then click

	[image: green tick3] in the Add column to select the child node in the right
pane. After being selected, this location will be displayed on the
Location to Save field. Created documents will be saved in this
location.

	Select a template which is used to create a new document.

	Change the label for the Custom Save button, and the content for
Custom Save Message.

	Tick the Redirect checkbox if you want to redirect to the path in
the Redirect Path field after clicking OK in the confirmation
message.

	Add an action to the document by clicking Add to open the Add Action
form. Do the same steps in the Adding an action
section.

	Click Close to quit the form to edit the configuration of
Fast Content Creator.

	Click [image: green tick3] to save all your changes.

The fast content creator portlet will be shown and allows you to create
content quickly. Here is the added page containing a fast content
creator for the Accessible Media template.

[image: image99]

Creating/Viewing content

Creating new content

	Go to the page which has the fast content creator portlet.

	Fill values in all the fields in the page.

	Click a button in the page to accept creating the new document. A
message appears to let you know that the document is created
successfully at the location selected in the Location to Save field.

Note

The button name is different, basing on the Custom Save Button field.

Viewing content

After creating a new document by Fast Content Creator, you can view
it as follows:

	Go to Sites Explorer.

	Select the drive and the path that you established in the
configuration of Fast Content Creator. You will see this
document.

Managing category navigation

The category navigation gets rid of long URLs when you view content
and enables you to see published documents or web content in specific
categories in one page. Thanks to the symbolic link, no matter where the
object physically resides, the database can retrieve it. In addition,
the relations amongst shortcuts can be managed. Now, you can view
documents or web content in the Content List Viewer easily.

Accessing the category navigation

	Go to Features on the Left Navigation bar

[image: image100]

	The left pane lists all the categories containing documents or web
content.

	The right pane displays the documents selected in the left pane.

	Select a category that you want to view on the left. The selected
category will be shown on the right (only documents or web content
published are shown).

[image: image101]

Configuring Category Navigation

Only contributors and administrators can configure the Category
Navigation via the Content List portlet as follows:

	Open News page on the Navigation bar.

	Click Edit –> Page Layout on the top navigation bar.

The page which allows you to edit the Content List portlet will
appear.

[image: image102]

	Click [image: pencil4] to open a form with the Edit Mode tab, allowing you
to edit the portlet.

[image: image104]

	Click [image: plus icon] to select the path of a category which restores
content you want do display.

The Folder Browser form is displayed. Click a folder on the left pane
and select its sub-folder.

[image: image105]

	Edit some fields in the Display Settings tab as you want. See more
details in the Content List Preferences
section.

	Select the Advanced tab to set up some properties for the portlet.
See more details here.

	Click Save to accept saving the configuration for the Category
Navigation portlet.

	Click Close to quit the form.

9. Click [image: image106] on the Page Editor form to finish editing the Content
List portlet.

Note

In the Edit Mode tab, some options are disabled.

Managing SEO

SEO (Search Engine Optimization) allows you to improve the visibility of
your web pages and web content in the major search engines (such as
Google, Yahoo, Ask, Bing, and more) via the search results. Therefore,
it is very important for the user to maximize their web pages and
content’s position in the search engines. In eXo Platform, the SEO
Management feature is provided to meet this target. By using SEO
Management, you can easily manage the SEO data of web pages and web
content.

Managing the SEO data

	Open a page or content that you want to edit the SEO metadata.

	Open the SEO Management form by clicking Edit –> Page –> SEO on
the top navigation bar.

[image: image107]

Depending on your SEO management for a page or content, the content of
the SEO Management form will be different.

	The SEO Management form for content is as follows:

[image: image108]

	The SEO Management form for a page is as follows:

[image: image109]

Details:

	Field

	Description

	Title

	The title of the current page. When changed, the
new title will be updated to the <title> tag of
the head element of the page. The Title element
of your web page is very important, it should
ideally optimize the SEO with a small number of
keywords or key phrases.

	Description

	The description of your page/content. This
description will be seen in the results list of
search engines.

	Keywords

	The most important terms to describe the page,
separated by commas. By using proper keywords,
other users can find out your page/content via
search engines more easily.

| search engines more easily. |

	Sitemap

	Allows you to see pages of the sites in the
tree-like structure.

	Frequency

	Shows how often pages are updated on the site.
Also, setting your frequency levels tells the
search engines which pages should be crawled over
other pages. The frequency levels include: Always,
Hourly, Daily, Weekly, Monthly, Yearly and Never.
If you set “Never” for the frequency level, meaning
that this page never gets updated, so search
engines will move onto other pages that get updated
more frequently.

	Priority

	Allows search engines to search the page with the
higher priority level first. The acceptable value
in this field is from 0 to 1. In which, 0 is the
lowest priority level and 1 is the highest.

	[image: image110]

	Allows you to add the localization for SEO
metadata. You can choose the language from the
drop-down list.

	[image: image111]

	Allows you to remove the SEO metadata for a
respective language.

	[image: image112]

	Gives the meaning or requirement of each field.

	Fill out all fields in this form.

	Click Save to finish creating SEO metadata.

Note

	If no language has been selected, the default portal language will be used after saving.

	[image: image113] means that the SEO information is empty.

	[image: image114] means that the SEO information has been updated but some information are not filled out yet.

	[image: image115] means that the SEO Management form is filled out with the full SEO information.

	[image: image116] means that the SEO Management feature is disabled.

Searching for content in a site

This section consists of the following topics:

	
	Searching for content

	Instructions on how to search for content from the front page of a
website.

	
	Editing the Search portlet

	Instructions on how to change the display of search results.

The Search function allows you to quickly search for any content in
the system with a keyword from the front page, even if you do not log
in. However, the number of the search results displayed depends on your
role.

For example, if you do not log in, you only see the search results that
are published.

Searching for content

	Enter a keyword into the search box and press Enter.

The search results matching with your keyword are displayed in the
search page:

[image: image117]

In case of no search results matching the keyword, the search page is
displayed as below:

[image: image118]

Details:

	In the Search form, you can enter another keyword and set the search
scale.

	Press Enter, or click Search to start searching.

Editing the Search portlet

Editing the Search portlet allows you to change the display of search
results.

	Open the Search page as in the Searching for content
section.

	Open the Edit Mode of the Search portlet by following one of two
ways:

	The first way

Click Edit –> Content on the top navigation bar, then click
[image: pencil4].

	The second way

Click Edit –> Page –> Layout on the top navigation bar. The Page
Editor will be displayed.

	
	Hover your cursor over the Search Result portlet and click

	[image: pencil5] to edit the portlet.

[image: image119]

The Edit Mode of the Search portlet appears.

[image: image120]

Details:

	Field

	Details

	Items per Page

	The number of search results displayed in each
page.

	Page Mode

	The way to display the search results. There are
3 options:

	None: Only the first page of search results is
displayed in the search page.

	More: When you click the Search button, the
first page of search result is displayed. The
difference from the None mode is that, there
is a More button allowing you to see more
search results. When clicking this button, new
search results are appended to the current
search result page like Twitter or Facebook
behavior.

	Pagination: In this mode, the search results
are divided into many pages (for example, 1,
2, 3 and Next). You can navigate to another
page by clicking the page number or Next in
the bottom of the Search portlet to view more
results.

	Search Form Template

	The template of the Search form.

	Search Result Template

	The template for displaying the search results.

	Search Page Layout
Template

	The layout of the Search portlet.

	Base Path

	The page where you can see the content of a
search result.

	Edit your desired portlet and click Save to accept your changes.

Printing content

Users can easily print any content in a site by following these steps:

	Click the name of the content which you want to print to view all the
content.

	Click the Print button. The Print Preview page will be displayed on
another tab.

	Click Print to print the content of this page, or Close to close this
tab without printing.

Searching In eXo Platform

In this chapter, you will learn about the search feature in eXo Platform.
You can search for content via various ways:

Searching in Social Intranet

Introduction to the Search function in Social Intranet where you
can find out everything without accessing each specific
application.

Refining your search

Details of searches that allow you to search for specific content
types just within separate applications.

Searching in Social Intranet

This section consists of the following topics:

	Sorting and filtering your results

How to further restrict the search scope to streamline the returned results.

	Customizing search settings

How to change settings for Search portlets and manage content types
displayed in Search portlets.

Besides the search feature in each application, PRODUCT provides a
robust search tool which allows you to search for all types of content
right in Social Intranet. With this new search feature, you are able to
search for everything without accessing each specific application. This
means the productivity will be much enhanced as you can search for any
content at any location with just few clicks away from the search box on
the navigation bar.

Performing quick search

	Click [image: image0] on the top navigation bar to open the search box.

	Enter your search term into the Search box.

[image: image1]

This search displays quick results in the drop-down menu. These results
are grouped by their types: Files, Documents, Wiki, Pages, Discussions,
People, Spaces, Events, Tasks, Questions and Answers. By default, the
quick search returns results for content located in the current site
only.

	Select your desired result from the drop-down menu to directly access it;
Or, hit the Enter key, or click [image: image2], or click See All Search
Results to view all results in the search main panel.

[image: image3]

Preview documents on search results

After having the search results list that corresponds to the keyword
used in the search box, you can preview an element from that list either
in Documents Application
or with the document viewer. It is also possible
to download it.

	To preview the selected document in document viewer, you simply need
to click on the document’s icon.

[image: image16]

	To preview the selected document in Documents Application, you simply
need to click on the document’s link or in the button Open in
Documents after previewing it in document viewer.

	To download the selected document, you need to preview it with the
document viewer then click on the Download button.

[image: image4]

Sorting and filtering your results

In the search main panel, you can further restrict the search scope to
streamline the returned results.

Sorting your results

By selecting the Sort By drop-down menu, you can narrow your search
results.

[image: imageSearch]

	Relevance: This type is set by default for search and in the
descending order. This means the search results will be sorted by the
connection with the entered terms. The top result is one which has
the closest relevance with the entered term.

	Date: This type displays results by the last created/modified date in
the descending order.

	Title: This type displays results by their title based on the
ascending (alphanumeric) order.

Note

If you select each Sort option again, the order type will be changed. This means “ascending” is changed into “descending” and vice versa.

Filtering your results

The Filter By panel is displayed on the left side, allowing you to
control the search range by sites and content types.

[image: image5]

	All Sites: A list of sites on which the search action is performed.

	All Content Types: A list of content types by which the search action is performed.

By default, all checkboxes are ticked. To exclude some result types from
the results page, simply untick the corresponding checkbox.

Customizing search settings

If you are an administrator, you can change settings for Search portlets
and manage content types displayed in the Search portlets easily.

There are 2 Search portlets you can customize their settings, including:
Search main page and Search textbox.

Changing settings for Search main page

To change settings of the Search main page portlet, you have to go into
its Edit mode.

	Open the Search main page by doing quick search.

	Select [image: image6] –> Page –> Edit Layout.

The Page Editor is opened.

[image: image7]

3. Hover your cursor over the Search portlet and select [image: image8] to
open Search settings in the Edit Mode tab.

[image: image9]

In which:

	Field

	Description

	Results per page

	Specifies the number of results that are retrieved
each time a search is run. The value “10” is set
by default.

	Search in current
site only

	Scopes the search to the current site. If being
checked, the All Sites filter is not displayed in
the Filter By panel.

	Hide search form

	Hides the search field and search button.

	Hide facets filter

	Hides the whole Filter By panel.

	Search In

	Specifies the content types that the Search
portlet must search in.

	Change the Search settings, then click Save Settings button and click Close to quit the form.

	Click [image: image10] to quit the Page Editor and back to the Search page.

Changing settings for Search textbox

1. Open the Page Editor, then drag and drop the Quick Search portlet (of the Search category) from Page Editor
to the main page body.

Note

If you do not see the Quick Search portlet in the Page Editor, you need to import it as described in Importing portlets and gadgets.

	Hover your cursor over the Quick Search portlet and select
[image: image11] to see the Quick Search settings in the Edit Mode mode.

[image: image12]

In which, “Results per Type” specifies the maximum number of results
retrieved for each content type. The value “5” is set by default.
Click here for more details about fields.

	Change the Quick Search settings, then click Save Settings and click
Close to quit the form.

	Click [image: image13] to quit the Page Editor.

Managing content types in Search portlets

In eXo Platform, administrators can use the Search Administration
page to enable or disable various content types on which your search is
based.

	Click [image: image14] –> Content –> Search Administration

[image: image15]

In which:

	Field

	Description

	Content Type

	The type of searchable content.

	Description

	The quick description of each content type.

	Action

	The action to disable/enable each content type. When
disabled, a content type will no longer appear in both
search results and Search settings.

	Enable/Disable your desired content type by clicking the
corresponding button in the Action column.

Refining your search

This section instructs you how to search in specific applications of
eXo Platform, including:

	Searching for spaces
Steps to search for spaces by name/description or by alphabets.

	Searching for contacts
Steps to search by name, position and skills, or by alphabets.

	Searching for documents
Steps to do quick and advanced searches for your document.

	Searching for posts and topics
Steps to do quick and advanced searches for posts and topics in Forums.

	Searching for Wiki pages
Steps to search for Wiki pages.

	Searching for events/tasks
Steps to perform quick and advanced searches for events in Calendar.

Searching for spaces

In the Social Intranet homepage, you can do a quick search for your
desired space from the list of spaces where you are managers or members
right in the MY SPACE panel.

[image: sidebar]

Or, you can search in the Spaces application that helps you easily find
spaces from one of the tabs in the Space navigation.
To do this, click the MY SPACES link, or click Join a space on the left
panel to open the Spaces page first. After accessing your desired space
tab, you can search for spaces by Name and Description from the
Search textbox or by Alphabets.

[image: image17]

Searching by name/description [image: image18]

	Enter your search key into the Find Space field.

	Press the Enter key.

Only spaces where their names or descriptions contain the Search key will be listed in the Spaces Found panel.

Searching by alphabets [image: image19]

Simply click a specific letter. Only spaces where their names start with
your selected alphabet are listed in the Spaces Found pane.

Searching for contacts

This function allows you to find your desired contact quickly by:

	Searching by name, position, and skills

	Filtering by first letter

	Select People in the left panel to be redirected to the People
Directory page.

[image: image20]

Here, you can see all users who are active in eXo Platform.

	Select the search criteria:

	Search by Name [image: image21]: Enter the contact name you want to
search into the Search by Name field. When you type, a drop-down list
of contact names containing your entered letter appears for you to
select.

[image: image22]

	Search by Position [image: image23]: Enter the position of the contacts
you want to search by.

	Search by Skills [image: image24]: Enter the skill of the contacts you
want to search by.

	Hit the Enter key, or click Search to find your desired contacts.

	If you filter by first letter [image: image25],
only contacts whose last names start with the search letter are
returned.

	The search results are also arranged to the alphabetical order of
last names.

Tip

	You can combine more than one search type (by name, by position and by skills) at the same time to enhance your search results.

	You can select a tab from the People Directory page to narrow the search scope.

	The search engine is tolerant to typos, meaning it can find results even if you searched with wrong accent or missed a letter in the name you’re looking for.

Searching for documents

To search for documents only, you first need to select Documents from
the left panel. You are then redirected to the Documents page. Here, you
can perform the search types:

	Quick search

	Advanced search

	Saved queries

Quick search

With the quick search, you can directly type a search term in the search
textbox. All documents, whose keywords are matched with the search term,
are retrieved and listed in the results form.

	Enter a keyword into the search textbox.

[image: quicksearch]

	Click [image: image26] to perform your search; Or, press the Enter key.

The search results will be displayed right in the main view. The search
results are empty if no document contains the search keyword.

[image: image27]

In which:

	Fields

	Description

	Type

	Groups the content by its type together. The ascending
order is set by default. By clicking Type, the order type
will be changed into descending, and vice versa.

	Name

	Displays the document content which matches with your
search term.

	Score

	The appearance frequency of your search term in the
content. The higher score is, the more your search term
appears in the content.

	Action

	Two actions you can do the content, including:

	Click [image: image28] corresponding to the document you want
to view;

	Or, click [image: image29] to go to the folder which contains
the relevant document.

Refine quick search using tags

You can refine the search results by selecting one or many documents tags.

This allows you to display in the search results documents:

	Containing the used keyword for search.

	Tagged by the selected tags.

For that purpose, proceed as follows:

	Ensure that the sidebar is diplayed in left menu of the documents
application, if not refer to this link
to display it.

[image: image30]

	Click [image: image31] to display all the used tags for documents.

[image: image32]

	Select one or many tags to refine the search results.

[image: image33]

Note

To be able to refine your search using tags, you should add tags when uploading/adding contents and files to the documents application, otherwise, the tag cloud will be empty.

Advanced search

	Click [image: image34] on the sidebar. To follow this way, you need to
enable sidebar first.

[image: image35]

	Click [image: image36] to open the Advanced Search form.

[image: image37]

The tabs in this form offer different search functions:

	Searching by Name

	Searching with constraints

	Searching by creating a new query

	Searching by existing queries

Searching by Name

Use the Searching by Name tab to search nodes by name as follows:

	Enter the exact name you wish to search in the Content Name field.

	Click Search.

	Results will return with the message No results found if there is no content with the entered name.

	Results will be returned in the Search Results tab if the requested name is found.

Searching with constraints

This search enables you to search with more constraints to limit the
returned results.

Extra search constraints are entered in the Advanced Search tab of
the Advanced Search form.

[image: image38]

The Current location field is not editable. It shows the path
selected to search.

	Enter search terms in the A word or phrase in content field.

	Select the Operator:

	Select And operator to only return results that meet both the
search terms and the entered constraints (see Step 3).

	Select Or operator to return results that meet either the
search terms or the entered constraints (see Step 3).

	Click Show/Hide Constraint Form to add more constraints.

A further constraint options window will appear.

[image: image39]

In which:

	Item

	Description

	[image: image40]

	Adds more than one constraint with either of two operators
(And and Or).

	[image: image41]

	Adds a constraint to search by a property with specific
values.

	[image: image42]

	Adds a constraint to search by a property that contains one
of the word in the keyword.

	[image: image43]

	Adds a constraint to search by a property that does not
contain the keyword.

	[image: image44]

	Adds a constraint to search by a duration of date (created,
modified).

	[image: image45]

	Adds a constraint to search by a document type, including
File, Article, Podcast, Sample node, File Plan, Kofax.

	[image: image46]

	Adds a constraint to search by categories.

	[image: plus]

	Adds a value/property.

	Select the constraint operator (And/Or).

	Add the required constraints using one of the following methods:

	Adding a constraint for exact values

	Adding a constraint including or excluding values

	Adding a constraint by date

	Adding a constraint by document type

	Adding a constraint by category

	Click Add to add any/all activated constraints.

The constraints will be converted to an SQL query and displayed in
the search form.

[image: image47]

	Remove unnecessary constraints by clicking [image: image48]

	Click Search to launch the search. Results will be displayed in the
Search Results tab.

8. Click Save and put a name for this search configuration if you want
to save it to use in future.

The followings are methods to add the required constraints.

Adding a constraint for exact values

	Tick the checkbox that corresponds to the constraint you want.

	Enter the property you want to locate, or click [image: image49]

A list of possible properties appears.

[image: image50]

	Select a property from the list and click Add. The selected property
will populate the Property field.

	Define the property value to search for by entering a value into the
Contain Exactly field, or click [image: plus3].

The Filter Form with all pre-existing values for your selected
property will appear.

	If the value you require is in the list, select it and click Select.

	If the value you require is not in the list, enter it in the Filter field and click [image: corresponding]. The value will populate
the Contain Exactly field of the constraints form.

[image: image51]

Adding a constraint including or excluding values

	Tick the checkbox corresponding to the Contain or Not Contain
constraint, as appropriate.

	Enter the required property in the Property field, or click
[image: image52] (refer to Step 2 in the Adding a constraint for exact values
section for more information).

	Enter the required values in the Contain or Not Contain fields.

Adding a constraint by date

	Tick the checkbox beside the field with the drop-down menu (below the
Property entries).

	Define the search condition from the drop-down list (Created/
Modified).

	Click the From field.

A small calendar will appear.

[image: image53]

	Select the date you want to use as a constraint.

	Repeat the above steps for the To field.

The selected dates will populate the From and To fields in the
Add constraint form.

Adding a constraint by document type

	Tick the checkbox beside the Document Type field.

	Enter the document type you want to search, or click [image: image54] to
open a list of document types.

[image: image55]

	Tick the checkbox corresponding to your desired document type, then
click Save.

The selected document type will populate the Document Type field.

Adding a constraint by category

	Tick the checkbox beside the Category field.

	Enter the category you want to search, or click [image: plus2] for a list
of categories.

	Click [image: image56] that corresponds to your desired category.

The selected category will populate the Category field.

Searching by creating a new query

You need knowledge of the structure of query statements to configure a
search using the parameters on the New Query tab.

[image: image57]

	Enter a unique name for this query in the Name field.

	Select a query type from the drop-down menu: SQL or xPath.

	Enter a query statement.

	Click Search to perform the search and display the results in the
Search Results tab; Or, click Save to save the search query to the
Saved Query tab.

Searching by existing queries

This tab lists all saved search queries that you have access rights to
use.

[image: image58]

	Click [image: image59] to perform the search. You will see results in the
Search Results tab.

	Click [image: image60] to edit the query statement. The query form will
appear like when creating a query
(see the Searching by creating a new query
section); however, you cannot edit the name of the saved search.

	Click [image: image61] to delete a query (provided you have the access
rights to that query).

Searching with saved queries

Do the followings to perform a search with saved queries:

	Click [image: image62] on the sidebar to see the list of existing queries.

[image: image63]

	Launch, modify or delete the queries as required (see the Searching by creating a new query
section for more information).

[image: image64]

	Filter results with the entries in the All Items and/or
Filter by Type panes on the left of the tab. Items matching the
selections will appear in the right pane.

	Click [image: image65] to view the file or click [image: image66] to go to the file location.

Searching for posts and topics

You can do a Quick Search or an Advanced Search
anywhere in the Forums application, right on the homepage or inside
each specific forum or topic that makes it easy to find the expected
information.

Quick search

With Quick Search, users can directly type a search term in the
textbox. All the categories, forums, topics and posts that have the
keyword matching the search term will be quickly displayed in the Search
Result form.

For example:

	The Search function on the main bar to search for items related
to categories, forums, topics and posts.

[image: image67]

	The Search function inside one specific forum to find topics and
posts in the forum only.

[image: image68]

	The Search function inside one specific topic to find posts
related to the topic only.

[image: image69]

Quick search

	Enter a search term into the relevant search textbox.

	Click Search or press the Enter key to perform your search.

Depending on your selected object, the results which contain the
matching keyword will be displayed in the Search Result form.

Advanced search

The Advanced Search allows users to make a search with particular
criteria corresponding to the object you want to find.

Performing advanced search

	Click Advanced Search in the result page if your search with the
search box on the User bar;

[image: image70]

Or, click Advanced Search link in the forum/topic search pop-up.

[image: image71]

Based on the criteria you want to search, such as category, forum or
post, the search criteria will be changed accordingly.

	Enter the search criteria.

	Click Search to do search. Also, click Clear Fields to reset the
inputted values.

Matched results will be shown in the Search Result form. There will be
an alert message when there is no object matching with the search
criteria.

Finding in categories

Select Category from the Search in drop-down menu.

[image: image72]

In which:

	Field

	Description

	Terms

	The search keyword.

	Scope

	The search scale. With the “Full” option selected,
returned results are those with both titles and
content matching the keyword. With the “Title” option
selected, returned results are those with titles
matching the keyword.

	Username

	Filters search results by the category creator. Input
the name manually, or click [image: image73] to select users
from a specific group.

	Created between -
and

	Filters search results by categories created within an
interval.

	Moderator

	Filters search results by the category moderator.
Input the name manually, or click [image: image74] to select
users from a specific group.

Finding in forums

Select Forum from the Search in drop-down menu.

[image: image75]

In which:

	Field

	Description

	Terms

	The search keyword.

	Status

	The status of the forums (“Locked” or “Unlocked”).

	State

	The state of the forums (“Open” or “Closed”).

	Posts

	Filters search results by the minimum number of posts in
the forum. Click and drag the slider bar to set the
number of posts.

	Topics

	Filters search results by the minimum number of topics in
the forum. Click and drag the slider bar to set the
number of topics.

	Moderator

	Filters search results by the forum moderator. Input the
name manually, or click [image: image76] to select users from a
specific group.

Finding in topics

Select Topic from the Search in drop-down menu.

[image: image77]

In which:

	Field

	Description

	Terms

	The search keyword.

	Type

	The type of the topic specified by the topic type name
and its icon. It can be selected from the existing
list.

	Status

	The status of the topics (“Locked” or “Unlocked”).

	State

	The state of the topics (“Open” or “Closed”).

	Created between -
and

	Filters search results by topics created within an
interval.

	Last Post between
- and

	Filters search results by the last post’s created date
in the topic.

	Posts

	Filters search results by the minimum number of posts
in the topic. Click and drag the slider bar to set the
number of posts.

	Views

	Filters search results by the minimum number of topic
views. Click and drag the slider bar to set the number
of views.

Finding in posts

Select Post from the Search in drop-down menu.

[image: image78]

In which:

	Field

	Description

	Term

	The search keyword.

	Scope

	The scale for searching. With the “Full” option
selected, returned results are those with both title
and content matching the keyword. With the “Title”
option selected, returned results are those with post
titles matching the keyword.

	Username

	Filters search results by the posters’ usernames.
Input the name manually, or click [image: image79] to select
users from a specific group.

	Created between -
and

	Filters search results by posts created within an
interval.

Searching for Wiki pages

	Enter a keyword into the search box.

[image: image80]

	Select your desired page from the drop-down menu. You will be
redirected to the selected page; Or, hit the Enter key to go to
the result page.

Note

If you are in the portal wiki, your quick search will be performed on all wiki spaces, otherwise it will only be performed on the current wiki.

Or, hit the Enter key to go to the result page.

The search results are displayed like the illustration below.

[image: image81]

If there is no result matched with the keywords, the search screen
informs no result for your search keywords.

Optionally, you can change your search scope by selecting another
location from the drop-down menu.

[image: image82]

Searching for events

This function allows finding existing events according to specific
search conditions easily. There are 2 search types:
Quick search and Advanced search.

Quick search

This function allows you to do a quick search with specific keywords in
all your events/tasks. All events having the text matching with your
search term will be returned.

	Enter a word in the Search field at the right corner of the toolbar.

[image: image83]

2. Hit Enter key to perform the search. The matching events will be shown
in the Search Result page.

[image: image84]

Advanced search

This function allows you to make a search with multiple criteria.

	Click Advanced Search on the Search Result page.

	Input your search criteria in the Advanced Search form.

[image: image85]

In which:

	Field

	Description

	Text

	The search term or keyword for searching.

	Calendar

	The calendar on which you want to perform your search.

	Category

	The category of event to conduct your search.

	Priority

	The priority of your needed events: Normal, High or Low.
If you leave blank in the field, your search will be
done to all priority levels.

	From Date

	Only the events having ‘To date’ greater than or equal
the date entered in the From Date field are listed in the
results form. You can click this field and select a date
from a mini calendar.

	To Date

	Only the events having ‘From date’ less than or equal to
the date entered in the To date field are listed in the
results form. You can click this field and select a date
from a mini calendar.

	Click Search to perform your search. All events matching with your
criteria will be listed in the results form.

Note

In the Search Result form, you can click an event to view it, or edit/delete an event by clicking [image: image86]/ [image: image87] at the bottom.

Note

	If you are searching for a recurring event using Quick search, notice that the search returns those that occur in 2 years in the future. This limit is to prevent an infinite result, so it does notimpact non-recurrences.

	In Advanced search, if you leave the To Date field blank, the 2-year limit is also applied. So you can search for occurrences later than 2 years by filling in that field.

Administering eXo Platform

This chapter is for administrators only who have the highest right
to administer eXo Platform via the following topics:

	Branding eXo Platform
Instructions on how to change your company logo and the color of
the top navigation bar in the portal.

	Notification administration
Instructions on how to enable/disable notification plugins.

	Customizing the look and feel of eXo Platform
Instructions on how to create and apply a global stylesheet into
a site.

	Editing eXo Platform
Instructions on how to edit certain aspects of eXo Platform, including
website content, pages and sites.

	Content Administration
The way to access the Content Administration page where you can
manage workspaces, drives, node types, metadata, templates, and
queries.

	WebDAV
Definition of WebDAV and its advantages, how to access a
workspace using various WebDAV clients (on a web browser or in an
OS window), and WebDAV restrictions.

	Managing your organization
Instructions on how to manage users, groups and memberships in
eXo Platform.

	Managing sites
In-depth instructions on how to create, edit and delete sites.

	Managing pages
Steps to add/delete a new page, and edit its properties and
layout.

	Managing permissions
Introduction to permission levels in eXo Platform, and how to set
permissions at various levels.

	Managing navigations
Introduction to navigation levels eXo Platform, and in-depth
instructions on how to perform various actions on navigation
nodes.

	Managing applications
How to manage categories, portlets and gadgets, and introduction
to management and monitoring gadgets in eXo Platform.

	Building an online community
How to enable users to register themselves, publish some
resources for anonymous access

Branding eXo Platform

eXo Platform allows you to easily brand eXo Platform by changing your company logo
and the color of the top navigation bar in the portal.

	Click [image: image0] –> Portal –> Branding on the top navigation bar.

The Branding page will be displayed:

[image: image1]

Details:

	The Select Logo pane: Uploads your company logo that must be in the
.png format.

	The Select Navigation Bar Style pane: Selects the navigation bar
style suitable to your logo. There are two styles available on the
portal, consisting of Dark which is default, and Light.

	The Preview pane: Displays the preview of the top navigation bar with
the currently defined logo and navigation bar style.

	Click Upload to browse and upload the logo from your local device;

Or, drag the logo from your local device and drag it into the current
logo preview in the Select Logo pane. This way is just done if your
browser supports the HTML 5 and the Drag and Drop function.

[image: image2]

	Click the box in the Select Navigation Bar Style pane and select one
style from the drop-down.

Your style selection will also make the color of fonts on the top
navigation bar change.

Tip

If your logo is light and colorful, you should select the Dark style. If it is darker, you should select the Light style.

	Click Save to accept your changes.

Notification administration

eXo Platform allows administrators to enable/disable notification
plugins in the administrative interface.

To do so, simply select [image: image3] –> Portal –> Notifications on the top
administration bar.

The Activity Notification Administration page will be displayed as
below:

[image: image4]

	Notification types: Enables or disables notification types
globally.

	Notification: Name and categories of the notifications.

	Title: Title of the notification that will be shown in the email.

	Enable: Enables or disables sending notifications types for
each corresponding notification type. Checking the option enables
the notofications channels, unchecking it disables it:

	Email Notifications: For sending emails notifications.

	Mobile Push notifications: For pushing pop up notifications in
mobile devices.

	On-Site Notifications: For sending On-site notifications.

	Name: Defines the display name of the email sender in the
From field.

	Address: Defines the email address of the sender in the From
field. It must be in the correct form, such as username@abc.com.

Note

	Once a notification type is disabled, it will disappear from the Notification Settings page of all users, and no new notification of this type is sent anymore.

	The My Tasks settings are available only if the Task Management add-on is installed.

Customizing the look and feel of eXo Platform

As a web-contributor or an administrator, you can easily customize the
look and feel of eXo Platform by editing the existing
Globalstylesheet.css file or creating a new global stylesheet and
applying it into the portal.

Global stylesheet is a shared one which is applied into your entire
site. Global stylesheets of eXo Platform are put into the css folder to
manage the stylesheet of your desired site. This section aims at showing
you how to create and apply your own global stylesheet through Sites
Explorer.

This section covers the following topics:

	Creating a global stylesheet
Detailed instructions on how to create, edit and rename a global
stylesheet.

	Checking the display
Steps to activate a global stylesheet and check its display.

Creating a global stylesheet

	Click [image: image5] –> Content –> Site Explorer on the top navigation bar.

	Select the Site Management drive in the drives list.

	Select a site in the Sites Management panel, for example, intranet,
then select the css folder.

	Click [image: image6] to open the CSS File form which allows creating a new
global stylesheet.

[image: image7]

	Enter the name of global stylesheet into the Name field, for example,
GlobalStylesheet_Orange.

	Set the value as “True” in the Active field to activate your global
stylesheet for your site. “True” is set by default when a new global
stylesheet is created. If you select “False”, your newly created
global style will be disabled.

	Input one positive integer into the Priority field, for example “10”.

	Define your styles in the CSS Data field. Here, you can directly
enter your CSS rules, or copy and paste them from your favorite text
editor.

For example, you can define your styles with the following
CSS:

.UIToolbarContainerDark .NormalContainerBlock .ToolbarContainer {
 background-color: orange;
 background-image: none;
 background-repeat: repeat-x;
 border-bottom: 1px solid #2C3440;
}

Click Save or Save & Close to save your newly created global stylesheet.
You will see your global stylesheet in the Sites Management panel.

[image: image9]

Note

	The values in both of the Active and Priority fields decide if your newly created global stylesheet is applied into
your site successfully or not.

	If the Active field is set to “True” in many global stylesheets, the system will automatically merge all the global
stylesheets into the ${site-name}/Default/Stylesheet-min-lt.css file of the css folder in the ascending order
and get the stylesheet with the highest priority.
Thus, after selecting “True”, to make sure that your stylesheet is applied, you need to pay attention to the priority
level so that the selected priority of your stylesheet is higher than those of other global stylesheets in the css folder.

	The default global stylesheet will be automatically created in the css folder when you create a new site.
However, this global stylesheet can be overwritten by either setting “False” for its Active field or setting the higher
priority for other global stylesheet than that of the default global stylesheet.

	When you want to create a common stylesheet to share for all sites in the portal, you should create one in the

Sites Management/shared/css folder. This stylesheet will be rendered and applied into your desired site when you
switch to it.

Editing a global stylesheet

Simply select your desired global stylesheet and click Edit on the
action bar, or right-click the file and select Edit from the drop-down
menu to open the CSS File form.

Renaming a global stylesheet

Simply right-click your desired global stylesheet in the Sites
Management panel, then select Rename.

Checking the display

You can have several global stylesheets in one site. To see differences
when applying various global stylesheets, for example,
GlobalStylesheet_Blue and GlobalStylesheet_Orange, do as
follows:

	Activate the GlobalStylesheet_Blue and GlobalStylesheet_Orange
files by turns.

	Open your desired site by entering its URL in the address bar, for
example, opening the intranet site: http://{domain-name}/portal/intranet.

Note

The two GlobalStylesheet_Blue and GlobalStylesheet_Orange should been added to /intranet/css folder.

	If you activate GlobalStylesheet_Blue, your site is as below:

[image: image10]

	If you activate GlobalStylesheet_Orange, your site is as below:

[image: image11]

Editing eXo Platform

If you belong to members of editor or administrator groups, you will see
[image: image12] on the top navigation bar. By clicking this button, you will
see a drop-down menu that allows you to edit content, pages and site
quickly.

[image: image13]

Editing a website’s content

Note

You can do this function only when the ACME add-on is already installed by your administrator. See here for how-to.

Simply click Content from the drop-down menu. The Edit mode will be
turned on. For more details, see Edit mode.

Editing a page

Hover your cursor over Page, then click:

	Edit Layout if you want to edit the page’s layout as stated in
Arranging the page layout.

	SEO if you want to manage SEO. See Managing SEO
for details.

	Add Page if you want to add a new page. See Using Page Creation Wizard
for details.

Editing a site

Hover your cursor over Site, then click:

	Layout to edit the site’s layout. See Editing layout
for details.

	Click Navigation to manage navigation. See Managing navigations
for details.

	Click Add Site to add a new site. See Creating a new site
for details.

Content Administration

This section covers the following topics:

	Working with Templates
Instructions on how to view, edit and delete the predefined templates
or add a new template.

	Working with Explorer
Instructions on how to manage drives, views, and tags.

	Working with Repository
Instructions on how to manage namespaces, node types and locks.

	Working with Advanced configuration
Instructions on how to manage with categories, queries, scripts, and
actions.

Only administrators and web contributors can access the Content
Administration page to manage all workspaces, drives, node types,
metadata, templates, queries, and more.

To access the Content Administration page, click [image: image14] on the
top navigation bar, then select ContentContent Administration from the
drop-down menu.

The Content Administration page will appear.

[image: image15]

From this page, you can access:

	Templates [image: image16]: Manage templates of documents, CLV and
metadata.

	Explorer [image: image17]: Manage views, drives and tags.

	Repository [image: image18]: Manage namespaces, node types and locks.

	Advanced [image: image19]: Manage categories, queries, scripts and
actions.

Working with Templates

When creating content in eXo Platform, you must set its properties.
Thus, each content needs to have a form to enter data for its properties
(called the Dialog template), and display the existing values
(called the View template). In the templates management, you are
able to view, edit and delete the predefined templates or to add a new
template.

From the Manage ECM Main Functions panel, select Templates.

[image: image20]

eXo Platform provides 3 available template types, including:

	Documents: Manages
view, dialog and CSS templates of document types.

	
	List: Manages Content List

	Viewer templates.

	
	Metadata: Manages view

	and dialog templates of metadata node types.

Document templates

In Templates, select Documents to open the Documents panel.

[image: image21]

The Documents templates are categorized into 3 sub-tabs that makes ease
for management. You can use default templates provided by PRODUCT in
each sub-type or define a new template.

	The Documents tab includes Contact Us, Product, Accessible
Media, Announcement, CSS File, HTML File, Javascript
File, Web Link, Illustrated Web Content, Web Content,
File, Accessible Breadcrumb, Accessible Navigation, and
Accessible Site Search Box.

	The Actions tab includes Add Metadata Action, Automatic
Versioning, Enable Versioning, Populate to Menu, and Add
Category Action.

	The Others tab includes Comments, Votes, and File
Content.

Note

	Contact Us and Product are for the ACME site, so these templates only appear when the ACME site is enabled.

	Accessible Breadcrumb, Accessible Navigation and Accessible Site Search Box are for the WAI site, so these templates only appear when the WAI site is enabled.

	Populate to Menu only appears in the list of Action templates when the ACME site is enabled.

Editing/Deleting a Document template

Editing a Document template

	Select the template type tab (Documents, Actions or Others).

	Click [image: image22] corresponding to your desired template in the Action
column.

The View & Edit Template form appears.

[image: image23]

	Make changes on the values of each tab, including:

	In the Template tab, you can edit the label of the template. The is
Document Template checkbox is selected by default when you select the
Documents tab. However, this checkbox is disabled by default when you
select the Actions or Others tab.

	In the Dialog tab, you can add a dialog, edit or delete an existing
dialog. Besides, you can set permission to use the dialog form for a
specific group and membership. Setting the * membership will allow
all users of the group to have this permission. For more details, see
Dialogs.

	In the View tab, you can add a view, edit or delete an existing view.
Besides, you can set permission to view the template for a specific
group and membership. Setting the * membership will allow all users
of the group to have this permission. For more details, see
Views.

	In the CSS tab, you can add a new stylesheet, edit or delete an
existing stylesheet.

Note

	You cannot delete the default dialog/view.

	You cannot change the dialog/view/CSS name.

	If you click Enable Versioning or Versioning activated checkbox, the edited dialog/view/CSS automatically increments one version after you have clicked Save. It is displayed at the Version column.

	After the dialog/view/CSS has been enabled versioning, you will see the Versions field and the Restore button at the bottom of the form. You can use Restore to roll back to a selected version.

Deleting a Document template

Simply click [image: image24] corresponding to the template you want to remove,
then select OK in the confirmation message.

Adding a new document template

	Select the template type tab (Documents, Actions or Others).

	Click Add Template at the bottom to open the Template Form window.

[image: image25]

Note

The is Document Template checkbox is selected by default when you select the Documents tab. However, this checkbox is disabled by default when you select the Actions or Others tab.

	Select the template type from the Name drop-down menu.

	Specify a name for the template in the Label field.

	Click [image: image26] next to the Permission field to open the Select
Permission dialog.

	Optionally, select the Dialog tab, View, and/or CSS and enter the
value in the input-text box.

	Click Save to create the template.

List templates

In Templates, select List to open the List panel. There are 3 types of
List (also called CLV) templates: Content, Navigation and Paginator.

[image: image27]

Editing/Deleting a List template

Editing a List template

	Click [image: image28] corresponding to your desired template in the Action
column.

The Edit List Template form appears.

[image: image29]

	Make any changes on fields: Content, Name, or change the template
type from the Template Type drop-down menu.

Note

You cannot change the Template Name field.

Deleting a List template

Simply click [image: image30] corresponding to the template you want to remove,
then select OK in the confirmation message.

Adding a new List template

	Click Add Template at the bottom to open the Add List Template window.

[image: image31]

	Add values to the Content, Name, Template Name fields and select the
template type from the Template Type drop-down menu.

Note

After creating your new List template, you cannot edit the Template Name field.

	Click Save to finish adding your new list template, or Reset to clear
your entered values.

Metadata templates

Metadata are information which describes, or supplements the central
data. When data are provided to end-users, the metadata allow users to
understand about information in details.

In Templates, select Metadata to open the Metadata panel.

[image: image32]

Viewing a Metadata template

Simply click [image: image33] corresponding to the metadata you want to view.

The Metadata Information form will open.

[image: image34]

Editing a Metadata template

	Click [image: image35] corresponding to your desired template in the Action
column.

The Edit Metadata’s Template form appears.

[image: image36]

	Change the required properties of the metadata.

Note

You cannot edit the metadata name.

	Click Apply to save all metadata changes.

Deleting a Metadata template

Simply click [image: image37] corresponding to the template you want to remove,
then select OK in the confirmation message.

Working with Explorer

From the Manage ECM Main Functions panel, select Explorer.

[image: image38]

Here you can manage:

	Views

	Drives

	Tags

Views

eXo Platform provides various drives for you to store and manage your content
efficiently. Each drive has some views that enable you to view data in
the drive in a particular way. Each view has some action tabs and each
action tab contains some functions.

eXo Platform supports you some ways to view nodes in a specific folder and
show actions of corresponding tab on the Action bar.

The number of view types depends on which drive you are browsing. In
Explorer, select Views to open the Views panel.

[image: image54]

Views in eXo Platform

All eXo Platform views are in the Views tab. Here, you can view, edit,
delete, and add new views.

Admin

[image: image55]

Icons

[image: image56]

List

[image: image57]

Categories

[image: image58]

Web

[image: image59]

To learn about differences between these views, see the following table:

	View names

	Default actions

	Default
templates

	Default permissions

	Admin

	Add Folder, Edit Document,
View Permissions, Manage
Actions, Manage Auditing,
Manage Relations, Show JCR
Structure, Upload, View
Metadata, View Properties

	List

	*:/platform/admini
strators

	Icons

	Add Folder, Edit Document,
Manage Versions, Tag Document,
Upload, View Metadata, View
Permissions, Vote, Comment,
Watch Document, Overload
Thumbnail

	Thumbnails

	``*:/platform/users`
`

	List

	Add Folder, Edit Document,
Manage Versions, View
Permissions, Tag Document,
Upload, View Metadata, Vote,
Comment, Watch Document

	List

	``*:/platform/users`
`

	Categori
es

	Add Category, Add Document,
Edit Document, View
Permissions, Manage
Categories, Manage
Publication, Approve Content,
Publish, Request Approval,
Upload, Tag Document, Vote,
Comment, Watch Document

	Content

	*:/platform/web-co
ntributors

	Web

	Add Category, Add Document,
Add Folder, Edit Document,
Manage Categories, Manage
Publication, Approve Content,
Publish, Request Approval,
Upload, View Permissions Tag
Document, Vote, Comment, Watch
Document, Add Translation

	Content

	*:/platform/web-co
ntributors

Viewing/Editing/Deleting a view

Viewing

Simply click [image: image60] corresponding to your desired view in the Action
column.

The View form will open.

[image: image61]

Editing a view

	Click [image: image62] in the Action column.

The Edit View form appears.

[image: image63]

	Edit the view properties.

	You cannot change the view name.

	If you select the Enable Version checkbox, this view automatically
increases to one version after you have clicked Save. It is displayed
at the Base Version column in the Views tab. Moreover, the View tab
in the Edit View form will have the Restore Version field which
allows rolling back a given version.

[image: image64]

	By default, the Hide explorer panel in side bar checkbox is only
selected for the Admin and List views. This means you can use
the Explorer tree to browse content from the side bar in the
Icons, Categories, and Web views by default. However, in
the Admin and List views, you need to deselect these
checkboxes first.

	Optionally, select the Action tab to do the following actions on the
tab.

	i. Click [image: image65] to edit one existing tab. You can add or remove
functions on the selected tab by selecting/deselecting the
corresponding checkboxes. Note that you cannot change the tab name.

	
	Click [image: image66] to delete an existing tab.

	
	Click Add to add a new tab to the view.

	Optionally, select the Permission tab to delete the existing
permissions or to add new permissions.

Note

Setting the * membership for a group will allow all users of the group to use this view when exploring documents.

	Click Save to apply all changes in the View tab.

Adding/deleting an action in a view

In the previous part Views in eXo Platform, we
described different views in eXo Platform with their defaut actions.

It is possible to edit the action bar of a view by following these
steps:

	Log in to eXo Platform as an administrator.

	Go to Administration Content Content Administration.

[image: image67]

	In Manage ECM Main Functions panel click on Explorer tab and
then click on Views item.

[image: image68]

	In the right panel, click on edit button [image: image69] of the view you
want to change, List view for example.

	In the Edit form, select Action tab then click on [image: image70].

[image: image71]

	A new popup appears, you can check to add or uncheck to delete
actions on the view.

[image: image72]

	Click Save to apply actions check/uncheck then save in the
Edit View form.

Deleting a view

Click [image: image73] corresponding to the view you want to delete, then click
OK in the confirmation message.

Note

You cannot delete a view which is in use.

Adding a view

	Click Add View located at the bottom to open the Add View form.

[image: image74]

	Specify the view name in the Name field that must be unique, and only
contains standard alphanumeric characters. This field is required.

	Select one template from the Template drop-down menu.

Note

Tick the Enable Version checkbox if you want to activate versioning for your view.

	Select the Action tab, then click Add to create a functional tab on
this view. This step is required.

The Add/Edit Tab form appears.

[image: image75]

	i. Enter the name for the tab in the Tab Name field.

	ii. Tick checkboxes corresponding to the actions you want to add
to the tab.

	iii. Click Save to finish creating a tab.

The newly created tab is displayed in the Tab column.

[image: image76]

	Select the Permission tab, then click Add to add permissions for the
view. It is required.

	Click Save to finish adding your view.

Explorer templates in eXo Platform

In the Views form, click the Explorer Templates tab to see a list of
Explorer templates. Currently, there are 3 Explorer templates which can
be used for views in eXo Platform, including: Content, List and
Thumbnails.

[image: image77]

Here, you can edit information, delete or add a new Explorer template.

Editing/Deleting an Explorer template

Editing an Explorer template

	Click [image: image78] next to the template you want to edit.

	Change the current template’s properties.

Note

	You cannot edit the template name.

	If you tick the Enabled Version checkbox, this template will automatically increase to one version after you have clicked Save. Then, the Edit Explorer Template form has more the Select Version field.

	If the template has at least two versions, the Edit Explorer Template form displays Restore at the form bottom that allows restoring to a selected version.

	Click Save to accept all changes.

Deleting an Explorer template

Click [image: image79] corresponding to the template you want to delete, then
select OK in the confirmation message.

Adding an Explorer template

	Click Add to open the Add Explorer Template form.

[image: image80]

	Input content of the template in the Content field.

	Input a name for the template in the Name field.

	Select a type for the template in the Template Type field.

	Click Save to accept adding this new template.

Drives

Drive is a shortcut to a specific location in the content repository
that enables administrators to limit visibility of each workspace for
groups of users. It is also a simple way to hide the complexity of the
content storage by showing only the structure that is helpful for
business users.

Currently, eXo Platform presets 6 drive types. However, the number of drives
you can access depend on your user role. Also, these drives use the
various views. See the following table to make distinction between
drives:

	Drives

	Workspace

	Permissions

	Views

	Personal
Documents

	collaboratio
n

	*:/platform/users

	List, Icons,
Admin

	**Collaboration*
*

	collaboratio
n

	*:/platform/administrat
ors, *:/platform/web-cont
ributors

	Wed, Admin

	Groups

	collaboratio
n

	*:${groupId}

	List, Icons

	Managed
Sites

	collaboratio
n

	*:/platform/administrat
ors, *:/platform/web-cont
ributors

	Web

	Powers

	collaboratio
n

	* :/platform/web-contri
butors

	Categories

	Trash

	collaboratio
n

	*:/platform/administrat
ors

	Admin

In Explorer, select Drives.

[image: image39]

Here, you can do certain actions on the drives as follows:

	
	Editing a drive

	[image: image40]

	
	Deleting a drive

	[image: image41]

	
	Adding a new drive

	[image: image42]

Editing a drive

	Click [image: image43] corresponding to your desired drive in the Action column.

The Edit Drive form appears.

[image: image44]

	Edit the properties as required.

	Click Save to commit your changes.

Note

The drive name cannot be edited in this form.

Deleting a drive

Simply click [image: image45] that corresponds to the drive you want to delete,
then select OK in the confirmation message.

Adding a new drive

	Click Add Drive at the bottom to open the Add Drive form.

[image: image46]

	Input a name for the new drive in the Name field that is required.

	Select a workspace for the drive from the drop-down menu by clicking
the Workspace entry.

[image: image47]

	Select the home path for the drive by clicking [image: image48].

	Browse an icon for the workspace by clicking [image: image49].

	Select permissions for groups that have access rights to this drive
by clicking [image: image50].

Note

Setting the * membership for a group will allow all users of the group to access this drive (via DocumentsShow Drives), regardless of their membership role.

	Select or deselect the various checkboxes to hide or show the drive
elements respectively.

[image: image51]

	Select the document type that will be created in this drive.

	Limit the node types shown in the left tree by clicking [image: image52]
next to the Allowance nodetype on left tree field.

	If you do not select the value for this field, this means all node
types are shown in the left tree. The “empty” value is converted into
* once you have clicked Save.

	If you define specific node types in this field, only these node
types are shown in the left tree.

	Select the Apply Views tab and select the view types you want to be
available in the drive.

[image: image53]

	Click Save to complete creating the new drive, or Refresh to clear
the form.

Tags

The Tagging function enables you to manage tag styles.

In Explorer, select Tags to open the Tags panel:

[image: image81]

The style of tag which is applied depends on the number of documents
using the tag. For example, if one tag is used twice, its style will be
font-size: 12px; font-weight: bold; color: #6b6b6b; font-family: verdana; text-decoration:none;.

Editing/Deleting a tag style

Editing a tag

The Tag Manager tab enables you to edit the existing tags.

	Click [image: image82] corresponding to the tag name which you want to edit
in the Action column to edit the tag style configuration. The Edit
Tag Style Configuration form appears which is similar to that of
adding a tag style.

	Change values in the fields, including Number of Occurrences and HTML
Style, except Style Name.

	Click Update to save new changes.

Deleting a tag

To delete one tag style, simply click [image: image83] in the Action column,
then select OK in the confirmation message.

Adding a tag style

	Click Add Style at the bottom to open the Edit Tag Style
Configuration form.

[image: image84]

In which:

	Field

	Description

	Style Name

	The tag name which cannot be edited after you have
added.

	Number of
Occurrences

	The number of documents assigned to a tag.

	HTML Style

	Includes font-size, font-weight, color, font-family,
and text-decoration.

	Asterisk (*)

	Indicates the fields are mandatory.

	Input values in the fields: Style Name, Number of Occurrences, and
HTML Style.

	Click Update to accept adding a new tag style.

Note

The format of valid range must be: a..b where ‘a’, ‘b’ are positive integers. You can use * instead of ‘b’ to indicate it is unlimited. For example, 0..2 (means 0-2 documents assigned to a tag), 10..* (means at least 10 documents assigned to a tag).
The HTML Style textbox cannot be empty. You can change values of font size, font weight, color, font family, and text decoration later.

Setting permissions on public tags

The Tag Permission Manager tab helps you set permissions regarding to
editing and deleting public tags.

[image: image85]

Setting permission to tag management

Here, you can click [image: image86] or [image: image87] or [image: image88] to add
permissions to the users, memberships or anyone respectively. Then,
click Add to add your selected permissions to the User or Group table.

Note

	If you set the * membership for a group, all users of the group will be able to manage tags, regardless of their membership role.

Deleting a permission

In the User or Group table, simply click [image: image89], then select OK in
the confirmation message.

Working with Repository

From the Manage ECM Main Functions panel, select Repository.

[image: image90]

Here you can manage:

	Namespaces

	Node types

	Locks

Namespaces

The namespace is a prefix in the node type name. It enables you to
create node types without fearing any conflict with existing node types.

In Repository, select Namespaces to open the Namespaces panel.

[image: image91]

Registering a namespace

	Click Register at the bottom of the Namespaces form open the Register
New Namespace form.

[image: image92]

	Enter the value for the Namespace Prefix field that is required.

	Enter the value for the URI field which must be unique and required.

Note

The namespace must not contain special characters, such as !,#,$,&,*,(,).

Node types

This function is used to control all node types in eXo Platform.

In Repository, select Node Types to open the Node Types panel.

[image: image93]

Viewing node types

	Click [image: image94] corresponding to the node you want to view. The View
Node Type Information form will appear.

[image: image95]

	Click Close at the bottom of the form to exit.

Adding a node type

	Click Add at the bottom of the Node Types page to open the
Add/Edit Node Type Definitions form.

[image: image96]

	Select a namespace for the node.

	Enter a name in the Node Type Name field. This field is mandatory and
its value must be unique.

Note

The name must not contain special characters, such as !,#,$,&,*,(,).

	Select a value for the Is Mixin Type field.

	True: This node is Mixin type.

	False: This node is not Mixin type.

	Select a value for the Orderable Child Nodes field.

	True: Child nodes are ordered.

	False: Child nodes are not ordered.

	Enter a value for the Primary Item Name field.

	Enter a value for the Super Types field. Clicking [image: image97] will
direct you to the Super Types tab for you to search for available
super types.

	Property Definitions: Lists all definition names of the Property
tab.

	Child Node Definitions: Lists all definition names of the Child Node
tab.

	Click Save to accept adding a new node type, or Save as Draft to save
this node type as draft.

Importing node types

	Click Import at the bottom of the Node Types page to open the
Import Node Type From XML File form.

[image: image98]

	Click Select File to upload a file.

Note

You must upload an XML or ZIP file. This file is in the node type’s format.

	Click the Upload button.

Note

If you want to upload another file, click [image: image99] to delete the file which has just been uploaded, then upload other files.

	Tick the checkboxes corresponding to the nodes that you want to
import.

	Click Import to complete importing a node type.

Exporting node types

	Click Export at the bottom of the Node Types page to open the
Export Node Types form.

[image: image100]

	Click Uncheck all if you do not want to export all node types. After
clicking Uncheck all, this button becomes the Check all button.

	Select nodes that you want to export by ticking the corresponding
checkboxes.

	Click Export in this form.

	Select the location in your device to save the exported node.

Note

You must select at least 1 node type to be exported. If you do not want to export the node, click Cancel to quit this pop-up.

Locks

In Repository, select Locks to open the Locks panel. The locked nodes
will be listed in the right panel.

[image: image101]

Unlocking a node

Simply click [image: image102] corresponding to nodes which need to be unlocked
in the Locked Node tab. The unlocked nodes will disappear from the
locked nodes list.

Managing locks

Administrators can manage and add the unlock permission for another
group and users in the Manage Lock tab.

Select the group on the Select Group panel and the corresponding
membership on the Select Membership panel. The selected group will be
listed in the Groups Or Users column.

	Click [image: image103] corresponding to the group which you want to remove
from the “Unlock” permission list, except the
*:/platform/administrator group.

Note

If you set the * membership for a group, all users of the group will be able to manage locks, regardless of their membership role.

Working with Advanced configuration

From the Manage ECM Main Functions panel, select Advanced.

[image: image104]

Here you can manage:

	Categories

	Queries

	Scripts

	Actions

Categories

A category can be understood as a classification practice and science.
It is used to sort documents, aiming at facilitating searches. The
category management includes adding, editing and deleting a category
tree.

In Advanced, select Categories. You will be directed to the
Categories panel as below:

[image: image105]

Here, you can do the following actions:

	Editing a category tree
[image: image106]

	Deleting a category tree
[image: image107]

	Adding a category tree
[image: image108]

Editing/Deleting a category tree

Editing a category tree

	Click [image: image109] in the Action column to open the Edit Category Tree
form.

[image: image110]

	Click [image: image111] in the Add column to add more category trees. The
mini Edit Category Tree form will appear.

[image: image112]

	Enter a category name in the Category Name field which is required.

Note

The category name must not contain more than 150 characters.

	Click Save to save the category name.

	Click Previous to return to the previous steps.

	Click Save to save all changes, or Previous or Next if you want to
edit more.

Deleting a category tree

Simply click [image: image113] in the Action column, then select OK in the
confirmation message.

Adding a category tree

	Click Add Category Tree to open the Add Category Tree form.

[image: image114]

	Enter the category tree name in the Name field which is required.

	Select the workspace you want to work with.

	Select the home path by clicking [image: image115]. The Select Home Path
form will appear.

[image: image116]

	Click [image: image117] next to Root Path if you want to select the root path
or;

	Click the arrow icon to go to the up level path and click the plus
sign to expand the folder in the left pane.

Click [image: image118] corresponding to the path that you want to select as
a home path.

	Click Next to select permissions for the category tree.

[image: image119]

	i. Click [image: image120] or [image: image121] or [image: image122] to set
permissions for user, membership or everyone respectively. Your
selected user or membership will be displayed in the User or Group
column.

Note

When ticking any permissions above (Read, Add Node or Remove), if you set the * membership for a group, this permission will be granted to all users of the group, regardless of their membership role.

	ii. Check the right options for the selected user to membership:

Note

Ticking only Add Node Right or Remove Right means that Read Right is selected automatically.

	Click Save to save all values, or Reset to change values that have
just been set. After clicking Save, click Next to go to the next step.

[image: image123]

	Enter the name for an action of the category tree in the Name field
which is required.

	Select values for Lifecycle, Node Types, Target Workspace, Target Path,
Affected Node Types which are required.

	Click Save to commit all values.

Note

	Do not input some special characters into the Name field, such as: !,#,$,&,*,(,).

	Do not add a category which has the same name and level with existing taxonomies in a node.

Queries

In Advanced, select Queries. You will be directed to the Queries
panel as below:

[image: image124]

Here, you can do certain actions on the queries as follows:

	Editing a query [image: image125]

	Deleting a query [image: image126]

	Adding a new query [image: image127]

Editing a query

	Click [image: image128] in the Action column to open the Edit Query form.

[image: image129]

	Edit the properties of the selected query.

Note

In the Permissions field, if you set the * membership for a group, all users of the group will be able to access this saved query, regardless of their membership role.

3 .Click Save to accept all changes.

Deleting a query

Simply click [image: image130] in the Action column, then select OK in the
confirmation message.

Adding a new query

	Click Add Query to open the Add Query form.

[image: image131]

	Enter a query name into the Query Name field that is required.

	Select the query type from the Query Type drop-down menu.

	xPath (XML Path Language) is a language for selecting nodes. For
example, /jcr:root/Documents/Live.

	SQL (Structured Query Language) is a database computer language.

	Enter the statement for the query that must be unique.

	Check or uncheck the Enable Cache Results option. If you tick this
checkbox, for the first time you use this query to search, the result
will be cached. For the second time you search using this query, it
will show the cached results. After 10 minutes, the cache will be
removed.

For example, you have the Test query with the //element (*,
nt:file). In Sites Explorer, you have a nt:file document named
File1. When you execute the query Test, only the File1
document is shown. After that, create a nt:file document named
File2 and execute the query Test, only the File1 document
is listed. After 45 minutes, the cache will be removed. When you
execute the query Test, File1 and File2 will be listed.

	Select permissions for a group that can use this query by clicking
[image: image132].

Note

In the Permissions field, if you set the * membership for a group, all users of the group will be able to access this saved query, regardless of their membership role.

	Click Save to finish adding a new query.

Scripts

In Advanced, select Scripts. You will be directed to the Scripts
panel as below:

[image: image133]

The Scripts panel has 3 tabs:

	Actions which is for action scripts.

	Interceptors which is for dialog interceptors.

	Widgets which is for widget scripts.

Here, you can do certain actions on the scripts as follows:

	Editing a script [image: image134]

	Deleting a script [image: image135]

	Adding a new script [image: image136]

Editing a script

Editing a script

	Click [image: image137] in the Action column to open the Add/Edit Script
form.

[image: image138]

	Edit the properties in this form.

	Click Save to save all changes.

Deleting a script

Simply click [image: image139] in the Action column, then click OK in the
confirmation message.

Adding a new script

	Click Add Script to open the Add/Edit Script form.

	Enter values for the Content, Name and Script fields.

Note

The value for the Script field must be unique and not contain special characters, such as !,#,$,&,*,(,).

	Click Save to accept adding your new script.

Actions

This function allows you to manage all action nodes in eXo Platform. In
Advanced, select Actions to open the Actions panel.

[image: image140]

Here, you can do certain actions as follows:

	Editing an action [image: image141]

	Deleting an action [image: image142]

	Adding an action type [image: image143]

Editing an action

	Click [image: image144] in the Action column to open the Add Action Type
form.

	Edit the properties in this form.

	Click Save to save all changes.

Deleting an action

Simply click [image: image145] in the Action column, then select OK in the
confirmation message.

Adding an action type

	Click Add Action Type to open the Add Action Type form.

[image: image146]

	Input a name for the action.

	Select the script type.

	Enter the value for the Variables field.

	Click [image: image147] to add more values for the action.

	Click [image: image148] to delete one value.

	Click Save to accept adding a new action type.

WebDAV

WebDAV enables you to use the third party tools to communicate with
hierarchical content servers via HTTP. It is possible to add and remove
documents or a set of documents from a path on the server.

Note

If you add some documents (by uploading) via WebDAV, you should check carefully its version history. See Document Versioning for more details.

What is WebDAV?

WebDAV is an abbreviation of Web-based Distributed Authoring and
Versioning. It is used to publish and manage files and directories
on a remote server. It also enables users to perform these functions on
a website.

WebDAV provides the following features:

	Locking

	This feature prevents two or more collaborators from overwriting
shared content.

	Site Manipulation

	WebDAV supports the “copy” and “move” actions and the creation of
collections (file system directories).

	Name Space Management

	This function enables copying and moving webpages within a server’s
namespace.

Why uses WebDAV?

With WebDAV, you can manage content efficiently with the following
actions:

	Copying/pasting content on your device and have those changes
reflected in a host-based site.

	Manipulating actions on a content easily, quickly and flexibly
without accessing it directly via web browsers. Content can be
accessed from anywhere and is stored in local directories.

	Easily and quickly uploading content to eXo Platform simply by copying it
into the appropriate directory.

Connecting to WebDAV

In eXo Platform, there are 2 modes of WebDAV:

	Public: Login is not required, and users can view all the public
items. The URL to access will be:
http://mycompany.com:port/rest/jcr/{RepositoryName}/{WorkspaceName}/{Path}
or
dav://mycompany.com:port/rest/jcr/{RepositoryName}/{WorkspaceName}/{Path}.

	Private: Login is required, and users can view all the items
which they had access right. The URL to access will be:
http://mycompany.com:port/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path}
or
dav://mycompany.com:port/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path}.

In which:

	mycompany.com:port: The URL of your site.

	RepositoryName: The repository name.

	WorkspaceName: The workspace name.

	path: The path of the content.

The access to your workspace via various WebDAV clients is not the same.
This part will give instructions about using WebDAV over a web browser
and common WebDAV clients. It is assumed that you want to access the
Wiki Home of the “Support Team” space, do as follows:

Over a web browser:

Simply enter
http://mycompany.com:port/rest/private/jcr/repository/collaboration/Groups/spaces/support_team/ApplicationData/eXoWiki/WikiHome
into the address bar of your browser. The selected content will be shown
in WebDAV as below:

[image: image149]

Nautilus (Linux):

	Open Nautilus - the file manager (GNOME Files), then open the address
bar (by using the hot key: Ctrl + L).

	Enter
dav://mycompany.com:8080/rest/private/jcr/repository/collaboration/Groups/spaces/support_team/ApplicationData/eXoWiki/WikiHome
into the address bar.

	Enter your username and password in the login form.

[image: image150]

	Click Connect. You will be redirected to the Wiki Home window as
below:

[image: image151]

Windows Explorer (Windows 7):

	Open the Computer window, then click Map network drive.

[image: image152]

	Select any available letter for the drive in the Drive list.

	Enter
http://mycompany.com:8080/rest/private/jcr/repository/collaboration/Groups/spaces/support_team/ApplicationData/eXoWiki/WikiHome
into the Folder field.

[image: image153]

Select the Reconnect at logon checkbox to connect every time you log
onto your computer.

	Click Finish, then enter your username and password into the
Windows Security pop-up, and click OK to connect. You will be
redirected to the Wiki Home window.

Note

If you still do not connect successfully, check if you have followed instructions in WebDAV restrictions.

Windows Explorer (Windows 8):

The procedure to set up a web folder by “mapping a network drive”
through My Computer in Windows 8 is quite similar to that in Windows 7.
Note that you need to point to the down pointer at the upper-right
corner of the Computer windows to show Map network drive.

Note

If you still do not connect successfully, check if you have followed instructions in WebDAV restrictions.

Windows Explorer (Windows XP):

	Navigate to the My Network Places.

	Click the Add a network place link on the left to open the
Add Network Place Wizard.

[image: image154]

	Click Next to select a network location.

	Select Choose another network location to create a shortcut, then
click Next.

[image: image155]

	Enter http://mycompany.com:8080/rest/private/jcr/repository/collaboration/Groups/spaces/support_team/ApplicationData/eXoWiki/WikiHome
into the Internet or network address field, then click Next.

	Enter your usename and password into the login form.

	Type name for your network place, then click Next.

	Select the Open this network place when I click Finish option, then
click Finish.

	Enter your usename and password again to access your selected folder.
You will be redirected to the selected folder as below:

[image: image156]

“net use” command

In addition, for Windows, you can use the “net use” command to connect a
drive in your computer with the shared resource of eXo Platform. The command
format will be:
net use X: http://mycompany.com:port/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path}
where X: is the drive letter you want to assign to the shared resource.

	Open the cmd screen.

	Type the “net use” command, for example:

net use E: http://mycompany.com:port/rest/private/jcr/repository/collaboration/Groups/spaces/support_team/ApplicationData/eXoWiki/WikiHome,

then hit Enter.

3. Enter username and password as requested in the screen. If your
connection is successful, you will get a message like: “The command
completed successfully”. If not successful, check if you have followed
steps in WebDAV Restrictions.

	Open the Computer window, then select the E: drive. Here you will
see the Wiki content of the Support Team space.

Note

If you still do not connect successfully, check if you have followed instructions in WebDAV restrictions.

WebDAV restrictions

There are some restrictions for WebDAV in different OSs.

Windows 7/Windows 8

When you try to set up a web folder by “adding a network location” or
“mapping a network drive” through My Computer, you can get an error
message saying that either “The folder you entered does not appear to be
valid. Please choose another” or “Windows cannot access… Check the
spelling of the name. Otherwise, there might be …”. These errors may
appear when you are using SSL or non-SSL. To fix this problem, do as
follows:

Windows 7

	Click Start, type regedit in the Start Search box, then hit Enter
to open the Windows Registry Editor.

2. Find the key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlset\services\WebClient\Parameters.

	Select BasicAuthLevel and change its value to 2. If this does not
exist, create it as a REG_DWORD key.

	Reboot your OS.

Windows 8

1. Go to Windows Registry Editor, then find the key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlset\services\WebClient\Parameters.

	Select UseBasicAuth and change its value to 1. If this does not
exist, create it as a REG_DWORD key.

	Select BasicAuthLevel and change its value to 2. If this does not
exist, create it as a REG_DWORD key.

	Reboot your OS.

Microsoft Office 2010

If you have Microsoft Office 2010 or Microsoft Office 2007 applications
installed on a client computer, try to access an Office file that is
stored on a web server that is configured for Basic authentication from
the client computer. The connection between your computer and the web
server does not use Secure Sockets Layer (SSL). When you try to open or
to download the file, you may see the following problems:

	The Office file is not opened or downloaded.

	You do not receive a Basic authentication password prompt when you
try to open or to download the file.

	You do not receive an error message when you try to open the file.
The Office application will start, but the selected file is not
opened.

To fix these errors, enable the Basic authentication on the client
computer as follows:

	Click Start, type regedit in the Start Search box, then hit Enter.

2. Locate and then click the following registry subkey:
HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Common\Internet.

	On the Edit menu, point to New, then click DWORD Value.

	Type BasicAuthLevel, then hit Enter.

	Right-click BasicAuthLevel, then click Modify.

	In the Value data box, type 2, then click OK.

	Reboot your OS.

Managing your organization

This section covers the following topics:

	Adding a user
How to add a new user to your organization.

	Managing users
Actions related to managing users in your organization, including
searching for users, editing information of users, or deleting users.

	Managing groups
How to add, edit, delete groups and members in groups.

	Managing memberships
How to add, edit and delete membership types.

	Sending mail about users registration
How to configure the platform to send emails to the administrator
about new users registration.

Adding a user

	Click [image: image157] on the top navigation bar, then select Community Add
Users from the drop-down menu.

A window with the Account Setting and User Profile tabs will open.

[image: image158]

Details:

	Field

	Description

	Asterisk (*)

	This mark indicates that the field is mandatory.

	User Name

	The name used to log in. The username must be:

	Lowercase (a - z), digit (0 - 9), underscore
(_), and dot (.) characters, but dash (-) are
not allowed.

	From 3 to 30 characters in length.

	Lowercase for its first character.

	Lowercase or digit for its last character.

	Password

	The authentication string which must be between 6
and 30 characters, including spaces.

	Confirm Password

	Retypes the password above. The values in both
Password and Confirm Password fields must be the
same.

	First Name

	The user’s first name which must start with a
character. Its length must be between 1 and 45
characters.

	Last Name

	The user’s last name which must start with a
character. Its length must be between 1 and 45
characters.

	Display Name

	This field is not required. Its length must be
between 0 and 90 characters.

	Email Address

	The user’s email address that must be in the
correct form, such as username@abc.com.

There are 2 parts in the email address, called
local part and domain (for example,
local_part@domain):

	Local part: Only lowercase (a - z), digit (0 -
9), underscore (_), dash (-) and dot (.)
characters are allowed, and the first and last
characters of this part must be lowercase or
digit ones.

	Domain: Only lowercase (a - z), digit (0 - 9),
dash (-) and dot (.) characters are allowed,
and the first and last characters of this part
must be lowercase or digit ones. Note that the
dot (.) character is required.

	Fill all fields in the Account Setting tab which must be completed.

Further information about the user, such as nickname, or birthday,
can be added in the User Profile tab that is not required.

	Click Save to accept your new account. If you want to refresh the
input information, simply click Reset.

Managing users

Click [image: image159] on the top navigation bar, then select Community –>
Manage Community from the drop-down menu.

You will be redirected to the Users tab. By default, all active users
will be shown in this tab.

[image: image160]

Editing user information

	Locate the user you want to edit his information.

	Click [image: image161] corresponding to the user with the information you
wantto edit.

	Select the Account Info tab to edit main information of the user,
including First Name, Last Name, Display Name, or Email Address.

[image: image162]

	User Name

	The User Name cannot be changed.

	Change Password

	The Change Password option allows an administrator to set a new
password for the selected user. When the Change Password option is
unchecked, New Password and Confirm Password are hidden. Passwords
must contain at least 6 characters, including letters, numbers and
punctuation marks.

For more details on these fields, see here.

	Select the User Profile tab to edit personal information of the
selected user, including Profile, Home Info, Business Info, and
Social Networks Info (if OAuth authentication
is configured by your administrator).

	In Social Networks Info, when clicking the Save button:

	If the field of social network username was cleared, the current

eXo account is unlinked to the new social network username.

	If the field of social network username was changed, it should be

unlinked to the previous social network username and linked to the
a new (changed) social network username. If the field was left
blank, it should only be unlinked.

	You may also switch the default display language for that user by

selecting another language from the Language field.

	Select the User Membership tab to see the group membership
information of the user.

The User Membership tab displays which groups the selected user belongs
to.

To remove a membership type of the use, simply click [image: image163].

	Click Save to accept your changes.

Removing a user

In the Users tab, simply click [image: image164] in the Action column, then
click OK in the confirmation message.

Activating/Suspending a user

As of eXo Platform 4.3, the administrator is provided with a new feature
for activating or suspending a user.

	To see all suspended users, select All or Suspended from the Status
drop-down menu and click on Search button:

[image: image165]

For users after being suspended, here are changes on their account that
should be noticed:

Activity Stream

	Their activity stream will not receive any new activity until their
account is re-activated.

	The suspended users obviously will not be able to post, so people in
their Connections list will no longer receive activities from these
users in their All Activities or
Connections streams.

	Their past activities, comments and likes will be remained.

	Their account will not be listed in the suggestions list when someone
mentions.

People

	Their account will be neither listed nor searchable in applications,
including My Connections, Everyone,
Suggestions and Invitations
applications as usual.

	They cannot log in, but their profile is still accessible to others,
so it is possible to connect,
disconnect or
revoke an invitation.

Wiki

	Their account will not be listed in the Wiki permissions
or Page permissions.

	They will not receive emails from the Watching a page
feature in Wiki application.

Calendar

	Their account will not be listed when someone shares their personal calendars
or grants group calendar permissions.

	Their account will not be listed when someone adds participants in an event
, or views the availability time of participants in an event,
or sends a reminder email for an event/task.

	In case they have been involved in tasks/events, once being
suspended, they will not receive:

	Invitation emails from Calendar (after someone modified an event
where the suspended user was participant already).

	Event/Task reminder emails from the Calendar application.

	Calendars shared by suspended users remain to be available to the
shared people.

Documents

	Their account will not be listed when someone adds permissions on content,
sets permissions on public tags
or category trees,
or adds or edits a view <ViewsIneXo>`.

	They will no longer receive any email from the Document Watch feature.

	Their documents in the Personal Document drive
will be remained.

Forum

	Their account will not be listed when someone sets topic permissions/
forum permissions <SettingForumPermissions>, adds restricted audience
or grants permissions in forum
categories.

	They will not receive any email from the Watching
feature, private message
or my subscriptions.

Spaces

	Their account will not be listed when someone invites members
to join a space.

	Their account is still available in Space SettingsMembers, but
impossible to be promoted/demoted
or removed.

	Their account will not be listed or searchable in SpaceMembers.

Notifications

	The suspended users will no longer receive any email or on-site
notifications.

Answers

Note

Answers is provided as an add-on, so you need to install it first. See here for details.

	Their account will not be listed when someone sets the category permissions.

	They will no longer receive emails from the Watching feature
of Answers.

	To suspend a user, switch Active ? button corresponding to this
user to Yes.

Note

	Users/groups permitted to access this application can suspend users. By default, this permission is granted to the platform/administrator group.

	A user cannot suspend himself, one warning appears if he attempts to do this.

	The superuser root cannot be suspended.

	To re-activate a user, simply switch Active ? button corresponding to
this user to No.

Managing groups

Select the Groups tab which is used to add, edit or delete a group. You
can also add or delete a user to/from a group and edit the user
membership in the group.

[image: image166]

By default, all existing groups will be displayed on the left panel. The
right panel shows information of the selected group and of its members
with the Add Member form.

Adding a new group

	Select the path to create a new group by clicking the group from the
left panel or by clicking [image: image167] if you want to create a group at a
higher level. The selected path is displayed in the breadcrumb bar.

	Click [image: image168] in the left panel.

The Add New Group form will be displayed in the right panel.

[image: image169]

Details:

	Field

	Description

	Group Name

	Name of the group that is required and unique within
the portal with its length from 3 to 30 characters.
Only letters, numbers, dash and underscore characters
are allowed for the Group Name field.

	Label

	The display name of the group with any length from 3
to 50 characters.

	Description

	Description of the group with any length from 0 to 255
characters.

	Fill in the required fields. Once being saved, the Group Name cannot
be edited.

	Click Save to accept creating the new group.

Note

The creator will automatically become the manager of that group. The creator’s username will be added to the created group with the “manager” membership.

Editing/Deleting a group

Editing a group

	Select the group you want to edit in the left panel.

	Click [image: image170] in the left panel to show the Edit Current Group
form of the selected group.

[image: image171]

	Make changes on the fields, except Group Name.

	Click Save to commit your changes.

Deleting a group

Simply select the group you want to delete in the left panel. Next,
click [image: image172] and select OK in the confirmation message.

Note

After being deleted, all information related to that group, such as users and navigation, is also deleted. You cannot delete the mandatory groups, including Platform, Platform/Administration, Platform/Guests, Platform/Users.

Adding a user to a group

	Select the group to which you want to add a new user in the left
panel. The Group Info panel with the Add member form will be opened.

[image: image173]

	Enter the exact Username of the user that you want to add to the
selected group (you can add many usernames separated by commas); or
click [image: image174] to select your desired users from the Select User
form.

	Select the membership for the users from the Membership drop-down
menu. You can click [image: image175] to update the memberships list in case
of any changes. See more information of membership types here.

Note

	Under the Spaces group, if you select the * membership for a user in any space group, the user will have the right to access the corresponding Space Settings.

Besides, this user will be listed as a manager in the Members tab as well as an administrator in the member list of the space.

	Click Save to accept adding the selected users to the specific group
with the specified membership type.

Note

By default, the “manager” membership has the highest right in a group. A user can have several membership types in a group.
To do that, you have to use the Add Member form for each membership type. The user’s membership information is hereafter updated.
You can check it by opening the Users form and editing the user you just added.

Editing a user membership in a group

	Click [image: image176] in the Action column in the Group Info form.
The Edit Membership form will open.

[image: image177]

	Change the membership of the selected user by selecting another value
from the Membership drop-down menu.

	Click Save to complete your changes.

Managing memberships

Select the Memberships tab. Here, you can manage user roles in a
specific group.

By default, 9 membership types are available in PRODUCT including
Member, Author, Editor, Manager, Redactor, Validator, Webdesigner,
Publisher and *.

[image: image178]

Note

The * membership is identical to any other type, so choosing this type means adding all available membership types.

Adding a new membership type

	Enter values into the fields of the Add/Edit Membership form. The
Membership name field is required, and only letters, digits, dots,
dashes and underscores are allowed without ANY SPACES.

	Click Save to accept adding a new membership, or Reset to clear
entered values.

Editing a membership type

	Click [image: image179] corresponding to the membership type you want to
edit in the Action column.

	Make your desired changes on the Description field. You cannot change
the Membership name.

	Click Save to accept your changes.

Deleting a membership type

Simply click [image: image180] in the Action column, then click OK in the
confirmation message.

Note

The * membership type is not allowed to be deleted or edited.

Sending mail about users registration

In eXo Platform registration page is by default disabled. An
administrator can enable it by following this guide <ManagingPermissions>
to make it accessible to guests so they can register to eXo Platform by
themselves.

To be notified about new users registration, an administrator can
configure eXo Platform to send him emails by following these steps:

	Configure your SMTP server by following the Outgoing mail service guide.

	Configure the service used for sending emails in portal.war/WEB-INF/conf/admin/admin-configuration.xml.
This file contains descriptions for each available parameter,
including:

	Two mandatory parameters:

	sendMailAfterRegistration: Set this parameter to “true” to

enable email sending after a user registration.

	mailTo: Add your email address in which you wish to receive

notifications about new registrations.

	Optional configurations of mail content:

	mailFrom: This will be used as from header in the mail.

	mailSubject: The Subject of the mail.

	mailMessage: The content of the mail.

Tip

Use the ${user.userName} token for mailSubject and**mailMessage** to be then replaced by the real username that have been registred.

To check if your configuration takes effect, restart the server and
register a new user. An email that notifies of newly registered user
should be sent to you.

Administrating spaces

It is possible to restrict which users can create and/or manage spaces
through an easy to use interface .

[image: image305]

Note

By default, only the super user (i.e. root) is allowed to create spaces and only administrators (i.e.
the members of the group *:/platform/administrators) are allowed to manage spaces.

The spaces administration interface is accessible via the menu Administration –> Spaces.

[image: image306]

This interface contains two tabs:

	“Manage spaces” tab displays the list of spaces and the corresponding actions: edit and delete.

	“Permissions” tab displays the list of groups who can Create or Manage spaces.

Spaces administration interface allows to :

	Manage spaces

	Change permissions

Manage spaces tab

[image: image308]

The “Manage spaces” tab can be seen by users belonging to any group listed in
the “Manage spaces” permission of the Permissions tab.
Users with this permission are allowed to edit or delete any space in the platform.

[image: image307]

If the permission has no value defined in the interface, users in the groups defined
by the property exo.social.spaces.administrators in
exo.properties file are allowed to manage spaces.

Warning

When the Manage spaces permission is both defined through the interface and
the configuration, the value in the interface takes precedence.

Note

If the permission is neither defined through the interface nor by configuration, only administrators are
allowed to access the Manage spaces tab.

Edit space

Users granted with the “Manage Spaces” permission, can edit any space settings by clicking the edit icon [image: image309] of a specific space.
The Space Settings page of the target space is then opened in another browser tab.

[image: image320]

From there, even without being a member of that space, one can edit the space settings, access, visibility, members,
applications and navigation. See Managing space settings
section for more details.

[image: image310]

Delete space

Users granted with the Manage Spaces permission, can also delete any space of
the platform; even the spaces where they are neither a manager nor a member.

To delete a space, a click on the delete icon [image: image311] of the corresponding space in the interface of
the “Manage spaces” tab is needed.

[image: image312]

A confirmation popup appears to confirm deletion of the space or to cancel
the space’s deletion.

[image: image313]

Warning

When deleting a space, all its data is also removed and can’t be recovered.

Permissions tab

[image: image318]

This tab allows administrators of the platform to define permissions related to all spaces of the platform.

To define who can create spaces:

	Click on edit icon [image: image314] in the actions column of the line Create spaces ==> A field with the
current values appears to easily edit them. The edit icon turns into a save icon [image: image315] and a new
[image: image317] icon appears to cancel the changes.

[image: image319]

	Remove existing values and/or enter new ones. When typing in the field, type-ahead suggestions will appear below for easier selection
of the groups.

[image: image321]

	After entering or selecting the groups, a click on
the save icon [image: image316] validates the new permission grants.

To define the group of spaces managers, simply follow the same
procedure.

Managing sites

Managing sites include the following actions:

	Creating a new site

	Editing asite

	Selecting the site’s skin

	Deleting a site

Creating a new site

Note

You can perform this action only when you are a member of the /platform/administrators group.

	Click [image: image181] Portal Sites on the top navigation bar, then click
Add New Site in the Manage Sites page;

Or, click EditSiteAdd Site.

By default, the window to create a new site, which contains the Portal
Settings tab, will open.

[image: image182]

	Fill in the Portal Name field. The field is required, unique and must
start with a letter. Only alphabetical, numerical, dash and
underscore characters are allowed for this field with the length from
3 to 30 characters.

	Select the default display language for the site from the Locale
field.

	Click the Properties tab to set the properties of a site.

[image: image183]

Details:

	Field

	Description

	Keep session alive

	Keeps the working session for a long time to avoid the
time-out. There are 3 options:
Never: The session will time out if the logged-in user
does not do any action after a given period. In this
case, there will be a message which asks the user to
log in again.

On Demand: The session will time out to the
application’s requirement. If there is no request from
the application, the session will time out after the
given period that is similar to that of Never.

Always: The session will never time out even if the
logged-in user does not do any action after a long
time.

	Show info bar by
default

	Ticks the checkbox to show the info bar of the portlet
by default when the portlet is used in a page of the
site.
The “Show info bar by default” option only takes
effect on new portlets as from the time you select the
checkbox rather than all portlets of the site. In
particular, after creating your new site with the
“Show info bar by default” option checked, newly
created portlets of the site will be displayed with
the info bar by default. However, if you deselect this
option when editing the site’s configuration, the
former portlets with the shown info bar are remained;
meanwhile new portlets, which are created after this
option is deselected, will be shown without the info
bar.

	Click the Permissions tab to set permissions on the site.

The list of Access permissions for the portal is empty by default. You
have to select at least one or tick the Everyone checkbox to assign the
Access permission to everyone.

Note

For more details on how to grant permissions on the site, see Setting permissions on a site.

	Click the Portal Templates tab to select the template for your site.

	Click Save to accept creating your new site.

Note

After creating a new site, you can access it via the URL format: http://{domain-name}/portal/[name-site]. For example, accessing the Agital site: http://mycompany.com:8080/portal/Agital.

Editing a site

Note

The function allows you to edit layouts, navigations and properties of a site. To do this, you must have the Edit permission on sites by contacting your administrator.

When you have the *Edit* permission, access the relevant form that
allows you to do actions related to editing a portal.

	Access the Manage Sites panel.

	Specify your desired site, and do the following actions:

	
	Editing the site’s layout by clicking Edit

	Layout.

	
	Changing the site’s navigation by clicking

	Edit Navigation.

	Editing the site’s configurations by
clicking Edit Site Configuration.

Editing layout

	Click Edit Layout corresponding to your desired site on the Manage
Sites panel;

Or, click EditSiteLayout on the top navigation bar.

The Edit Layout form will display.

[image: image184]

	To add a new application/container to the site, drag and drop it from
the Edit Inline Composer window to the main site body.

To rearrange elements in the site body, drag and drop them into your
desired positions.

To edit or remove any element, hover your cursor over it, then select
[image: image185] or [image: image186] respectively.

Note

For more details on how to edit elements, see the Editing a specific portlet section.

Editing navigation

Click Edit Navigation corresponding to your desired site on Manage Sites
form;

Or, click EditSiteNavigation on the top navigation bar.

The Navigation Management form appears.

[image: image187]

Note

For more information about actions, which can be done in the Navigation Management form, see the Managing navigations <ManagingNavigations> section.

Editing configurations

The configurations of a site include settings, properties and
permissions that can be set by clicking Edit Site Configuration in the
Manage Sites panel.

The Edit window with the Portal Settings tab appears.

[image: image188]

In this window, you can make changes on fields in the various tabs,
except the Portal Name field in the Portal Settings tab.

Note

For more details on these fields, refer to the Creating a new site section.

Selecting the site’s skin

With eXo Platform 5.0 a new ready skin is available as an add-on for
enterprise packages.

You can install it by using this command in a 5.0 eXo Platform
package versions:

addon install exo-enterprise-skin

Having the add-on installed in your package and being an administrator,
you can apply it easily by following these steps:

	Click [image: image189] Portal Sites on the top navigation bar.

	Click on the button Edit Site Configuration, a pop up appears to
configure the site.

	Select the skin: either the default one or the Enterprise one

[image: image190]

and then click on save button.

Going back to the site’s homepage, the selected skin is applied:

[image: image191]

Deleting a site

Note

To delete a site, you must be in the group that has the Edit Permission on that portal.

	Access the Manage Sites panel <CreatingNewSite>.

	Click [image: image192] corresponding to the site you want to delete.

	Click OK in the confirmation message.

Note

You cannot delete the Intranet site.

Managing pages

Managing pages includes the following actions:

	Adding a new page.

	Editing the page properties and layout.

	Deleting a page

Adding a new page

Before diving into how to add a new page, you need to clarify the
relationship between navigation node and page. Node and page are two
entities that are totally different and a node can be referenced to a
page. A page can only be accessed by users via a node.

Using Page Creation Wizard

The Page Creation Wizard is available to the portal’s administrators
and facilitates them to create and publish portal pages quickly and
easily. In this way, you are creating a navigation node and its page
together.

The whole process to create a new page can be divided into 3
specific steps:

Step 1: Selecting a navigation node and creating the page

In the first step, you have to set Node Name and Display Name of your
page. You are also able to decide the pages visibility and the
publication period of the page.

	Open the site to which you want to add a new page. You will be
switched to your selected site only after a few seconds.

	Click [image: image193] on the top navigation bar, then select Page Add Page
from the drop-down menu to open the Page Creation Wizard form.

[image: image194]

The wizard is divided into two sections.

	The left panel contains existing pages/nodes displayed in the tree
hierarchy. Here, you can navigate up and down the node/page
structure.

	The right panel displays Page Editor where you can make changes on
the selected navigation node. You can input parameters for your new
page in this panel.

In which:

	Field

	Description

	Selected Page Node

	The path of the selected node to add a new
sub-page.

	Node Name

	The node name of the added page. This field is
required, unique and must start with a letter.
Only alphabetical, numerical, dash and
underscore characters are allowed for this field
with the length between 3 and 30 characters.

	Extended label mode

	Ticks the checkbox to show the Language field
for you to select another language for your
created node’s display name. It means that if
this checkbox is deselected, the Language field
will be deactivated.

	Language

	Selects your desired language for the node’s
display name from the drop-down menu.

	Display Name

	The display name of the node which contains the
added page and its length must be between 3 and
120 characters.

	Visible

	Toggles the global visibility of this page.

If this option is checked, the page or the page
node appears on the navigation bar, the page
navigation and the sitemap. If “Visible” is
checked, the visibility also depends on the
Publication Date & Time option.

If not being unchecked, the page is hidden under
any circumstances, even if the publication
period is valid.

	Publication date & time

	Allows the page to be published for a given
period. If this option is checked, Start
Publication Date and End Publication Date will
be shown.

	Start Publication Date

	The start date and time to publish the page.

	End Publication Date

	The end date and time to publish the page.

Note

If a node is not visible (the “Visible” option is unchecked or the current time is not within publication period), it does not appear in any navigation or site map, but is still accessible via its URL.

	Click Next or number ‘2’ of the wizard steps to go to Step 2.

Step 2: Selecting a page layout template

[image: image195]

	Select Empty Layout or click the down-arrow icon in the left panel to
see more templates and select one.

	Click Next or number ‘3’ of the wizard steps to go to the last step.

Step 3: Arranging the page layout

In this step, you can arrange the page’s layout by:

	Adding your desired applications, containers or gadgets by dragging
and dropping them from Page Editor to the main page body.

[image: image196]

In which:

	Tab

	Description

	Applications

	This tab lists all existing categories and their
portlets that you easily can drag and drop into the
container.

	Containers

	This tab contains all existing containers to build
your page layout. You can add a container to your
page area by dragging and dropping available
containers from Page Editor to the main page body.

	There are various layouts available, including
Rows Layout, Columns Layout, Autofit Columns
Layout, Tabs Layout and Mixed Layout.

For Tabs Layout, you can add more tabs to the
layout, and reorder the position of the tabs.

	For each layout, you can edit different layers,
from the parent container to its child
containers. The parent container holds its child
containers and the child containers can hold
applications. You can also drag a container to
another one that helps you create various
layouts to your desires.

	Remember that you can also drag and drop the
container to another one that helps you create
your own various layouts to your desires.

	For any container layout, you can edit the
parent container or its child containers
separately. Deleting the parent container means
that its child containers are removed as well.

	You cannot drag and drop a child container to
change its location, but can drag it outside its
parent container.

	Rearranging elements in the page body by dragging and dropping them
into your desired positions. Also, you can edit or remove any element
by hovering your cursor over it and selecting [image: image197] , or
[image: image198] respectively.

	Viewing page properties by clicking View Page Properties at the
bottom of the Page Editor window.

	Previewing your changes by clicking Switch View Mode.

Note

Click [image: image199] in the Page Editor window to save all changes, or [image: image200] to close without saving your changes.

Using Pages Management

In this way, the page only will be created. Thus, to make this page
accessible, you need to create a node that links to this page (in the
Page Selector tab). See Adding a new node
for more details.

	Access the Pages Management page.

	Select Add New Page at the bottom. The form with the Page Settings
tab opened will display as below.

[image: image201]

In which:

	Field

	Description

	Page Id

	The page’s identification string which will be
automatically generated when the page is created.

	Owner Type

	
	If Owner Type is “portal”, the page is
created for a portal. Therefore, only users
who have the Edit permission on the portal
can create this page type.

	If Owner Type is “group”, the page is
created for a group. Therefore, only users who
are the manager of that group can create
this page type.

	Owner Id

	The identification name of the page’s owner which
will be automatically created after you have
selected Owner Type.

	When the owner type is set to “group”, a list
of groups will allow you to select one user as
the ‘owner’.

	The name of the current portal is
automatically selected for Owner Id, ensuring
the Edit permission is assigned to users who
can edit the current portal.

	Page Name

	The page name which is required, unique and
starts with a letter. Only alphabetical,
numerical, dash and underscore characters are
allowed with its length from 3 to 30 characters.

	Page Title

	The page title which is optional with its length
from 3 to 30 characters.

	Show Max Window

	The option enables the page to be shown at the
maximum size or not.

	Define the page layout in the Page Layout tab.

	Define permissions in the Permissions tab. This tab consists of four
sub-tabs named Access, Edit, Move Apps and Move Containers.

	The Access tab shows all users who can access the page:

	If the value of the Owner Type field is “Portal”, the name of
the current portal is automatically selected for the Owner Id
field, so that the Access permission is assigned to all users
who can access the current portal.

	If the value of the Owner Type field is “Group”, the Access
permission is assigned to all users who are the members of the
group that is selected in the Owner Id field of the Page Settings
tab.

To reassign the Access permission for the page, see details in the
Access permission
section.

	The Edit shows all users who have the Edit permission on the page.

	If the value of the Owner Type field is “Portal”, the Edit
permission is assigned to users who can edit the current portal.

	If the value of the Owner Type field is “Group”, the Edit
permission is assigned to all users who are the members of the
group that is selected in the Owner Id field of the Page Settings
tab.

To reassign the Edit permission for the page, see details in the
Edit Permission
section.

	Click Save to accept creating a new page.

Editing a page

	Open the Page Properties page by following one of the two ways:

The first way

i. Open the Navigation Management form by doing the steps in the
Editing navigation section.

ii. Right-click your desired node and select Edit Node’s Page from
the drop-down menu.

The second way

i. Access the Pages Management page.

ii. Click [image: image202] corresponding to the page you want to edit.

The Edit Page form will be displayed in the Page Properties window.

[image: image203]

	Click View Page Properties in the Page Editor window to edit the page
properties.

[image: image204]

i. In the Page Settings tab, you cannot change values in Page Id,
Owner Type, Owner Id and Page Name.

ii. In the Permissions tab, you can change or add more Access,
Edit, Move Apps and Move Containers permissions. This form is only
supported for pages of a group or a portal. Because the user’s page
is private, no one can access or edit it, except the creator.

Note

For more details on how to assign permissions on a page, refer to the Setting permissions on a page section.

	Click Save, then select [image: image205] in Page Editor for all changes to
take effect, or [image: image206] to abort.

Deleting a page

	Access the Pages Management page.

You will see a list of all existing pages.

	Click [image: image207] in the row of the page you want to delete.

	Click OK in the confirmation message.

Managing permissions

Permissions play an important role in accessing and performing actions
in eXo Platform. Depending on the permissions assigned by administrators,
users can gain the Access and/or Edit permissions to sites, pages and
various components of the sites.

In eXo Platform, permission types define what a user can do within a
site, including:

	Access permission enables users to access sites, pages or
applications and content in the site pages. This permission can be
set for multiple member groups.

	Edit permission enables users to make changes on sites, pages or
applications and content in the site pages. This permission is set
for only one group at one time.

	Move Apps permission enables users to add, delete or move
applications on sites and pages via drag and drop. This permission
can be set for multiple member groups.

	Move Containers permission enables users to add, delete or move
containers on sites and pages via drag and drop. This permission can
be set for multiple member groups.

And, permission levels specify where the users’ permission types can
be applied in the site.

	Site: The permission at the site level defines actions permitted
on the site. Users with the access permission can view (but not edit)
the site. Meanwhile, users with the edit permission at the site level
can modify the site.

	Page: The permission at the page level restricts users to several
particular pages. Users are only able to see and/or edit pages they
have been granted, depending on the permission type assigned to them.

	Application: The permission at the application level defines who
can access the application.

	Container: An application, page, or site may be put into one or
more containers. The permission at the container level restricts the
Access permission to content inside it.

With these permission types and levels, administrators can effectively
control who can access and which actions users can perform within the
site. For this reason, you, as an administrator, need to clarify the
layered architecture of a site to grant appropriate permissions to
groups. The simplest way to understand is that:

	A site consists of one or more pages. These pages may be put into one
or more containers.

	Each page normally contains content and/or application(s). These
content and applications may be put into one or more containers.

If you want members under a group (platform/guests, for example) to
be accessible to one application on a site page, grant the Access
permission to that group at the following layers:

	The application and its containers

	The page and its container where the application is stored.

	The page site and its containers.

In the case you only grant the Access permission to the
platform/guests group at the site and page layers, this group will
see the page, but not see the applications and content restricted in
that page. To be clearer, see the below example.

Making guests accessible to the Register form of Intranet

Tip

To make handy for checking permissions at all levels, it is recommended you use the root account to have the highest rights.

For the Intranet site, the Register form is already featured by the
Register application and put into the Register page (node) (by selecting
[image: image208] –> Portal –> Sites Edit Navigation next to intranet).

[image: image209]

By default, the Register node is already linked to the Register page and
this page already contains the Register application.

You can use the URL format to access pages existing on a site:
http://mycompany.com:port/portal/{site_name}/{node_name}.
Remember that {site_name} and {node_name} are case-sensitive.

In this scenario, log out and use the URL:
http://mycompany.com:port/portal/intranet/Register.
Now, as a guest, you will be redirected to the Login form, not Register
form. This may be because the Access permission is not granted to the
platform/guests group (or is not made public) at the Register
application itself or its outer layers. To make it accessible to the
platform/guests group, do as follows:

	Log in as root, then use
http://mycompany.com:port/portal/intranet/Register
to go to the Register page.

	Check the Access permission at the Register page level by clicking
[image: image210] –> Page –> Edit Layout.

[image: image211]

	i. At the application, the Access permission is already granted to
the /platform/guests group by default.

	ii. At the container (by selecting Containers tab in Page
Editor), the Access permission is already granted to the
platform/guests group. Repeat this step for each container.

Note

Setting the * membership for a group means that all its users are granted permissions to view the container block, regardless of their membership role.

	iii. At the page (by selecting View Page properties at the Page
Editor bottom), the Access permission is already granted to the
platform/guests group.

Note

Remember to click [image: image212] to make your changes affect, if any.

	Go to
http://mycompany.com:port/portal/intranet

to be at the site level, then select [image: image213] –> Site –> Layout.

[image: image214]

	i. At the site container(s) containing the Register page, the Access
permission is made public by default, meaning that all (including
guests) can access at the site container.

	ii. At the outermost layer of the Intranet site (by clicking Site’s
Config at the bottom of Edit Inline Composer), the Access
permission is already assigned to the platform/users group only.
This is the reason why guests cannot access the Register form. So, in
the Access tab, you need to select Add PermissionPlatformGuests
in the group pane, and * in the membership pane. Alternatively,
tick the Everyone checkbox.

Note

Remember to click [image: image214] to make your changes affect, if any.

	Log out, then try using the
http://mycompany.com:port/portal/intranet/Register
link. Now, as a guest, you still can view the Register form, not the
Login form.

	Optionally, if you want guests to be redirected to the Register form
when they only enter
http://mycompany.com:port/portal/intranet,
simply move gradually the Register node to the top in the Navigation
Management (by right-clicking Register and selecting Move Up -
you need to repeat this step until the Register node is at the top).

[image: image215]

Log out, then use the link:
http://mycompany.com:port/portal/intranet.
Now, you will be redirected to the Register form without entering the
exact URL of the Register page.

[image: image216]

Note

	In this section, some examples and screenshots use default groups and memberships

that are ready-made by configuration. To create groups and memberships as you want, see Managing your organization.

	Do not misunderstand that labels of predefined membership types, such as “manager” or “publisher”, represent their permissions.

This means, those labels do not define any permissions. If you create a page, you are the person who decides if a “manager” has access to your page or not.

Permissions in this section are divided into:

	Setting permissions on a site

	Setting permissions on a page <ManagingPermissions.SettingPagePermissions>

	Setting permissions on a container <ManagingPermissions.SettingContainerPermissions>

	Access permission on a category <ManagingPermissions.SettingAccessPermissionOnCategory>

	Access permission on a portlet <ManagingPermissions.SettingAccessPermissionOnPortlet>

Setting permissions on a site

You can set the site permissions (Access, Edit, Move Apps and Move
Containers) for a specific group via the Permissions tab if your user
account belongs to the /platform/administrators group.

The Permissions tab can be opened in some various ways, depending on the
following approaches.

	Click [image: image217] Portal Sites on the top navigation bar.

The Manage Sites page appears.

[image: image218]

	For new sites:

	Select Add New Site to open the Create New Portal form.

	Click the Permissions tab.

For existing portals:

	Select Edit Site Configuration Permissions tab:

[image: image219]

Access permission

Note

To access a site, you must belong to one of the groups that have the Access permission to that site.

Select the Access sub-tab to set the Access permission on the site.

[image: image220]

	If you want to assign the Access permission to users in the public
mode (without signing in), simply select the Everyone checkbox.

	If you do not want everyone to access the portal, first deselect the
Everyone checkbox, and do the followings:

	Click [image: image221] to open the Select Permission form.

[image: image222]

	Select one group in the left panel, and one membership type in the
right panel.

Note

In the list of membership types, if you select the asterisk (*), all users of the selected group will have the right to access this site, regardless of their membership role.

	Click Save to finish your settings.

	After you have selected a membership type, the selected permission is
displayed in the Access permission list.

	You can only select one group with one membership type at each time.
If you want to add more, click [image: image223] and select again.

Edit permission

	Select the Edit sub-tab of the Permissions tab to set the Edit
permission on a site and do the followings:

[image: image224]

	Click Select Permission to open the Permission Selector form.

[image: image225]

	Select one group in the left pane and one membership type in the right
pane.

Note

In the list of membership types, if you select the asterisk (*), all users of the selected group will have the right to edit this site, regardless of their membership role.

	Click Save to finish your settings.

Move Apps permission

	Select the Move Apps sub-tab of the Permissions tab to set the Move
Apps permission on a site and do the followings:

[image: image226]

	Click on Add Permission to select groups and add their membership
types.
You can add several memberships to a group as in adding Access permission.

Note

Unless a more restrictive permission is defined for a container (See Setting Permissions on a Container), users who are granted the Move Apps permission on a site are able to do the followings when
editing the site layout:

	Add new applications from the Edit Inline Composer to the site layout via drag and drop.

	Move applications contained in the site layout via drag and drop.

Users who are not granted the Move Apps permission on a site are unable to see the Remove Portlet icon on applications as well as drag or drop these applications on the site layout.

Move Containers permission

	Select the Move Containers sub-tab of the Permissions tab to set the
Move Containers permission on a site and do the followings:

[image: image227]

	Click on Add Permission to select groups and add their membership
types.
You can add several memberships to a group as in adding Access permission.

Note

Unless a more restrictive permission is defined for a container (See Setting Permissions on a Container),
users who are granted the Move Containers permission on a site are able to do the followings when editing the site layout:

	Add new containers from the Edit Inline Composer to the site layout via drag and drop.

	Move containers contained in the site layout via drag and drop.

Users who are not granted the Move Containers permission on a site are unable to see the Delete Container icon on containers as well as drag or drop these containers on the site layout.

Note

If you do not specify which groups or users for the Move Containers or Move Apps permissions, those who are granted the Edit permission will have these permissions.

Setting permissions on a page

If your user account belongs to the /platform/administrators group,
you are able to set permissions on a page. You first need to go to the
Permissions tab via one of two following ways:

Via Edit Page:

	Open the page which you want to set permissions.

	Click Edit –> Page –> Edit Layout.

[image: image228]

You will be directed to the Page Editor window.

	Click View Page Properties in the Page Editor window.

	Select the Permissions tab.

Via Pages Management:

	Select [image: image229] –> Portal –> Pages on the top navigation bar to
open the Pages Management page.

	Locate the page you want to edit using the Page Id column, then click

	[image: image230] corresponding to the page in the Action column. You will be

	directed to the Page Editor window.

	Click View Page Properties in the Page Editor window.

	Select the Permissions tab.

[image: image231]

Access permission

Note

To be able to access a page, you have to be in one of the groups that have the Access permission to that page.

To assign the Access permission on a page, simply follow steps as
stated in the Access permission
section.

Edit permission

Note

Only users under the page’s editors group can edit it. The Access permission can be set for several groups but the Edit permission only can be set for one group.

To give users the Edit permission, you must add them to the editors
group of that page via Permission Setting and follow steps as stated
in the Edit
permission section.

Move Apps permission

To assign the Move Apps permission on a page, simply follow steps as
stated in this section.

Note

Unless a more restrictive permission is defined for a container (see Setting Permissions on a Container),
users who are granted the Move Apps permission on a page are able to do the followings via Edit Page Edit Layout:

	Add new applications from the Page Editor to the page layoutvia drag and drop.

	Move applications contained in the page layout via drag and drop.

Users who are not granted the Move Apps permission on a page are unable to see the Delete Portlet icon on applications as well as drop these applications on the page layout.

Move Containers permission

To assign the Move Containers permission on a page, simply follow
steps as stated in this section.

Note

Unless a more restrictive permission is defined for a container (see Setting Permissions on a Container),
users who are granted the Move Containers permission on a page are able to do the followings via Edit Page Edit Layout:

	Add new containers from the Page Editor to the page layout via drag and drop.

	Move containers contained in the page layout via drag and drop.

Users who are not granted the Move Containers permission on a page are unable to see the Delete Container icon on containers laid directly on the page layout.

Note

If you choose the * membership for the selected group when setting Access, Edit, Move Apps and Move Containers permissions, all users of the group regardless of their membership role will be granted the Access, Edit, Move Apps and Move Containers permissions respectively.

Setting permissions on a container

If your user account belongs to the /platform/administrators group,
you can set the Access, Move Apps and Move Containers permissions on
a specific container of a page (via Edit –> Page –> Edit Layout –>
Page Editor) or a site (via Edit –> Site –> Layout –> Edit Inline
Composer).

	Select the Containers tab, then hover your cursor over the
container that you want to edit and click on [image: image232].

	Select the Permissions tab.

[image: image233]

	Click on the Add Permission button in the Access, Move Apps and
Move Containers tabs to add the corresponding permissions to
specific groups.

Note

	Users who are not granted the Move Apps permission on a container do not see the Delete Portlet icon laid directly on applications contained in the container in edit mode.

	Users who are not granted the Move Containers permission on a container do not see the Delete Container icon in edit mode.

	Users who are granted the Move Apps or Move Containers permissions on a container can add new applications or containers from the composer to this container via drag and drop. Besides, they can move the applications or containers contained in this container via drag and drop.

Setting Access permission on a category

Setting the Access permission on categories allows these categories to
be listed when a page is edited to add portlets or widgets.

	Click [image: image234] Applications on the top navigation bar to open the
Manage Applications page.

[image: image235]

	Select one category from the list of available categories in the left
panel, then click [image: image236].

	Select the Permission Setting tab.

	Set the Access permission on a category that is similar to the
Access permission
section.

Note

If you set the * membership for a group, all users of the group will have the right to view this category when editing layout.

Setting Access permission on a portlet

	Go to the Manage Applications page.

	Select the category containing the portlet you want to set the
Access permission, then click the relevant portlet under your
selected category.

The selected portlet will be highlighted in grey in the left panel
with its detailed information in the right pane.

	Follow steps stated in the Access permission
section to assign the Access permission on your selected portlet in
the Default Permission Settings form.

Note

If you set the * membership for a group, all users of the group will have the right to view this application when editing layout.

Managing navigations

Managing navigations is composed of various actions, such as copying,
editing, cutting, cloning, deleting, and adding existing nodes. There
are three navigation types available to PRODUCT users:

	Site navigation

	Group navigation

	User navigation

Site navigation

If you are the site administrator or granted the appropriate privileges
by the site administrator, you can execute some special actions related
to site nodes.

To open the navigation form of a site, you first need to select
Edit –> Site –> Navigation from the top navigation bar, then
right-click your desired node to open the drop-down menu.

[image: image237]

Note

	The users under the /platform/administrators group can do actions related to the site navigation.

	The navigation of a site is created automatically when a site is created.

	The navigation will be deleted automatically after its site has been deleted.

Group navigation

Each group has only one page navigation. Only managers or users with the
* membership role of the navigation group and users of the
administrators group can add/list/edit/delete the navigation or edit
properties.

To manage the group’s page navigation, click [image: image238] –> Portal –>
Group Sites on the top navigation bar.

The Group Navigation Management page will appear.

[image: image239]

User navigation

Actions related to the page navigation of users include adding a new
page, editing a page/page layout. These actions are based on Permission
Setting set to a page.

Note

The page navigation of a user will be created automatically when the user is created (registered).
Only the user who is the owner of the user page navigation can edit it.

No one can create a user page navigation so that no one can delete it. The navigation will be deleted automatically when its user is deleted.

Adding a new node

	Select Add New Node to create a node as a sub-node of the selected
node.

	If you want to create a new node at the root level of the portal,
click [image: image240], then right-click the empty space and select Add
New Node;

	Or, simply click Add Node.

The Add/Edit Page Node form appears.

	Enter values in the Page Node Setting tab.

[image: image241]

In which:

	Field

	Description

	Asterisk (*)

	This mark next to each field means that it is
required to enter values in the field.

	Uri

	An identification of the node that is
auto-created after the new node has been
created.

	Node Name

	The node name which must be unique. Only
alphabetic, numeric and underscore characters
are allowed with its length from 3 to 30
characters and without ANY SPACES.

	Extended label mode

	Ticks this checkbox to activate the extended
label mode for your page node’s label. If this
checkbox is deselected, the Language field will
disappear.

	Language

	Selects your desired language for the node label
from the drop-down menu.

	Label

	The display name of the node on the screen in
the selected language. This field is not
required and may be changed. Its length must be
between 3 and 120 characters, including SPACES.
For example, if you want to create a French
label for your node, first select the Extended
Label Mode checkbox. Next, from the Language
drop-down list, select your desired language and
enter your French label into the Label field.

	Visible

	Enables the page and its node to be shown or
hidden at the navigation bar and sitemap.

	Show Publication Date

	Enables this node to be published for a given
period. Two fields, including Start Publication
Date and End Publication Date only display when
this option is checked.

	Start Publication Date

	The start date and time to publish the node.

	End Publication Date

	The end date and time to publish the node.

Note

You can set date and time by clicking Start Publication Date and End Publication Date and selecting a date from the calendar pop-up.

Note

If a node is not visible (the “Visible” option is unchecked or the current time is not within publication period), it does not appear in any navigation or site map, but is still accessible via its URL.

	Select a page for this node in the Page Selector tab if you want.

[image: image242]

In which:

	Field

	Description

	Page Id

	The identification string of the page which is
created automatically.

	Name

	The selected page’s name.

	Title

	The selected page’s title.

	Create Page

	Creates a new page with the inputted name and
the title.

	Search and Select Page

	Searches and selects an existing page.

	Clear Page

	Removes the inputted page information in the
fields.

	If you select Create Page, input the name and title for the page.

	If you select Search and Select Page, you do not need to enter values
in these fields. They are automatically recorded after you have
selected an existing page from the Select Page form.

[image: image243]

This window lists all existing pages of Portal or Group with
basic information for each page.

You can select a page for creating a node by simply clicking
[image: image244], or search for a specific page as follows:

i. Enter your page title into the Title field to search by title;

Or, enter the site name into the Site Name field to search by the
page’s site name;

Or, enter values into both fields to further limit your search
results by both Title and Site Name.

ii. Select the area in which you want to search into the Type
field.

iii. Click [image: image245] to perform your search. All pages matching
your search criteria will be listed.

iv. Click [image: image246] on the row of the page to select.

After selecting a page, you will see the page details in the Page
Selector form.

	Select one icon in the Icon tab if you want.

	Click Save to accept the new node page, or X to close the form.

Note

To select a page, you must be a member in the Access Permission or Edit Permission list of the selected pages. When the page type is ‘User’, you cannot select a page of other users.

If you do not have the Access permission for any page in the list, please contact your administrator to get appropriate permissions.

Editing a node

	Select Edit this Node from the drop-down menu to open the form with
all similar fields when you add a new node.

	Change values in the fields of the current node, except the Node Name.

	Click Save to complete your changes.

Copying/Pasting a node

These functions are used to reproduce a node in another place.

	Select Copy Node from the drop-down menu.

	Right-click the position you want to paste this node and select Paste
Node.

	Click Save to accept your changes.

Note

Two same node names in the same place are NOT allowed.

Cloning a node

The Clone Node function allows you to copy a node. The difference
between cloning and copying a node is that the cloned node has
its own page with the same content as the selected node. Therefore,
there will be a new page that has the same name as the cloned node’s
page shown in the pages list when you access the Pages Management
page.

	Select Clone Node from the drop-down menu.

	Right-click the position that you want to paste this node and select
Paste Node.

The cloned node will be reproduced in a new place.

	Click Save to accept your changes.

Cutting a node

This function enables you to change the position of a specific node,
such as changing the page path.

	Select Cut Node from the drop-down menu.

	Select the position that you want to paste this node, then click
Paste Node.

	Click Save to accept your change.

The cut node will be moved to your newly selected place.

Note

Two same node names in the same place are not allowed.

Deleting a node

This function is used to remove a node linking to a page. After the node
has been removed, the page has been still existing.

	Select Delete Node from the drop-down menu.

	Click OK in the confirmation message.

	Click Save to accept your change.

Changing nodes order

You can easily move the position of nodes up or down in the navigation
bar following these steps:

	Select Move Up or Move Down from the drop-down menu.

	Click Save to accept your changes.

Managing applications

To manage categories, portlets and gadgets in a portal, you first need
to go to the Manage Applications page by clicking [image: image247] on the
top navigation bar, and select Applications. The Manage Applications
page will appear.

[image: image248]

In which:

	[image: image249] Tab bar consists of two items, including Portlet and
Gadget.

	[image: image250] Action bar consists of actions related to adding a
category and importing applications.

	[image: image251] Left pane lists all categories and portlets/gadgets of
each category.

	[image: image252] Breadcrumb bar is the path from a specific category to a
specific portlet/gadget in that category.

	[image: image253] Right pane provides the detailed information of a
specific portlet/gadget.

Portlets and gadgets are organized into different categories. Each
category contains one or several portlets or gadgets. You can also mix
portlets and gadgets into one category. By default, all gadgets are
placed in the Gadgets category.

Managing categories

Managing categories includes the following actions:

	Adding a new category

	Editing/Deleting a category

	Adding Portlets/Gadgets to a category

Adding a new category

	Click [image: image254] on the Action bar to open the form below.

[image: image255]

In which:

In the Category Setting tab:

	Category name

	The field is required, unique and must start with a letter. Only
alphabetical, numerical, dash and underscore characters are allowed
for this field with the length between 3 and 30 characters.

	Display name

	The display name of the category and its length must be between 3
and 30 characters.

	Description

	A brief description of the category. Any length from 0 to 255
characters is allowed.

	Enter values in the Category Setting tab.

	Select the Permission Setting tab to set the Access permission for
your category. It is required. Accordingly, other users can only view
and use portlets in your category to which they have access.

For example, set the Access permission for all the members of the
/platform/web-contributors group:

[image: image256]

For more details about how to set the Access permission, refer to
Access Permission.

	Click Save to accept adding a new category to the categories list in
the left pane.

Editing/Deleting a category

Editing a category

	Click your desired category, then click [image: image257] on the title bar.

	Update the category information.

	Click Save to apply changes.

Note

You cannot change the category name.

Deleting a category

	Select your desired category and click [image: image258] on the title bar.

	Click OK in the confirmation message.

Adding a portlet/gadget to a category

This function helps you add a portlet/gadget to a specific category
easily as follows:

	Click [image: image259] located on the title bar of the category to which
you want to add portlets/gadgets.

[image: image260]

	Display name

	The display name of a portlet/gadget.

	Application Type

	Either Portlet or Gadget.

	Enter the display name and select an application type.

	Select a portlet/gadget by checking the radio button.

	Click Add to accept adding the selected portlet/gadget to the
category.

Managing portlets and gadgets

Managing portlets and gadgets includes the following actions:

	Adding a portlet/gadget to the Application list

	Activating the Import Applications function

	Viewing/Editing detailed information of a portlet/gadget

	Editing a specific portlet

	Adding a gadget

	Editing a gadget

Adding a portlet/gadget to the Applications list

This section shows you how to add a portlet/gadget to the Applications
list on the left panel of the Manage Applications page.

	Click Portlet/Gadget on the Tab bar to open a list of portlets/gadgets
respectively.

[image: image261]

Details:

	Left panel [image: image262]: The list of portlets/gadget.

	Right panel [image: image263]: The information of the portlet/gadget.

	Breadcrumb bar [image: image264]: The path of the portlet/gadget.

	Click the portlet/gadget which you want to add to the Applications
list.

The information of the portlet/gadget is displayed.

	Click the Click here to add into categories link to open a form which
allows you to select categories for the portlet.

[image: image265]

	Select your desired categories and click Save to accept adding the
portlet/gadget to the Applications list.

Then, you will see the list of categories to which the portlet/gadget is
added.

[image: image266]

Note

In case the portlet/gadget was already added to the Applications list, there is no the Click here to add into categories link.

Activating the Import Applications function

The Import Applications function allows you to import all applications
available in the system to the categories on the left panel. However, to
avoid importing unnecessary applications, this function is hidden on the
action bar by default. To show it on the action bar, do as follows:

1. Go to the Manage Applications page
–> Edit –> Page –> Edit Layout on the Administration bar.

	Hover your cursor over the Application Registry portlet, then click
[image: image267] at the upper left corner of that portlet.

The Edit Mode will be displayed.

[image: image268]

	Tick the Show “Import Applications” button checkbox, then click Save
to accept the changes.

	Click Close to close the Edit Mode form, then click [image: image269] to quit
the Page Editor page.

The Import Applications button is now shown on the Manage Applications
page.

Importing portlets and gadgets

Now you can import default portlets and gadgets into different
categories as follows:

	Click [image: image270] at the right corner on the Action bar.

	Click OK in the confirmation message to accept importing portlets
and gadgets automatically.

All portlets and gadgets of all categories will be imported and listed
on the left panel.

Viewing/Editing detailed information of a portlet/gadget

Viewing a portlet

To view details of a portlet/gadget, simply select one portlet/gadget in
the left panel. The details of that portlet/gadget will be shown on the
right panel.

[image: image271]

	Left panel [image: image272]

	All portlets and gadgets grouped by categories.

	Breadcrumb bar [image: image273]

	The path of the portlet/gadget.

	Right panel [image: image274]

	Details of the portlet: Name, Display Name, Description, and
information on the Access permission.

Editing a portlet

	Click [image: image275] on the top corner of the right panel.

The Edit Application Information form will appear.

[image: image276]

	Make changes on the fields in the form, except Application Name.

	Click Save to commit your changes.

Editing a specific portlet

This section tells you how to access the Edit mode of a portlet and edit
it.

	Define your desired portlet to check if this portlet has been existing
in the portal or page. If not, drag and drop it from Edit Inline
Composer to the main portal body while editing the portal’s layout
or editing a page.

	Hover your cursor over your desired portlet, then click [image: image277]
at the upper left corner of that portlet.

The Edit form will be displayed.

[image: image278]

Normally, a portlet has four tabs: Portlet Setting, Select Icon,
Decoration Themes and Access Permission. However, some portlets may also
have Edit Mode and Preferences tabs. For example, IFrame and Dashboard
portlets have the Edit Mode tab where administrators can define the
interface details.

	Make changes on fields in the various tabs.

	The Portlet Setting tab allows you to change values related to
settings of your selected portlet.

In which:

	Field

	Description

	Display Name

	The display name of portlet which cannot be
changed.

	Portlet Title

	The portlet title with the length between 3 and 60
characters.

	Width

	The portlet’s vertical size. The value of this
field must be in numeric format.

	Height

	The portlet’s horizontal size. The value of this
field must be in numeric format.

	Show Info Bar

	The option enables the information bar to be shown
or hidden. If the Show Info Bar checkbox is not
selected, Portlet Mode and Window State will not
be displayed in that portlet.

	Show Portlet Mode

	The option enables the portlet mode to be shown or
hidden.

	Show Window State

	The option enables the portlet’s window state to
be shown or not.

	Description

	The brief information of the portlet. The length
must be between 0 and 255 characters.

	The Select Icon tab allows you to select an icon for the portlet. By
clicking Get Default, you do not have to select any icon from the
list, the suitable icon will be got automatically.

	The Decoration Themes tab allows you to select a theme for the
portlet from the themes list. By clicking Get Default, you do not
have to choose any theme, it will be automatically set.

	The Access Permission tab allows you to set the access permission on
the portlet. The portlet can be made public to everyone or restricted
to specific groups.

Note

If you set the * permission to a group, all users of that group will have the right to view this portlet, regardless of their membership role.
See the Setting Access permission on a portlet section for details on how to assign the access permission on a portlet.

	Click Save And Close to accept your changes, then click [image: image279] to
quit the Edit Inline Composer/ Page Editor page.

Adding a gadget

To add a gadget, you first need to access the Gadget page by
selecting Gadget on the Tab bar of the Manage Applications page.

[image: image280]

You can add a remote gadget using its URL or create a new gadget into
the list.

Adding a remote gadget

	Click the Add a remote gadget link.

	Enter the link of your desired gadget which is in the .xml format
in the URL field.

[image: image281]

	Click Add to accept your inputted URL.

The selected gadget will be added to the gadgets list in the left panel
with its details in the right panel.

Creating a new gadget

	Click the Create a new gadget link.

	Enter values in the form.

For example:

[image: image282]

	Click Save to accept creating your new gadget.

Note

To add the newly added remote gadget to a specific category, simply click the “Click here to add into categories” link at the bottom of the right panel. The table listing all categories will appear and allow you to select your desired category.

To update information of the added gadget, simply click [image: image283] to refresh information.

	You can delete a local gadget using [image: image284] corresponding to each
gadget in the left gadgets list.

Adding a new gadget from Dashboard

See the Adding more external gadgets from Dashboard
section for instructions on how to add new gadgets from the dashboard.

Editing a gadget

	Select your desired gadget in the left panel, for example Group
Navigations, then click [image: image285] located at the header of the
Gadget Details page to display the following window.

[image: image286]

	Makes changes in the XML Source Code.

	Click Save to commit your changes.

Note

You cannot change the Name field.

Management and Monitoring Gadgets

The Management and Monitoring gadgets include gadgets designed
for providing the overall vision of the system. These gadgets monitor
the system and provide the current system performance statistics which
are especially useful for the system administrators and developers.

Monitoring gadgets

eXo Platform provides 3 types of the Monitoring gadget:

	Memory

	Caches level

	Application Statistics

You can use these gadgets from the Dashboard Workspace. However, you can
quickly use them via the Monitoring page by clicking Administration –>
Administration –> Monitoring on the top navigation bar.

[image: image287]

Memory

The Memory gadget provides the statistics of heap and non-heap memory
via charts which show the part of used memory and remaining memory
during runtime.

[image: image288]

In the table next to the chart, you can see:

	Used: The total used memory.

	Free: The total free memory.

	Total: The total memory.

Caches level

The Caches level gadget displays the eXo cache levels and settings.
Based on these statistics, the administrators can configure the cache
settings properly to get better performance:

	If the cache is full but the hit ratio is low (or missed ratio is
high), it means the cache is full of unnecessary data. It should be
cleared and/or its size is increased, or its lifetime is decreased.

	If the cache is full and the hit ratio is high, this is good. It
means most of data are retrieved from the cache, but not from the
database, so the system gets better performances.

	If the cache is empty, it should be configured differently, for
example, increasing its lifetime.

[image: image289]

	The Consumption tab shows the overall cache consumption in the
system.

	The Hit ratio tab shows the ratio between requested data fetched from
cache and data fetched from database.

[image: image290]

The Details tab shows the cache level and the current cache settings.

[image: image291]

In which:

	Max size: The maximum size of the cache.

	Time to live: The lifetime (in seconds) of cache entries before being
cleared.

	Hit/Missed: The percentage of data fetched from cache versus the
percentage of data fetched from database.

Application Statistics

The Application Statistics gadget lists all information related to the
execution time of all applications in the portal, therefore
administrators and developers will know how fast applications are and
which ones should be optimized.

[image: image292]

The gadget consists of two tabs:

	10 Slowest: Lists 10 slowest applications in the portal.

	All: Shows the total number of applications and a list of the
applications in the portal.

Each application provides you with the following information:

	The execution phase next to the application name (if any). For
example: AllSpacesPortlet/ACTION_PHASE

	The full path of the application when you hover your cursor over its
name.

	The average execution time (in ms) highlighted next to the
application name.

	The time will be highlighted with the yellow color if it is more
than 1000 ms and less than 5000 ms.

	The time will be highlighted with the red color if it is more than
5000 ms.

	exec: The number of executions of the application.

	min: The minimum execution time of the application.

	max: The maximum execution time of the application.

Service Management

The Service Management gadget provides an interface to interact with
manageable services via REST management API.

You can use these gadgets from the Dashboard Workspace. However, you can
quickly use them via the Service Management page by clicking
Administration –> Administration –> Management on the top navigation
bar.

The Service Management page is displayed.

[image: image293]

	Select the service from the Services drop-down list. For each
selected service, its respective methods and properties are shown.

To invoke a method of the selected service, click Run corresponding
to it. After invoking it successfully, you will see the result
returned if any.

Building an online community

Many users ask for building a Community site like
http://community.exoplatform.com. In this site, they want to allow their
users to register by themselves, or publish some pages, such as Forum.
This tutorial will guide you how to do these tasks via UI.

Note

This tutorial has some limitations due to using UI only. For example, you can allow users to access the Register page, but when a user finishes his registration, he is not automatically redirectedto Home page.
To go further, you need to do some development tasks. And if you meet any troubles, go to eXo Forum [http://community.exoplatform.com/portal/intranet/forum] to get some help.

Before you follow the step-by-step instruction to allow Guest access,
let’s learn the “portal manner” of access control:

Publishing sites and pages

When you access intranet site, you are asked to log in, because the
access permission of the site is *:/platform/users by default. So, to
publish any resource under the “intranet” site, you need to make the
site public first. And what happens then?

When the site is public, but all the pages are private, then you are
still seeing a login form. If there is one public page, the portal will
redirect you there without login. If there are several public pages, the
topmost one in the site navigation will be the default redirection.

Knowing this, you can allow anonymous users to access some public pages.
In the example, you will publish Wiki and Forum, and put a new page
called “Welcome” as the default page for anonymous access.

How to enable users to register themselves

eXo Platform provides a built-in Register page already. See the
screenshot below:

[image: image294]

The page is not a public one, but the membership *:/platform/guests
has access permission, so if the site is public, anonymous users can
type the URL /portal/intranet/Register to access this page. You can
put a link in the Welcome page so that the user does not have to type
the URL.

The Welcome page should also give a Login link. Hereunder is the web
content (simplified) you should add to Welcome page:

Sign in
Register

Site Navigation

You have read that the topmost page in Site Navigation will be picked up
for redirection, when users access /portal/intranet. The Site
Navigation can be edited by clicking Edit –> Site –> Navigation from
the top navigation bar.

See the screenshot. You can right-click on a page (actually a “node”)
and choose Move Up (several times) to change the order of the pages.

[image: image295]

In the example, you publish Welcome, Wiki and Forum pages so you should
“Move Up” the Welcome page to the top, but below the Home page. This
makes Welcome the default page for anonymous while keeping Home the
default page for logged users.

You want the Welcome page to offer anonymous users the “Login/Register”
links, but logged-in users should not see it. Though they always can
access by typing page URL, it is nice to hide Welcome page from the Left
Navigator.

To do that, right-click again and choose “Edit this Node”, then uncheck
the Visible box in the form:

[image: image296]

Left Navigator

You can publish the Left Navigator for anonymous access. It is a smart
navigator that shows users a page link if and only when the user has
access permission to the page, so anonymous only see public pages.

The Left Navigator is in fact “some containers and portlets” included in
the Site Layout, so you can edit it by clicking Edit –> Site –>
Layout.

Exactly, you need to publish the portlet UICompanyNavigationPortlet
and publish its containers as well. See the illustration. There are
three (nested) containers, the outermost one is public by default.

[image: image297]

Publishing a content

Almost every page is a portal page which consists of containers and
portlets. It is the portlet that brings content to you. In order to
allow anonymous users to view a content, you need to publish: the
portlet that presents the content, the containers of the portlet, the
page and the site. See the following illustration, note that containers
can be nested:

[image: image298]

The content access also is managed by the relevant application. Wiki
application allows you to set permission for any individual page. In
Forum, the permissions can be set for topic, forum and category. In case
of Content, each content has its publication lifecycle.

Make it public

To publish the intranet site, go to either of its page, like Home
page, and click Edit –> Site –> Layout from the top navigation bar,
then select Site’s Config from the Edit Inline Composer window. In the
Permissions –> Access, tick the Everyone checkbox.

[image: image299]

The Everyone checkbox is also available when you edit a page and its
portlets and containers.

When you are on the page you want to edit, click Edit –> Page –>Layout
from the top navigation bar. This will open a layout of the portlets and
the containers, and a Page Editor floating box.

	To edit the page access permission: click View Page properties.

	To edit a portlet’s access permission: hover your cursor over the
portlet area to see a toolbar.

	To edit a container’s access permission: similar as the portlets, but
you need to click the Containers tab in the Page Editor window.

Building an online community by example

In this example, you build a “Welcome” page and make it the default page
for anonymous users and give them links to login or register. You also
publish the Forum and Wiki page to allow anonymous users to view.

You should have administrator privileges. Remember to Save your
modification at every step.

	Publish the intranet site.

2. Publish the left navigator, or more exactly the portlet
UICompanyNavigationPortlet and its containers.

See the above Left
Navigator for details.

	Create a web content that gives the links to login and register, as
follows:

Click Administration –> Content –> Sites Explorer. You can create the
content somewhere in a general drive, for example
Sites Management:/intranet.

Choose the template Web Content:

[image: image300]

Input title as “welcome” for example. Click Source (see the
screenshot) then put the following code to its content:

<table style="width: 100%">
 <tbody>
 <tr>
 <td style="width: 1px; white-space: nowrap">Please login if you have an account already:</td>
 <td>Sign in</td>
 </tr>
 <tr>
 <td style="width: 1px; white-space: nowrap">Or register a new one:</td>
 <td>Register</td>
 </tr>
 </tbody>
</table>

[image: image301]

Save and publish the content.

[image: image302]

	Create a Welcome page. Take care to create the page in the same
level with the Home page.

Add the Content Detail portlet to the page. Edit the portlet to
select the content you created.

[image: image303]

Publish the portlet and the page.

5. Move up the Welcome page as described in Site Navigation.
Also, make the page invisible.

	Publish Forum page.

	Publish Wiki page. As the Wiki Home is restricted by default,
publish it as well.

The following image shows the screen when an anonymous user accesses
/portal.

[image: image304]

Installation and Startup

eXo Platform is packaged as a deployable enterprise archive defined by
the Java EE specification, and as a configuration directory. In this
chapter, you will see the following topics:

	System requirements
Specifications which are required for running eXo Platform.

	Installing eXo Platform Trial docker image
Steps needed to install eXo Platform Trial.

	Installing eXo Platform CommunityEdition
Steps needed to install eXo Platform Community Edition.

	Registering your installation
Instructions for how to register your installation the eXo Tribe.

	Unlocking your trial with an unlock key
Instructions for how to unlock the free 30-day trial.

	Installing eXo Platform Enterprise Edition
Instructions on how to install the enterprise edition.

	Task Management Installation
Steps for how to install and uninstall Task Management.

	eXo Chat Installation
Steps for how to install and uninstall eXo Chat through two
modes: The embedded mode and standalone mode.

	Web Conferencing Installation
Steps for how to install and uninstall eXo Web Conferencing.

	Customizing environment variables
How to customize environment variables, such as JVM Memory and GC
settings.

	Startup profiles
The runtime profiles which are used to enable/disable modules of
eXo Platform.

	Troubleshooting
How to solve problems you may encounter when starting up eXo
Platform.

System requirements

Warning

The requirements cited below are provisional and may change according to quality tests findings.

To run eXo Platform 5.2, your system is required to meet the following
specifications or higher:

	CPU: Multi-core recommended, 2GHz minimum.

	Memory: The eXo Platform package is optimized with default settings: max
heap size = 4GB and non-heap size = 256MB; so the available memory
should be at least 4GB. It is recommended you have a memory of 8GB
(4GB free for database services and file system caches).

	Free disk space: 10GB minimum

	Java 8+: JDK 8 is required for eXo Platform 5.2 version.
Set the JAVA_HOME environment variable to point to your JDK
installation.

	Java 7 and below is incompatible for eXo Platform 5.2 version.

	Browser Compatibility:

	Operating
system

	Recommended
browser

	Supported
browser

	Compatible
browser

	Incompatible
browser

	Windows

	
	Firefox ESR
52.4

	Edge 15

	Chrome 62

	
	Internet
Explorer 11

	Edge,
Chrome,
Firefox -
Latest
stable

	
	
	Internet
Explorer 10
and below

	Linux

	
	Firefox ESR
52.4

	
	Firefox -
the last
stable

	
	Chrome - the
latest
stable

	

	Mac OS

	
	Firefox ESR
52.4

	Chrome 62

	
	Firefox -
the last
stable

	Chrome - the
last stable

	
	Safari 11,10

	
	Safari 8 and
below

	Android

	
	
	Chrome 55

	
	Chrome - the
latest
stable

	Firefox -
the latest
stable

	

	iOS

	
	
	Chrome 55

	Safari 9

	
	Chrome - the
latest
stable

	Safari 8

	

Note

The eXo server will run on the port 8080 by default, so make sure this port is not currently in use or configure eXo Platform to use another port.

eXo Platform Trial Docker image

In this section, we will provide how to install the Trial edition of
eXo Platform and the steps following the installation from registering the
software to unlocking it.

Here are the steps to follow:

	Starting the Docker Image

	Registering your software

	Setting up the admin accounts

Starting the Docker Image

The trial edition of the commercial version of eXo Platform is available as
docker container in various versions: 5.1.0, 5.0.1, 4.4.3 …

In this section, you will learn how to start and stop it.

Warning

eXo Platform’s Community Edition and the trial version of the commercial Enterprise Edition are only available as a Docker install
to facilitate deployment for testing. Owners of the full commercial version are not supported based on a Docker install, this
Docker-related documentation is therefore not relevant to them.
Subscribed customers can refer to next sections to install their commercial package.

The docker image of the trial version of eXo Platform Enterprise Edition
supports only HSQL database for testing purposes.

To be able to start eXo Platform Trial Docker image, these prerequisites
should be satisfied:

	Docker daemon version 12+ installed on your machine.

	Internet connection.

	4GB of RAM available and 1GB of free disk space.

Having the above requirement satisfied, you can start eXo Platform trial
edition using this command:

docker run --rm -v exo_trial_data:/srv -p 8080:8080 exoplatform/exo-trial

A log message appears indicating the startup of the server:

2017-09-19 12:34:54,573 | INFO | Server startup in 80328 ms [org.apache.catalina.startup.Catalina<main>]

The platform is then accessible via http://localhost:8080.

To stop the server, just click on Ctrl+c in the keyboard or run the
command:

docker stop <your-container-ID>

The container-ID is known via the command:

docker ps

Tip

For more details about eXo Platform Trial edition Docker image: versions, how to configure, how to add/remove add-ons…, you can consult this documentation [https://hub.docker.com/r/exoplatform/exo-trial/].

Registering your software

eXo Tribe provides access to an enormous community of eXo Platform users
and developers.

As a result, registration is needed so that you can post questions in
the community to get help from other IT professionals around the world.
Also, by registering your installation in the tribe, you will contribute
to anonymous statistics published on the tribe website and help
improving the eXo Platform.

After a successful installation, at the first startup, you will be
redirected to the Register your Software screen as follows:

[image: image0]

Note

For the Enterprise edition, you have to accept the Terms and Conditions Agreement before going to the registration.

From the Register your Software screen, click Register your software
to start the registration. If you do not want to register this time,
just click the Skip button, but remember that skipping is allowed only
twice.

[image: image1]

Click the Authorize button to activate the authorization process (you
can select Cancel to skip registering this time, but remember that
canceling is also allowed only twice), if successful, you will see this
message:

[image: image2]

It means the registration has completed. Now you can select Continue to
start using eXo Platform. Once this is registered, you will never be asked
for registration again.

Note

	If the eXo Tribe website can’t be reached, you will get this message:

[image: image3]

In this case, clicking the Continue button still allows you to start using eXo Platform as normal, but you will be asked to register again after next server startup.

	Upgrading to a new platform version will require a new registration.

	For the Enterprise edition, it is possible to skip the registration completely by unlocking it with an official key.

	If the authorization process failed, try to redo the registration or contact our support team [https://community.exoplatform.com/portal/intranet/] for more details.

Setting up the admin accounts

After registering your installation to benefit from eXo Platform community
advantages, you are asked to set up administrators accounts.

This screen appears allowing you to fill in information for users
promoted as the administrators of the platform:

[image: image4]

In the first part of the screen, the user will belong to the group
/platform/administrators. The second part of the screen allows you to
redefine the super user root password.

Installing eXo Platform Community Edition

eXo Platform Community Edition is distributed as a convenient Docker image
available with different versions: 5.1, 5.0, 4.4, 4.3…

Docker [https://www.docker.com] is a software container platform
which enables enterprises to build agile software delivery pipelines to
ship new features faster, more securely and with confidence for both
Linux, Windows Server, and Linux-on-mainframe apps.

Warning

eXo Platform’s Community Edition and the trial version of the
commercial Enterprise Edition are only available as a Docker install
to facilitate deployment for testing. Owners of the full commercial
version are not supported based on a Docker install, this
Docker-related documentation is therefore not relevant to them.
Subscribed customers can refer to next sections to install their commercial package.

In this section, we will provide the needed steps to install an eXo Platform
Community Edition docker image.

This docker image of eXo Platform supports HSQL database for testing purposes
and MySQL for eXo Platformion environments.

To try the eXo Platform community edition docker image, some prerequisites
should be satisfied:

	Docker daemon version 12+ installed on your machine.

	Internet connection.

	4GB of RAM available and 1GB of free disk space.

To start and test eXo Platform Community Edition, simply execute this
command:

docker run -v exo_data:/srv/exo -p 8080:8080 exoplatform/exo-community

The execution of this command will launch a container of the last
millestone version of eXo Platform PLF_VERSION and the version is updated
every week after each weekly release:

Note

You can set a custom name to your container by adding the option --name custom_name to the start command.

2017-09-19 09:37:10,271 | INFO | Server startup in 176588 ms [org.apache.catalina.startup.Catalina<main>]

The above log message indicates the server startup. You can start
exploring eXo Platform Community Edition by visiting the URL
http://localhost:8080 and then follow the instructions.

To shutdown the server, you can either click on the keyboard buttons
Ctrl+c or execute this command:

docker stop <your-container-name>

Note

To list all docker conatainers that already exist on your machine with their different parameters, just execute this command:

docker ps -a

An example of the result of the cited command:

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
6d6d74d07030 exoplatform/exo-community "/opt/exo/start_eX..." 6 minutes ago Up 6 minutes 0.0.0.0:8080->8080/tcp agitated_williams
ee949d337207 exoplatform/exo-community "/opt/exo/start_eX..." About an hour ago Exited (130) About an hour ago vibrant_feynman

To just paste parameters of the running container, the command to execute is:

docker ps

With a docker container, it is possible to start eXo Platform in debug or dev
mode: by adding –debug or –dev:

	Debug mode: You should add the option –debug to the start command
cited above and you should specify the debug port by the parameter
-p 8000:8000.

A log message appears indication that the debug mode is active:

Listening for transport dt_socket at address: 8000

	Dev mode: You should add the option –dev to the start command
cited above.

Tip

For more details about eXo Platform Community Docker image: versions, how to configure, how to add/remove add-ons…, you can consult this documentation [https://hub.docker.com/r/exoplatform/exo-community/].

Registering your installation

eXo Tribe provides access to an enormous community of eXo Platform users
and developers. As a result, registration is needed so that you can post
questions in the community to get help from other IT professionals
around the world. Also, by registering your installation in the tribe,
you will contribute to anonymous statistics published on the tribe
website and help improving the product.

After a successful installation, at the first startup, you will be
redirected to the Register your Software screen as follows:

[image: image5]

Note

For the Enterprise edition, you have to accept the Terms and Conditions Agreement before going to the registration.

From the Register your Software screen, click Register your software
to start the registration. If you do not want to register this time,
just click the Skip button, but remember that skipping is allowed only
twice.

[image: image6]

Click the Authorize button to activate the authorization process (you
can select Cancel to skip registering this time, but remember that
canceling is also allowed only twice), if successful, you will see this
message:

[image: image7]

It means the registration has completed. Now you can select Continue to
start using eXo Platform. Once this is registered, you will never be asked
for registration again.

Note

	If the eXo Tribe website can’t be reached, you will get this message:

[image: image8]

In this case, clicking the Continue button still allows you to start using eXo Platform as normal, but you will be asked to register
again after next server startup.

	Upgrading to a new platform version will require a new registration.

	For the Enterprise edition, it is possible to skip the registration completely by unlocking it with an official key.

	If the authorization process failed, try to redo the registration or contact `our support team <https://community.exoplatform.com/portal/intranet/>`__for more details.

Unlocking your trial with an unlock key

eXo Platform offers commercial editions as a 30-day trial. Thus, you will
see a trial banner at the page footer.

[image: image9]

	During the trial period, the message of the trial banner is “You have
XX days left in your evaluation” where XX is the number of days left
for your trial.

	After the trial period, the trial banner turns into red with the
“Your evaluation period has expired XX days ago” text where XX is the
number of days as from the expired trial.

Unlocking your trial with an unlock key

You need to purchase a key to unlock the evaluation.

The unlock is done via Unlock Evaluation screen. Open this screen by
clicking Buy a Subscription on the trial banner.

[image: image10]

On this screen:

	If you have not purchased a key yet, click the subscription plan
link. It should open the Editions
page [http://www.exoplatform.com/company/en/products/editions]
which helps you choose a plan.

Then, go to eXo Buy page [https://exoplatform.com/buy] to
complete the purchase.

[image: image11]

Note

You may copy the Product Code from the Unlock screen and submit it in the Buy page, otherwise a new code will be generated and sent to you along with the key.
If you have any trouble, please contact support@exoplatform.com.

	If you have received a key already, come back to Unlock Evaluation
screen to activate your subscription. Enter your Unlock Key (and
Product Code if you received one) and click Unlock.

This function validates your key against the product code. If the key
is invalid, it displays a message like “Sorry this evaluation key is
not valid”. On success, it just redirects you to the previous
page.

Installing eXo Platform Enterprise Edition

In this section, we will provide how to install the enterpise edition of
eXo Platform in the two application servers: Tomcat and Jboss.

	Installing the Tomcat bundle
Steps to install eXo Platform enterprise edition in Tomcat.

	Installing eXo Platform as a Windows service
Steps to install eXo Platform as a Windows service.

	Installing on JBoss EAP
Steps to install eXo Platform enterprise edition in Jboss.

Installing the Tomcat bundle

The eXo Platform Tomcat bundle is a ready-made package on top of the Tomcat 8.5
application server. So, you just need to download and extract the
package (named eXo-Platform-5.2.0.zip, for example) on your server.
In this guideline, $PLATFORM_TOMCAT_HOME is the folder path of the
extracted package.

Starting up the server

eXo Platform is started with a built-in startup script file, which is
start_eXo.sh for Linux and OS X (Mac), and start_eXo.bat for
Windows. Double-click, or run it in console (Terminal or Command
Prompt):

	Linux/OS X: $PLATFORM_TOMCAT_HOME/start_eXo.sh

	Windows: %PLATFORM_TOMCAT_HOME%\start_eXo.bat

The server is started successfully when you see a message like this:

INFO: Server startup in 120619 ms

To start eXo Platform as a background process, use the –background
option:

	Linux/OS X: $PLATFORM_TOMCAT_HOME/start_eXo.sh --background

	Windows: %PLATFORM_TOMCAT_HOME%\start_eXo.bat --background

You can always check the log files under $PLATFORM_TOMCAT_HOME/logs.

Shutting down the server

If you have started eXo Platform in console (without –background option),
just press Ctrl+C to stop it.

In case it is running as background process, you can use the
stop_eXo script:

	Linux/OS X: $PLATFORM_TOMCAT_HOME/stop_eXo.sh

	Windows: %PLATFORM_TOMCAT_HOME%\stop_eXo.bat

If you still see the process running, you may forcefully stop it. There
are several ways: using Task Manager (Windows), or running
stop_eXo.sh -force (Linux/OS X), or using kill -9 command
(Linux/OS X).

Starting up eXo Platform in the Dev/Debug mode

In eXo Platform, the Debug mode is generally like other Java applications
using
JDWP [http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html],
whereas the Dev mode is specific for debugging JavaScript, CSS and
configurations.

To start eXo Platform in the Debug mode, use the –debug option:

	Linux/OS X: $PLATFORM_TOMCAT_HOME/start_eXo.sh --debug

	Windows: %PLATFORM_TOMCAT_HOME%\start_eXo.bat --debug

The –debug option actually adds a JVM option to the Java process:

	-agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

To start eXo Platform in the Dev mode, use the –dev option. This option
adds two JVM options:

	-Dorg.exoplatform.container.configuration.debug

	-Dexo.product.developing=true

Note

The Debug and Dev modes are turned off by default and are not
recommended in production environment because of performance impact.
See more details in Developer guide.

Installing eXo Platform as a Windows service

This section is a tutorial to teach you how to configure eXo Platform as a
windows service. To configure eXo Platform to run as a windows service, two
ways are possible.

The first way: Through Tomcat native installer

This section describes how to configure eXo Platform as a Windows service
in a standard Tomcat installation.

For that purpose follow this procedure:

	Use a sample batch script, you can take a look at apache tomcat
documentation [https://tomcat.apache.org/tomcat-8.5-doc/windows-service-howto.html]
or you can use this script [https://github.com/exo-samples/docs-samples/blob/master/exo-as-win-service-script/service_eXo.bat]
service_eXo.bat and put it under eXo_Platform_tomcat_home\bin\.

	Open a command prompt and run this command:

service_exo.bat install eXo-service

Where eXo-service is the service name.

This will install eXo Platform as a windows service which will be started
at the system’s startup.

	To uninstall the service, run this command:

tomcat8.exe //DS//eXo-service

The second way: Using the NSSM tool

The non sucking service manager NSSM [https://nssm.cc/] is a tool
that helps you to create a windows service based on your
application’s startup script.

To create your eXo Platform windows service using NSSM, follow this
procedure:

	Download the NSSM [https://nssm.cc/] tool from here [https://nssm.cc/download].

	Place the NSSM executable file i.e nssm.exe in a folder which already exists in your PATH or follow these steps:

	Create a folder nssm under C:\Program Files\ and place
nssm.exe in it.

	Add the folder C:\Program Files\nssm to your PATH environement
variable using this command in a command prompt:

setx PATH "%PATH%;C:\Program Files\nssm" /M

	In a command prompt, run this command:

nssm install <servicename>

This will open a nssm window allowing you to browse and select your
application startup script.

[image: image12]

	Point to eXo Platform startup script start_eXo.bat and click on
Install service button.

	You can now run eXo Platform through this command:

nssm start <servicename>

	To stop eXo Platform server, use this command:

nssm stop <servicename>

More details about NSSM commands in this link [https://nssm.cc/usage].

Installing on JBoss EAP

Starting from the versions 5.1, eXo Platform integrates with JBoss EAP 7.1.

Prerequisites

	Have JBoss EAP 7.1 extracted in $PLATFORM_JBOSS_HOME. You can
download and install JBoss EAP 7.1 by following instructions on this
link [https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.1/html/installation_guide/installing_jboss_eap].

	Have the eXo Platform package for JBoss EAP downloaded into your local.

Installing eXo Platform on JBoss EAP

	Extract your downloaded eXo Platform package.

	Copy all extracted folders and files into $PLATFORM_JBOSS_HOME.

Note

This step will overwrite some files of JBoss EAP with new files of eXo Platform.

	Optionally, if you want to customize the JVM Options, create a copy of
$PLATFORM_JBOSS_HOME/bin/standalone-customize.sample.conf on Linux
or $PLATFORM_JBOSS_HOME/bin/standalone-customize.sample.conf.bat on
Windows. Rename the copy to standalone-customize.conf (or
standalone-customize.conf.bat on Windows), then edit it with your
JVM Options.

	Start up the server.

	On Linux and OS X:

$PLATFORM_JBOSS_HOME/bin/standalone.sh

	On Windows:

%PLATFORM_JBOSS_HOME%\bin\standalone.bat

The server starts up successfully when you see the following message in
your log/console

INFO [org.jboss.as] (Controller Boot Thread) WFLYSRV0025: JBoss EAP 7.1.0.GA (WildFly Core 3.0.10.Final-redhat-1) started in 115316ms - Started 4570 of 4826 services (602 services are lazy, passive or on-demand)

	Shut down the server.

	On Linux and OS X

$PLATFORM_JBOSS_HOME/bin/jboss-cli.sh –connect command=:shutdown

	On Windows

%PLATFORM_JBOSS_HOME%binjboss-cli.bat –connect command=:shutdown

The server stops successfully when you see the following message in your
log/console:

INFO [org.jboss.as] (MSC service thread 1-4) WFLYSRV0050: JBoss EAP 7.1.0.GA (WildFly Core 3.0.10.Final-redhat-1) stopped in 13470ms

Note

Since JBoss EAP 6.3, there is a new blocking timeout property for
JBoss startup.

This property is not a timeout per deployment but a timeout on
container stability and if jboss.as.management.blocking.timeout
is reached during startup then all applications will be undeployed
and the container shutdown.

The default value is set to 300s which is too low for eXo Platform in
which we overrode the value.

JAVA_OPTS="$JAVA_OPTS -Djboss.as.management.blocking.timeout=604800"

Task Management Installation and Uninstallation

Note

Only the administrator has the right to install and uninstall this application.

The Task Management add-on is supported for both Enterprise and
Community editions.

Installation

To install the Task Management add-on, use this command:
addon install exo-tasks.

This will automatically create a new part named Tasks on the left
navigation bar as follows:

[image: image13]

Clicking this part will direct you to the Task Management
workspace.

Uninstallation

Simply use the command: addon uninstall exo-tasks.

eXo Chat installation

eXo Chat application has two installation modes available:

	The embedded mode: eXo Chat is deployed inside eXo Platform.

	The standalone mode: eXo Chat is installed into a dedicated
server.

Each mode has its advantages:

	The embedded mode is simplier architecture, you have not to install
an another Tomcat server.

	The standalone mode has better scalability and performance since
server resources are not shared between eXo Platform and eXo Chat, and
since the eXo Chat can be clustered.

More details about the installation procedure through these two parts:

	eXo Chat installation into eXo Platform server

	eXo Chat installation into a dedicated server

eXo Chat installation into eXo Platform server

	The Chat add-on uses MongoDB [http://www.mongodb.org/downloads]
to store information and messages, so you need to download and install it.
More details here.

	Install Chat add-on with the command: addon install exo-chat. The
installation procedure is the same to that of other add-ons, as
detailed in Installing/Uninstalling add-ons, Administrator Guide.

Note

By default, a chatPassPhrase property has been created. The eXo Chat server provides some operations via REST service so that
anyone who knows the passphrase can do things, such as dropping, re-creating and indexing the database, so you need to change this
property in the configuration file.

	Start eXo Platform server. When users sign in eXo Platform, the Chat
icon ([image: image14]) will be shown on the top navigation bar.

eXo Chat installation into a dedicated server

eXo Platform provides the standalone mode to install eXo Chat into a
dedicated server. In this mode, the backend of eXo Chat application
is deployed in its own Tomcat application server while the frontend i.e.
the portlets are deployed in eXo Platform instance.

This alternative architecture brings better scalability and performance
since server resources are not shared between eXo Platform and eXo Chat.
It allows to add more eXo Chat server nodes independently from
eXo Platform nodes.

The schema below summaries the standalone mode architecture:

[image: image15]

To install eXo Chat in standalone mode, follow this procedure:

	Ensure to uninstall eXo Chat from eXo Platform server if it is already
installed by the Addon manager: addon uninstall exo-chat

	Download eXo Chat package:
chat-standalone-server-packaging [https://repository.exoplatform.org/content/groups/public/org/exoplatform/addons/chat/chat-standalone-server-packaging/2.0.0/chat-standalone-server-packaging-2.0.0.zip]
into a known location and rename it to chat_server_package.

The package chat_server_package contains these files:

	exo-chat-standalone-application-x.y.z.zip containing the files:
chat-services.jar chat-extension.war, chat-common.jar and
chat.war.

	exo-chat-standalone-server-x.y.z.zip containing the war
chatServer.war

	chat-sample.properties

	Install and configure MongoDB [https://www.mongodb.com/download-center#atlas] database by following this link.

	Configure chat server on Tomcat by following these steps:

	Install the latest update of Apache Tomcat 8 [https://tomcat.apache.org/download-80.cgi]
and rename it to chat-server.

	Change the server.xml file to use the port 8280:

<Connector port="8280" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8243" URIEncoding="UTF-8" />

Note

	Make sure there is no port conflicts between the eXo Chat server and other systems. If you deploy the eXo Chat server on

	the same host than eXo Platform, then, you should change all the ports as in the example above.

	Deploy chat application in Apache tomcat by copying the following
files:

	Copy the war file chatServer.war from
chat_server_package/exo-chat-standalone-server-x.y.z to

chat-server/webapps/ folder.

	Copy chat-sample.properties to chat-server/conf/ folder

and rename it to chat.properties.

	Adapt the configuration file chat.properties to fit with your

environments by updating the following properties:

standaloneChatServer=true
dbServerHost=[MongoDB-Host]
dbServerPort=[MongoDB-Port]
dbName=chat
dbAuthentication=false
dbUser=admin
dbPassword=pass
chatPortalPage=/portal/intranet/chat
chatPassPhrase=change-me

	Start the chat server:

cd chat-server
./bin/catalina.sh run

	Install Chat application into eXo Platform server :
./addon install exo-chat-client

	Configure these properties in eXo_tomcat/gatein/conf/chat.properties:

standaloneChatServer=true
chatServerBase=http://[chat-server-IP-address]:8280
chatPortalPage=/portal/intranet/chat
chatIntervalSession=60000
chatPassPhrase=change-me

	Start eXo Platform server:

cd eXo_tomcat
./start_eXo.sh

	Install a frontal server and configure it to redirect Chat server
requests to the right server. Below an example of an Apache2
configuration file (It should be adapted according to your environment):

<VirtualHost *:80>
 ErrorLog /var/log/apache2/error.log
 CustomLog /var/log/apache2/access.log combined
 #Put your used ServerName
 ServerName www.domainexo.com

 <Proxy *>
 Order deny,allow
 Allow from all
 </Proxy>

 <IfModule proxy_wstunnel_module>

ProxyPass /chatServer/cometd ws://localhost:8280/chatServer/cometd max=100 acquire=5000 retry=5 disablereuse=on flushpackets=on

 ProxyPass /cometd ws://localhost:8080/cometd/ max=100 acquire=5000 retry=5 disablereuse=on flushpackets=on

 </IfModule>

 ProxyPass /chatServer http://localhost:8280/chatServer
 ProxyPassReverse /chatServer http://localhost:8280/chatServer
 ProxyPassReverse /chatServer/cometd/ ws://localhost:8280/chatServer/cometd/

 ProxyPassReverse /cometd ws://localhost:8080/cometd/
 ProxyPass / http://localhost:8080/
 ProxyPassReverse / http://localhost:8080/

 ProxyRequests Off
 ProxyPreserveHost On
</VirtualHost>

	Login to the platform using this url http://www.domainexo.com:80/portal/intranet/,
you should have the chat application in the top navigation menu.

Web Conferencing installation

Note

Only the administrator has the right to install and uninstall this application.

The Web Conferencing add-on is supported for both Enterprise and
Community editions.

The Web Conferencing add-on is by default installed in the Enterprise
Edition. You can uninstall it using this command:

./addon uninstall exo-web-conferencing

If you want to re-install it again, you should just run this command:

./addon install exo-web-conferencing

If you are using the Community Edition and you want to benefit from the
Web Conferencing add-on, you need to install it as it is not set by
default.

Customizing environment variables

There are 2 scripts that involve setting environment variables. They are
called the default script and the customized script in this
document.

In Tomcat bundle and for Linux, they are:

	
	$PLATFORM_TOMCAT_HOME/bin/setenv.sh which is defaulted in the

	eXo Platform package.

	$PLATFORM_TOMCAT_HOME/bin/setenv-customize.sh which will be
created by yourself, as explained later.

Their Windows versions are:

	$PLATFORM_TOMCAT_HOME/bin/setenv.bat

	$PLATFORM_TOMCAT_HOME/bin/setenv-customize.bat

Except their syntax, .sh and .bat versions are the same.

In JBoss, the scripts are:

	$PLATFORM_JBOSS_HOME/bin/standalone.conf - the default script.

	$PLATFORM_JBOSS_HOME/bin/standalone-customize.conf - the
customized script.

	$PLATFORM_JBOSS_HOME/bin/standalone.conf.bat - Windows version.

	$PLATFORM_JBOSS_HOME/bin/standalone-customize.conf.bat - Windows
version.

Usage of the 2 scripts

	Variables in the customized script, if they exist, override variables
in the default script.

	If the customized script does not exist, variables in the default
script take effect.

	For safety, you should not modify the default script. Any
customization should be done by the customized script.

Starting your customization

	Rename a file in bin folder, as below:

	For Tomcat in Linux: rename setenv-customize.sample.sh to
setenv-customize.sh.

	For Tomcat in Windows: rename setenv-customize.sample.bat to
setenv-customize.bat.

	For JBoss in Linux: rename standalone-customize.sample.conf to
standalone-customize.conf.

	For JBoss in Windows: rename standalone-customize.sample.conf.bat
to standalone-customize.conf.bat.

	Find the variable that you want to customize, uncomment it (by removing
‘#’ in the .sh file or “REM” in the .bat file) and edit its
value.

Use # to comment out a line in .sh, and REM in .bat. To
comment out a block:

	In .sh, use the pair of :<<LABEL and LABEL. For example:

:<<old_configurations
EXO_JVM_SIZE_MAX="1g"
EXO_JVM_SIZE_MIN="1g"
old_configurations

	In .bat, use the pair of GOTO LABEL and :LABEL. For
example:

GOTO old_configurations
SET EXO_JVM_SIZE_MAX=1g
SET EXO_JVM_SIZE_MIN=512m
:old_configurations

In next sections, you will walk through:

	Basic Customization

	Advanced Customization

Basic Customization

Simple assignment statement is used to customize variables in this
section:

	In .sh: variable_name=variable_value.

	In .bat: SET variable_name=variable_value.

JVM configuration

	Configuration

	Description

	JAVA_HOME="/opt/java/
jdk6"

	JAVA_HOME is auto-detected by default. In
case you specify it, notice that it is parent of
the jre folder.

	``EXO_JVM_VENDOR=”IBM”`
`

	This configuration (for Tomcat and Linux only)
is here because IBM Java requires different
XML Parser library. Do not uncomment it unless
you are using IBM Java.

	``EXO_JVM_SIZE_MAX=”4g”
``

``EXO_JVM_SIZE_MIN=”1g”
``

EXO_JVM_PERMSIZE_MAX=
"128m"

	JVM memory settings. Their combination equals
-Xmx4g -Xms1g -XX:MaxPermSize=128m, in which
EXO_JVM_SIZE_MAX equals Xmx.

Uses “g” for Gigabytes and “m” for Megabytes. It
is possible to set the same value for
EXO_JVM_SIZE_MAX and EXO_JVM_SIZE_MIN.

	EXO_JVM_USER_LANGUAGE
="fr"

EXO_JVM_USER_REGION="
FR"

	JVM locale settings. Their combination equals
-Duser.language=fr -Duser.region=FR.

The default language is “en”, the default region
is “US”. A full list of valid language codes can
be found at IANA Language Subtag
Registry [http://www.iana.org/assignments/language-subtag-registry/language-subtag-registry].

	EXO_DEBUG=true

``EXO_DEBUG_PORT=”8000”
``

	Their combination equals the JVM Option:
-agentlib:jdwp=transport=dt_socket,address=800
0,server=y,suspend=n

Is not used for production environment.

Platform configuration

	Configuration

	Description

	EXO_PROFILES="all,myOwnProfile"

	Tomcat only. The default profile
is “all”. If you customize this
variable, refer to Startup profiles

	EXO_CONF_DIR="/opt/ciagent/
.eXo-platform/conf"

	The default configuration folder
is ./gatein/conf/ (Tomcat
only).

	EXO_DATA_DIR="/opt/jenkins/
.eXo-platform/data"

	The default data directory is
./gatein/data (Tomcat only).

	EXO_DEV=true

	Preserved for the development
tasks. Do not uncomment this in
the production environment.

	EXO_JCR_SESSION_TRACKING=true

	If this variable is true,
the eXo JCR Session Leak
Detector is activated. If
you do not uncomment this line,
it is set equal to ``EXO_DEV`.

Logs configuration

Tomcat only. The logs configuration is to control how often, which kind
of message/event to be written to the log stream (screen or log files),
and their format. Configuring logs is more than a trivial task, however
eXo Platform tries to ease it by exposing 3 variables that you can customize:

	Configuration

	Description

	EXO_LOGS_LOGBACK_CONFIG_FILE="$CATALINA_BAS
E/conf/logback.xml"

	Gives a possibility to use
your own logback
configuration file. To
customize a logback
configuration file, you can
learn its syntax and design
`here <http://logback.qos.c
h/manual/configuration.html
>`__.

	EXO_LOGS_DISPLAY_CONSOLE=true

	By default, the console log
is disabled unless you
start eXo Platform by the
start_eXo script
without the
–background option.

	EXO_LOGS_COLORIZED_CONSOLE=true

	By default, the console log
is colored in Linux, but
not colored in Windows.

Tomcat configuration

	Configuration

	Description

	CATALINA_PID="$CATALINA_BASE/temp/catalina.
pid"

	By uncommenting this line
you are certain that you
can always get the process
ID of eXo Platform from a
file.

	EXO_TOMCAT_UNPACK_WARS=true

	If this line is
uncommented,
webapps/*.war files are
extracted. This option does
not target to the
administration tasks, it is
preserved for the
development tasks.

JBoss configuration

	Configuration

	Description

	MAX_FD="maximum"

	Specifies the maximum file
descriptor limit.

	PROFILER=""

	Specifies a profiler
configuration file.

	JAVA_OPTS="$JAVA_OPTS -Djboss.modules.lockl
ess=false"

	Uncomment this to not use
JBoss Modules lockless
mode.

	JAVA_OPTS="$JAVA_OPTS -Djboss.modules.metri
cs=true"

	Uncomment this to gather
JBoss Modules metrics.

Advanced Customization

For Tomcat, advanced customization is performed by appending parameters
to the CATALINA_OPTS variable, for example:

	In .sh:
CATALINA_OPTS="${CATALINA_OPTS} -Dcom.sun.management.jmxremote=true".

	In .bat:
SET CATALINA_OPTS=%CATALINA_OPTS% -Dcom.sun.management.jmxremote=true.

	Parameter

	Description

	-XX:+HeapDumpOnOutOfMemoryError

``-XX:HeapDumpPath=”${CATALINA_HOME}/logs/”
``

	By appending
-XX:+HeapDumpOnOutOfMemo
ryError
to CATALINA_OPTS, you
will have a dump file
which is usable to analyze
why JVM runs out of
memory.

The dump file’s path is
given in the second line.

	-XX:+PrintGCDetails

-Xloggc:\"${CATALINA_HOME}/logs/gc.log\"

	The first line enables the
GC (JVM Garbage Collector)
log. The second line
indicates where you want
to save the log file.

	-Dcom.sun.management.jmxremote=true

-Dcom.sun.management.jmxremote.ssl=false

-Dcom.sun.management.jmxremote.password.fil
e=\"${CATALINA_HOME}/conf/jmxremote.password\
"

-Dcom.sun.management.jmxremote.access.file=
\"${CATALINA_HOME}/conf/jmxremote.access\"

-Djava.rmi.server.hostname=localhost

	By appending those
parameters to
CATALINA_OPTS, you
allow a JMX client (such
as jconsole, visualvm) to
connect to your JVM and to
do operation tasks.

This
tutorial [http://docs.oracle.com/javase/tutorial/jmx/overview/javavm.html]
describes how to connect
jconsole to a Java
application.

	-DJDBCWorkspaceDataContainer.statistics.ena
bled=true -DJCRStatisticsManager.persistence.
timeout=30000

	This line activates the
JCR
Statistics
tool which is used for
performance analysis and
tuning.

	-Dcrash.telnet.port=12345

-Dcrash.ssh.port=54321

	These 2 variables take
effect only if you are
deploying
Crash [http://www.crashub.org]
into eXo Platform.

Crash is a useful tool
which provides a shell to
work on the JCR
repository. By default,
you can connect to the
shell at telnet port 5000
and ssh port 2000.

For JBoss, similar variables can be customized by appending
JAVA_OPTS, for example:

	JAVA_OPTS="$JAVA_OPTS -Dcrash.telnet.port=12345 -Dcrash.ssh.port=54321"

Startup profiles

eXo Platform comes with different runtime profiles, enabling you to customize
which modules you want to enable/disable in each eXo Platform instance.

Warning

Before modifying and developing eXo Platform, you should choose carefully
the profiles that are suitable to your requirements. In particular,

after you have done any modifications/developments on the server
that you started up with your selected profiles, and then switched
to another new profiles, you will not see such
modifications/developments on eXo Platform.

Some eXo Platform 3.5 profiles are no longer available in eXo Platform 4
and higer, including: default, collaboration, social, knowledge, webos,
workflow.
Currently, eXo Platform only supports the following profiles:

	all: Activate all modules (such as Forum, Wiki, Calendar,
Social). This profile is enabled by default.

	minimal: Activate the Content only.

To activate the minimal profile in Tomcat, this customized
variable is required:

EXO_PROFILES="minimal"

See Customizing environment variables
to know how to customize the variables.

To activate the minimal profile in JBoss, edit the property
exo.profiles in standalone/configuration/standalone-exo.xml
(standalone-exo-cluster.xml in cluster mode):

<system-properties>
 <property name="exo.profiles" value="minimal"/>
</system-properties>

Troubleshooting

This troubleshooting page aims at solving problems you may encounter
when installing and starting up eXo Platform. For more discussions, refer to
eXo Community Forum [http://community.exoplatform.com/portal/intranet/forum].

Failure message: “Cannot find ./bin/catalina.sh”

In Linux, you may get this message when starting eXo Platform:

Cannot find ./bin/catalina.sh
This file is needed to run this program

The reason is you do not have the execute permission on the
./bin/catalina.sh file. To fix this problem, run the command below:

chmod +x ./bin/catalina.sh

Also, make sure you have the execute permission on all .sh files.

Failure message: “Too many open files”

You get this message when starting eXo Platform:

Too many open files ...

The problem often occurs in the Linux system because the limit of file
descriptors is set too low. To solve this, increase the limit of file
descriptors. Make sure the limit is big enough at both system and user
levels:

At system level

	Edit the /etc/sysctl.conf file:

sudo vi /etc/sysctl.conf

	Add or modify the following line so that its value is big enough, for
example, 200000 or 300000:

fs.file-max=300000

Warning

Be careful when you edit this file. Set the number too small may cause your system malfunction.

	Reload your configuration:

sudo sysctl -p

	Test the file descriptor limit:

sudo cat /proc/sys/fs/file-max

At user level

	Edit the /etc/security/limits.conf file:

sudo vim /etc/security/limits.conf

	Add or modify the following line so that its value is big enough, for
example 200000 or 300000:

* soft nofile 200000
* hard nofile 200000

	Log in again and test the file descriptor limit:

ulimit -n

Failure message: “Address already in use”

You get this message when starting eXo Platform:

java.net.BindException: Address already in use

The problem occurs when the default port 8080 is already used by another
process. To solve it, make sure that the port 8080 is not used by
another process, or configure eXo Platform to use another free port.

Checking the port status

Use the following Linux commands:

	The netstat command in the following example:

netstat -an | grep 8080

If it returns “LISTEN”, it indicates that the port is busy:

tcp 0 0 0.0.0.0:8080 0.0.0.0:* LISTEN

	The lsof command to know which process is using the port:

lsof -Pwn -i4:8080

It returns some information of the process:

COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
java 4674 root 417u IPv4 34070 0t0 TCP *:8080 (LISTEN)

Configuring eXo Platform

You can use another port than 8080 as follows:

	In Tomcat, edit the $PLATFORM_TOMCAT_HOME/conf/server.xml file
and change 8080 into another port, at the following line:

<Connector address="0.0.0.0" port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
 enableLookups="false" redirectPort="8443"
 connectionTimeout="20000" disableUploadTimeout="true"
 URIEncoding="UTF-8"
 compression="off" compressionMinSize="2048"
 noCompressionUserAgents=".*MSIE 6.*" compressableMimeType="text/html,text/xml,text/plain,text/css,text/javascript" />

	In JBoss, edit the
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml
file and change 8080 into another port, at the following line:

<socket-binding name="http" port="8080"/>

Note

In addition to the port 8080, eXo Platform may use some others, such as 8009, 8443. You always can manage those ports in the same way as above.

Out Of Memory Error

You get this message when starting eXo Platform:

java.lang.OutOfMemoryError: GC overhead limit exceeded

At the same time the Java process crashes and creates a dump file.

The problem occurs when your Java Virtual Machine runs out of memory.
You probably think of the same reason even if you do not get this
message, but your eXo Platform instance runs slowly or does not operate well.

To solve it, you should increase memory settings for the Java Virtual
Machine. The default settings are fairly enough: -Xms512m -Xmx3g
-XX:MaxPermSize=256m if your data is not huge. Otherwise, for example
you have thousands of users and store many Gigabytes of documents, you
should increase those settings.

It can be done by uncommenting and editing the following lines in the
customized script:

EXO_JVM_SIZE_MAX="4g"
EXO_JVM_SIZE_MIN="1g"
EXO_JVM_PERMSIZE_MAX="128m"

A little difference for Windows:

SET EXO_JVM_SIZE_MAX=4g
SET EXO_JVM_SIZE_MIN=512m
SET EXO_JVM_PERMSIZE_MAX=128m

EXO_JVM_SIZE_MAX, EXO_JVM_SIZE_MIN, EXO_JVM_PERMSIZE_MAX
respectively is Xms, Xmx and XX:MaxPermSize.

Failure message: “Could not reserve enough space for object heap”

You get this message when starting eXo Platform:

Error occurred during initialization of VM
Could not reserve enough space for object heap

There are two possible causes:

	The physical memory is not enough to allocate memory for the VM. By
default the memory requested by eXo Platform is -Xms512m -Xmx3g
-XX:MaxPermSize=256m, then it requires 512 megabytes for Heap
memory.

	You are using a 32-bit Java version on a 32-bit OS, so the Heap size
may be limited (less than 2G as recommended by
Oracle [http://www.oracle.com/technetwork/java/hotspotfaq-138619.html#gc_heap_32bit]
and
IBM [http://publib.boulder.ibm.com/infocenter/javasdk/tools/index.jsp?topic=/com.ibm.java.doc.igaa/_1vg00014884d287-11c3fb28dae-7ff6_1001.html]).

To solve it, you should decrease memory settings for the Java Virtual
Machine. The default settings fit medium size of data. If your data is
less, you can use lower settings.

The instructions for setting memory are given in this page
already.

Configuration

This chapter covers the following topics:

	Configuration overview
How to change default configurations via exo.properties.

	eXo Platform configuration
Explanation of eXo Platform configuration, its directory and some
parts of eXo Platform internals.

	Properties reference
A reference to eXo configuration properties.

	Configure username case sensitive
How to make eXo Platform usernames case sensitive/insensitive.

	User inactivity delay configuration
How to define the user inactivity delay.

	Data directory configuration
Explanations of several paths in the local file system.

	Assets version parameter
eXo Platform assets version parameter.

	Quartz Scheduler configuration
Quartz Scheduler configuration.

	Configure documents multiupload in the activity stream functionnality
Parameters to configure the number of files and size per activity.

	Transaction service
Information about the default timeout value of JCR transaction,
and the value when your application runs longer transactions.

	Server base URL
The server base URL is used to generate links (in emails for
example). It is necessary to configure it to make the links
right.

	Wiki application base URI
The base URI for the wiki application.

	Account setup
How to skip the Account Setup and Greetings! screens in eXo Platform.

	Custom data validators configuration
How to configure custom data validators.

	Outgoing mail service
The SMTP configurations required for sending emails.

	Changing sender information of email notification
Configuration about sender from which all email notifications are
sent.

	Subscribing to notifications of document changes
The email configuration for watching a document.

	WebDAV configuration
Configuration of the WebDAV service.

	Secure the listing of the contents of JCR folders through Webdav
How to secure the listing of the contents of folders through Webdav URLs.

	Open in Office configuration
How to configure the file types associated with the application
and to set a new label.

	JODConverter configuration
How to enable and configure document preview feature that allows
users to read online many document types like MS Word.

	Limiting the size of uploaded files
Instructions to configure the maximum allowed size of uploaded
files.

	Limiting public access to the upload service
How to configure the upload handler for preventing
unauthenticated users to use the upload service.

	Customizing site data
Instructions to configure the import mode for ACME and Intranet
sites.

	Enabling/Disabling auto-creating a taxonomy tree
Instructions on how to enable/disable auto-creating a taxonomy
tree during a new site creation.

	Enabling/Disabling Activity type
Instructions on how to enable/disable an activity type from
posting on streams.

	Configure spaces administration group
How to define spaces administrators groups.

	Logs
Introduction to the logs of eXo Platform, and where to configure this
function.

	JCR Configuration
Details of the set of properties which control the JCR behavior.

	Cache configuration
Overall introduction to the Cache configuration of eXo Platform,
including: Portal, Social, and ECMS.

	End-date suggestion
End-date suggestion feature in Calendar: how to configure.

	Predefined users, groups and memberships
The configurations for users, groups and memberships
initialization.

	Gadget configuration
Information about the OAuth key that will be used in case the
OAuth gadgets do not indicate a key, and how to disable the
Shindig default online features.

	Groovy templates statistics
Parameter for enabling/disabling Groovy Templates statistics.

	Search connector configuration
Configuration for activating/de-activating a Search connector.

	Unified Search configuration
Configuration for enabling/disabling Fuzzy search and adjusting
the similarity criterion.

	Elasticsearch Configuration
Configuration of Elasticsearch parameters.

	CometD
CometD introduction and how to configure it.

	Youtube integration
Instruction to enable the Youtube integration using a YouTube V3
API Key.

	Notification
Configuration related to the Email/On-site Notification feature.

	Document Versioning
Instruction to enable the Document versioning and control the
generated versions.

	Document Viewer
Configuration related to the Document Viewer component.

	Forgot Password
Configuration related to the Forgot Password feature.

	Password Encryption
Users who upgrade from a previous version older than 4.3 will
need to beware of the new default encryption algorithm.

	Task Management
Configuration related to the project workflow in the Task
Management application.

	File storage configuration
Configuration related to File Storage system in eXo Platform.

	Chat Configuration
Configuration needed for eXo Chat.

	eXo Web Conferencing Configuration
Configuration needed for eXo Web Conferencing add-on.

	Update of last login time
Parameter for enabling/disabling the update of user’s last login
time.

Configuration overview

In eXo Platform, a lot of configuration options are customizable via
properties. If you want to change the default configurations of eXo Platform,
simply do as follows:

	Create your own .properties file that must be named
exo.properties. This file contains all configurations to be
customized.

	$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties (Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties

(JBoss).

A .properties file has no header, so you do not need to preserve the
header. You can refer to exo-sample.properties that is provided by
default but has no effect on the eXo Platform configuration. This default
file exposes all properties you can override or extend, but in comments
(#). Instead of creating new, you can rename exo-sample.properties
into exo.properties, then make changes on your needed properties and
remove their comments.

	Add configurations to be customized in exo.properties. Pay attention
to the followings:

	Each property is defined on one line that conforms to the syntax:
property_name=property_value.

	Order of the property lines does not take any effect, but it is
important that you use the exact key of each property in
exo.properties that is already exposed in
exo-sample.properties or listed in this chapter. The usage of
properties and their keys are detailed in the later sections.

	The text before the equal sign is the key that you should not change
and the text after the equal sign is the property’s value that you
can edit.

	Save and restart the eXo Platform server for your changes to take
effect.

Besides the capability of customizing configurations in
exo.properties, you can follow in another way by adding a system
property, either in bin/setenv-customize.sample.(sh|bat) or
bin/standalone-customize.sample.conf(.bat), or in any your custom
scripts. See Customizing environment variables
for detailed instructions.

Note

There are some configuration properties that will not be
configurable by the system property but in exo.properties only,
including:

	exo.jcr.cluster.jgroups.config

	exo.idm.cluster.jgroups.config

	exo.jcr.cache.config

	exo.jcr.cache.config.workspace.portal-system

	exo.jcr.lock.cache.config

	exo.jcr.index.cache.config

	exo.cache.config.template

	exo.idm.api.store.config

eXo Platform configuration

In eXo Platform, almost all configurations are performed in a folder that is
controlled by a system property named exo.conf.dir. This property is
set by setenv.* scripts (Tomcat) or standalone-exo-*.xml files
(JBoss).

The default value of exo.conf.dir is:

	$PLATFORM_TOMCAT_HOME/gatein/conf (Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/configuration/gatein (JBoss).

That folder contains the following main files that you need to take
care: exo.properties (if you need to override the eXo Platform
configurations); configuration.xml and
portal/${PORTAL_NAME}/configuration.xml (if having the
${PORTAL_NAME} portal container).

Note

The xml configuration is mainly done during the development phase,
whereas the configuration in exo.properties targets the
deployment phase. So configurations that you want to customize
should be done in the exo.properties file.

To understand more clearly the role of those files, let’s begin with the
portal container concept.

The eXo Platform Kernel collects runtime components in the portal containers.
A portal container holds all components to run a portal instance. It
serves pages under the servlet context for its name.

The default portal container in eXo Platform is called “portal”. This
explains why the default URL of the samples is
http://localhost:8080/portal. The default portal container can be
configured directly inside exo.conf.dir.

eXo Platform is capable of running several portal instances simultaneously on
the same server. Each instance can be configured and customized
independently via files located at: portal/${PORTAL_NAME} (under
exo.conf.dir), where ${PORTAL_NAME} is the name of the portal
container.

Note

The name of the configuration file can be altered. Please refer to
the PortalContainer section in the Kernel
reference for more details on portal containers and other options to
modify the location of the properties.

Services that run inside a portal container are declared via the xml
configuration files like configuration.xml. Such files exist in
jars, wars and below exo.conf.dir.

The .xml configuration files also serve as the main way to customize
the portal via the multiple plugins offered by the eXo Platform components.

Additionally, the .xml files may contain variables that are
populated via properties defined in exo.properties. Hence, the
exo.properties file serves as exposing some selected variables that
are necessary to configure eXo Platform in a server environment.

exo.properties

This file can be added to easily override or extend configurations of
eXo Platform. The important variables that can be overridden are exposed in a
sample properties file named exo-sample.properties, but in comments.
See Configuration overview
for more details.

configuration.xml

This file contains the built-in configuration for the “portal” portal
container.

	In most cases, you should not change this file.

	In case you do not want to use “portal” as the default portal for
your project, this file can be used to import another
PortalContainerDefinition into the root container.

Note

To learn more about how to configure a new portal container, please
refer to eXo Kernel.

portal/${PORTAL_NAME}/configuration.xml

The extra configuration for the ${PORTAL_NAME} portal container if any.
This is where further customizations (for ${PORTAL_NAME} portal
container) can be placed. Generally, custom configurations are provided
by extension wars. However, this file is the last loaded by Kernel. It
has a higher priority over any other configuration files, including
extensions. So, you can override any internal component configuration.

This may turn handy services or configurations that are not exposed in
exo.properties.

Properties reference

This page is a reference to configurations exposed via
exo.properties.

Note

This is not an exhaustive list. Some properties are not documented
in this chapter, because they are extremely rarely used by
administrators. If the property you are searching for is not here,
search it in the whole documentation and raise a question in
Community Forum [http://community.exoplatform.com/portal/intranet/forum],
if necessary.

Platform

	Name

	Description

	Default

	exo.base.url

	Generates links

	http://localhost:8080

	exo.accountsetup.skip

	Skips “account
setup” screen or
not?

	false

	exo.super.user

	The predefined
super user’s

name.

	root

	exo.portal.resetpassword
.expiretime

	The expiration
time of a reset
password link.

	24 (hours)

SMTP

	Name

	Description

	Default

	exo.email.smtp.from

	The “From” field
in outgoing
emails.

	noreply@exoplatform.com

	exo.email.smtp.host

	The external
mail server.
emails.

	localhost

	exo.email.smtp.port

	The external
mail server
port.

	25

	exo.email.smtp.start
tls.enable

	Enable TLS or
not?

	false

	exo.email.smtp.auth

	Enable SMTP
authentication
or not?

	false

	exo.email.smtp.usern
ame

	Username to get
authenticated
with the mail
server.

	

	exo.email.smtp.pass
word

	Password to get
authenticated
with the mail
server.

	

	exo.email.smtp.sock
etFactory.port

	Port to connect
to if a socket
factory is
specified.

	

	exo.email.smtp.sock
etFactory.class

	A class to
create SMTP
sockets.

	

JODConverter

	Name

	Description

	Default

	exo.jodconverter.enable

	Enable
JODConverter or
not?

	true

	exo.jodconverter.port
numbers

	List of ports
used to create
soffice
processes.

	2002

	exo.jodconverter.office
home

	The home folder
of the Office
installation.

	Blank (auto-detected)

	exo.jodconverter.taskqu
euetimeout

	The maximum
living time in
milliseconds of
a task in the
conversation
queue.

	30000

	exo.jodconverter.taskex
ecutiontimeout

	The maximum time
in milliseconds
to process a
task.

	120000

	exo.jodconverter.maxtas
ksperprocess

	The maximum
number of tasks
to process by an
office server.

	200

	exo.jodconverter.retryt
imeout

	The interval
time in
milliseconds to
try to restart
an office server
in case it
unexpectedly
stops.

	120000

Search connector

	Name

	Description

	Default

	exo.[searchConnectorName].
connector.[informationType]
.enable

	Turn on/off a
specific Search
connector for a
certain
information
type.

	true

Unified Search

	Name

	Description

	Default

	exo.unified-search.
engine.fuzzy.enable

	Enable fuzzy
search or not?

	true

	exo.unified-search.engine
.fuzzy.similarity

	A float number
between 0 and 1
expressing how
much a returned
word matches the
keyword. 1 is
exact search.

	0.5

	exo.unified-search.exclud
ed-characters

	List of
characters that
will not be
indexed (so
could not be
searched).

	.-

Notification

	Name

	Description

	Default

	exo.notification.
NotificationDailyJob.
expression

	Cron expression
to schedule
daily emails.

	0 0 23 ? * * (11:00pm
every day)

	exo.notification.Notif
icationWeeklyJob.expression

	Cron expression
to schedule
weekly emails.

	0 0 11 ? * SUN (11:00am
every Sunday)

	exo.notification.servic
e.QueueMessage.period

	The delay time
(in seconds)
between two
batches of sent
mails.

	60

	exo.notification.servic
e.QueueMessage.numberOfMailPe
rBatch

	The maximum
number of emails
sent each batch.

	30

	exo.notification.portal
name

	The “from” field
in notification
emails.

	eXo

	exo.notification.maxite
ms

	Maximum number
of notifications
displayed in the
popup list.

	8

	exo.notification.viewal
l

	Living days of
items displayed
in the View All
page.

	30

	exo.notification.WebNot
ificationCleanJob.expression

	Cron expression
to schedule the
job that cleans
web notification
old items.

	0 0 23 ? * * (11:00pm
every day)

JCR

	Name

	Description

	Default

	exo.jcr.datasource.dialect

	In most cases
the dialect is
auto-detected.
Follow the link
to know
exceptions.

	auto

	exo.jcr.storage.enabled

	Enable file
system storage
for JCR values?

	true

WebDav

	Name

	Description

	Default

	exo.webdav.def-folder
-node-type

	Matching node
type of folders.

	nt:folder

	exo.webdav.def-file-
node-type

	Matching node
type of files.

	nt:file

	exo.webdav.def-file-
mimetype

	The mimetype to
exchange file
data.

	application/octet-stream

	exo.webdav.update-
policy

	The policy
applied when
there is an
update via
WebDav.

	create-version

	exo.webdav.folder-icon
-path

	The display icon
of a folder.

	/eXoWCMResources/skin/
images/file/nt-folder.
png

	exo.webdav.cache-
control

	The
cache-control
header that
defines cache
and cache live
time.

	text/*:max-age=3600;
image/*:max-age=1800;
application/*:max-age=
1800;*/*:no-cache

ECMS

	Name

	Description

	Default

	exo.ecms.connector.drives.
uploadLimit

	Maximum size (in
MB) allowed of
an uploaded
file.

	200

	exo.portal.uploadhandler.p
ublic-restriction

	Turn on/off
public access to
the upload
service.

	true

	exo.ecms.connector.drives.
clientLimit

	The maximum
number of
concurrent
uploaded files
in client side.

	3

	exo.ecms.connector.drives.
serverLimit

	The maximum
number of
concurrent
uploaded files
in server side.

	20

	exo.ecms.search.excluded-m
imetypes

	Content of these
mimetypes will
not be searched.

	text/css,text/javascript
,application/x-
javascript,
text /ecmascript

	exo.ecms.search.enableFuzz
ySearch

	Enable fuzzy
search or not?

	true

	exo.ecms.search.fuzzySearc
hIndex

	A float number
between 0 and 1
expressing how
much a returned
word matches the
keyword. 1 is
exact search.

	0.8

	exo.ecms.lock.admin

	Users or groups
who can manage
locks.

	
	*:/platform/s

	administrator

	exo.ecms.friendly.enabled

	Enable friendly
URL maker or
not?

	true

	exo.ecms.friendly.servletN
ame

	The friendly
name used when
making friendly
URLs.

	content

ECMS Watch Document

	Name

	Description

	Default

	exo.ecms.watchdocument.sender

	The “from” field
notification
in the emails.

	support@exoplatform.com

	exo.ecms.watchdocument.subject

	The subject of
the notification
emails.

	“Your watching document is
changed”

	exo.ecms.watchdocument.mimetype

	Mimetype of the
message body.

	text/html

	exo.ecms.watchdocument.content

	The message
body.

	Check it yourself in
exo-sample.properties

ECMS Document versioning

	Name

	Description

	Default

	exo.ecms.documents.versioning
.drives

	The drives that
are enabled for
Document
versioning.

	Managed
Sites,Groups,Personal
Documents

	exo.ecms.documents.versions.max

	The max number
of versions that
a document can
have.

	0 (no limit)

	exo.ecms.documents.versions.exp
iration

	The expiration
time (in days)
of a document
version.

	0 (no limit)

ECMS Document viewer

	Name

	Description

	Default

	exo.ecms.documents.pdfview
er.max-file-size

	Max file size of
documents for
preview, in MB

	10

	exo.ecms.documents.pdfview
er.max-pages

	Max number of
pages of
documents for
preview

	99

Calendar

	Name

	Description

	Default

	exo.calendar.default.event
.suggest

	An integer
number n, used
to
auto-calculate
and suggest the
end time when
users
create/edit an
event.

	2 (equivalent to 1 hour)

	exo.calendar.default.task.
suggest

	An integer
number n, used
to
auto-calculate
and suggest the
end time when
users
create/edit a
task.

	1 (equivalent to 30 mins)

Site metadata

	Name

	Description

	Default

	exo.intranet.portalConfig.
metadata.override

	Don’t change
this unless you
customize the
Intranet site.

	false

	exo.intranet.portalConfig.
metadata.importmode

	Don’t change
this unless you
customize the
Intranet site.

	insert

	exo.acme.portalConfig.meta
data.override

	Only affect when
you install the
ACME addon.

	false

	exo.ide.portalConfig.metad
ata.override

	Only affect when
you install the
IDE addon.

	true

Datasource

	Name

	Description

	Default

	exo.jcr.datasource.
name

	JCR datasource
name.

	java:/comp/env/exo-jcr

	exo.idm.datasource.
name

	IDM datasource
name.

	java:/comp/env/exo-idm

Clustering

	Name

	Description

	Default

	exo.cluster.partition.name

	Give a string to
identify your
cluster, to
avoid conflict
with other
clusters in the
network.

	DefaultPartition

	exo.jcr.cluster.jgroups
.tcp.*

	JGroups
configuration
for JCR using
TCP.

	

	exo.jcr.cluster.jgroups
.udp.*

	JGroups
configuration
for JCR using
UDP.

	

	exo.idm.cluster.jgroups
.tcp*

	JGroups
configuration
for IDM using
TCP.

	

	exo.idm.cluster.jgroups
.udp.*

	JGroups
configuration
for IDM using
UDP.

	

	exo.jcr.cluster.jgroups
.config

	Path to your
customized
JGroups
configuration
file, applied to
JCR.

	

	exo.jcr.cluster.jgroups
.config-url

	URL to your
customized
JGroups
configuration
file, applied to
JCR.

	

	exo.idm.cluster.jgroups
.config

	Path to your
customized
JGroups
configuration
file, applied to
IDM.

	

Quartz Scheduler

Main Scheduler Properties

	Name

	Description

	Default

	exo.quartz.scheduler.insta
nceName

	The name of the
scheduler
instance.

	ExoScheduler

	exo.quartz.scheduler.insta
nceId

	The type of the
scheduler
instance.

	AUTO

ThreadPool configuration Properties

	Name

	Description

	Default

	exo.quartz.threadPool.clas
s

	Is the name of
the ThreadPool
implementation
used.

	org.quartz.simpl.SimpleThre
adPool

	exo.quartz.threadPool.thre
adPriority

	It an integer
value between
Thread.MIN_PRIO
RITY
(which is 1) and
Thread.MAX_PRIO
RITY
(which is 10).

	5 (which is the value of
Thread.NORM_PRIORITY)

	exo.quartz.threadPool.thre
adCount

	It is the number
of threads that
are available
for concurrent
execution of
jobs.

	25

JobStore configuration Properties

	Name

	Description

	Default

	exo.quartz.jobStore.misfir
eThreshold

	The number of
milliseconds the
scheduler will
tolerate a
trigger to pass
its
next-fire-time
by, before being
considered
misfired.

	6000

	exo.quartz.jobStore.class

	The Scheduler’s
JobStore class
name.

	org.quartz.impl.jdbcjobstor
e.JobStoreTX

	exo.quartz.jobStore.driver
DelegateClass

	The Driver
delegate which
will understand
the database
system dialect.

	org.quartz.impl.jdbcjobstor
e.StdJDBCDelegate

	exo.quartz.jobStore.usePro
perties

	The flag which
instructs
JDBCJobStore
that all values
in JobDataMaps
will be Strings.

	false

	exo.quartz.jobStore.dataSo
urce

	The name of the
DataSources
defined in the
configuration
properties file
for quartz.

	quartzDS

	exo.quartz.jobStore.tableP
refix

	The prefix used
for to Quartz’s
tables in the
database.

	QRTZ_

	exo.quartz.jobStore.isClus
tered

	Set to “true” in
order to turn on
clustering
features.

	false

	exo.quartz.jobStore.cluste
rCheckinInterval

	Set the
frequency (in
milliseconds) at
which this
instance
“checks-in” with
other instances
of the cluster.

	20000

	exo.quartz.jobStore.maxMis
firesToHandleAtATime

	The maximum
number of
misfired
triggers the
jobstore will
handle in a
given pass.

	20

	exo.quartz.jobStore.dontSe
tAutoCommitFalse

	Setting this
parameter to
“true” tells
Quartz not to
call
setAutoCommit(fa
lse)
on connections
obtained from
the
DataSource(s).

	false

	exo.quartz.jobStore.acquir
eTriggersWithinLock

	Whether or not
the acquisition
of next triggers
to fire should
occur within an
explicit
database lock.

	false

	exo.quartz.jobStore.lockHa
ndler.class

	The class name
to be used to
produce an
instance of a
“org.quartz.impl
.jdbcjobstore”.

	

	exo.quartz.jobStore.driver
DelegateInitString

	A pipe-delimited
list of
properties (and
their values)
that can be
passed to the
DriverDelegate
during
initialization
time.

	

	exo.quartz.jobStore.txIsol
ationLevelSerializable

	A value of
“true” tells
Quartz (when
using JobStoreTX
or CMT) to call
setTransactionIs
olation(Connecti
on.TRANSACTION_
SERIALIZABLE)
on JDBC
connections.
This can be
helpful to
prevent lock
timeouts with
some databases
under high load,
and long-lasting
transactions.

	false

	exo.quartz.jobStore.select
WithLockSQL

	Must be a SQL
string that
selects a row in
the “LOCKS”
table and places
a lock on the
row.

	SELECT * FROM {0}LOCKS
WHERE SCHED_NAME = {1} AND
LOCK_NAME = ? FOR UPDATE

Datasources configuration

	Name

	Description

	Default

	exo.quartz.dataSource.quar
tzDS.jndiURL

	The JNDI URL for
a DataSource
that is managed
by eXo Platform.

	java:/comp/env/exo-jpa_por
tal

Password Encryption

	Name

	Description

	Default

	exo.plidm.password.class

	The class that
encrypts the
user password
before it is
stored in the
database.

	DatabaseReadingSaltEncoder

	exo.plidm.password.hash

	The encrypt
algorithm.

	SHA-256

Elasticsearch Properties

	Name

	Description

	Default

	exo.es.version.minor

	The expected
minor
Elastisearch
version
compatible with
eXo Platform.

	5.6

	exo.es.embedded.enabled

	Allows to run an
Elasticsearch
server embedded
in eXo Platform
(not recommended
for production).

	true

	es.cluster.name

	Cluster name
identifies your
Elasticsearch
cluster for
auto-discovery.
If you’re
running multiple
clusters on the
same network,
make sure you’re
using unique
names.

	exoplatform-es

	es.node.name

	Name of the mode
for the embedded
mode. If not
specified, a
name is
generated
dynamically at
startup.

	exoplatform-es-embedded

	es.network.host

	Sets both
‘bind_host’ and
‘publish_host’
params. More
details
here [https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-network.html#advanced-network-settings]

	“127.0.0.1”

	es.discovery.zen.ping.
unicast.hosts

	In Unicast
dicovery mode,
this parameter
lets you set a
list of master
nodes in the
cluster to
perform
discovery when
new nodes
(master or data)
are started.

	[“127.0.0.1”]

	es.http.port

	TCP Port of the
embedded ES
node.

	9200

	es.path.data

	Local path to
the directory
where to
Elasticsearch
will store index
data allocated
for this node.

	gatein/data

Elasticsearch Client

	Name

	Description

	Default

	exo.es.search.server
.url

	URL of the node
used for
searching.
Required and
exo.es.embedded.
enabled=false

	“http://127.0.0.1:9200”

	exo.es.search.server
.username

	Username used
for the BASIC
authentication
on the
Elasticsearch
node used for
searching.

	

	exo.es.search.server
.password

	Password used
for the BASIC
authentication
on the
Elasticsearch
node used for
searching.

	

	exo.es.index.server
.url

	URL of the node
used for
indexing.

	“http://127.0.0.1:9200”

	exo.es.index.server
.username

	Username used
for the BASIC
authentication
on the
Elasticsearch
node used for
indexing.

	

	exo.es.index.server
.password

	Password used
for the BASIC
authentication
on the
Elasticsearch
node used for
indexing.

	

Elasticsearch Indexing properties

	Name

	Description

	Default

	exo.es.indexing.batch
.number

	Maximum number
of documents
that can be sent
to Elasticsearch
in one bulk
request.

	1000

	exo.es.indexing.requ
est.size.limit

	Maximum size (in
bytes) of an
Elasticsearch
bulk request.

	10485760 (= 10Mb)

	exo.es.reindex.batch.
size

	Size of the
chunks of the
reindexing
batch.

	100

	exo.es.indexing.repli
ca.number.default

	Number of
replicas of the
index.

	1

	exo.es.indexing.shard
.number.default

	Number of shards
of the index.

	5

Enable/Disable activity type

	Name

	Description

	Default

	exo.activity-type.acti
vity-type-key.enabled

	The property
that allows to
enable or
disable an
activity having
the type key
`` activity-type
-key ``
from posting in
the streams.

	true

File storage configuration

	Name

	Description

	Default

	exo.files.binaries.
storage.type

	Allows to define
the file storage
way: File system
(type=fs) or
RDBMS
(type=rdbms).

	fs

	exo.commons.FileStorag
eCleanJob.enabled

	Enables/disables
the job that
cleans unused
files.

	true

	exo.commons.FileStorag
eCleanJob.retention-time

	The retention
time of unused
files

	30 days

	exo.commons.FileStorag
eCleanJob.expression

	The cron job
expression for
scheduling the
file cleaner job

	0 0 11 ? * SUN

	exo.files.storage.dir

	The location
where to store
binary files in
case of file
system storage.
In cluster mode,
this location
(folder) should
be shared.

	{exo.data.dir}/files

MongoDB configuration

MongoDB is the database for eXo Chat: all the below parameters could be configured in chat.properties file

	Name

	Description

	Default

	dbServerType

	Allows to define
MongoDB type:
either Mongo or
embed. Embed
value is used
for unit tests.

	mongo

	dbServerHost

	The host name or
IP of MongoDB.
(deprecated)

	localhost

	dbServerPort

	
The port number
to connect to
MongoDB host.

(deprecated)

	27017

	dbServerHosts

	The MongoDB
nodes to connect
to, as a
comma-separated
list of
<host:port>
values.

	localhost:27017

	dbName

	Name of the
Mongo database
name.

	chat

	dbAuthentication

	Enables or
disables
authentication
to access
MongoDB. When
set to true this
means that
authentication
is required.

	false

	dbUser

	Provide the
username to
access the
database if
authentication
needed.

	EMPTY

	dbPassword

	Provide the
password to
access the
database if
authentication
needed.

	EMPTY

	chatPassPhrase

	The password to
access REST
service on the
eXo Chat
server.

	chat

	chatCronNotifCleanup

	The frequency of
cleaning eXo
Chat
notifications.Th
ey
are cleaned up
every one hour
by default.

	0 0/60 * * * ?

	chatReadTotalJson

	The number of
messages that
you can get in
the Chat room.

	200

	chatIntervalChat

	Time interval to
refresh messages
in a chat.

	5000

	chatIntervalSession

	Time interval to
keep a chat
session alive in
milliseconds.

	60000

	chatIntervalNotif

	Time interval to
refresh
Notifications in
the main menu in
milliseconds.

	5000

	chatTokenValidity

	Time after which
a token will be
invalid. The use
will then be
considered
offline.

	60000

Groovy templates statistics

	Name

	Description

	Default

	exo.statistics.groovy
.template.enabled

	Enables/disables
Groovy Templates
statistics that
is collected
asynchronously.

	true

CometD configuration

	Name

	Description

	Default

	exo.cometd.oort.url

	The CometD Oort
URL used in
clustering mode.

	“http://localhost:8080/come
td/cometd”,
localhost should be
replaced by the hostname or
the IP of the cluster node.

	exo.cometd.oort.
configType

	The CometD
configuration
type which could
be either
“static” or
“multicast”.

	multicast

	exo.cometd.oort.cloud

	A
comma-separated
list of URLs of
other Oort
comets to
connect to at
startup.

	

Update of last login time

	Name

	Description

	Default

	exo.idm.user.updateLast
LoginTime

	Enables/disables
the update of
last login time
each time the
user login.

	true

Define spaces administrators group

	Name

	Description

	Default

	exo.social.spaces.
administrators

	Defines the list
of spaces
administrators
groups.

	

Assets versions used in static resources URLs

	Name

	Description

	Default

	exo.assets.version

	Defines the
assets version.

	It is set to eXo Platform
binary version.

Username case sensitive

	Name

	Description

	Default

	exo.auth.case.insensitive

	Defines if
usernames in
eXo Platform are
case sensitive or
not.

	false.

User inactivity delay

	Name

	Description

	Default

	exo.user.status.
offline.delay

	Defines the time
laps which makes
the user in
offline status.
Its value is
expressed in
milliseconds.

	240000

Notifications channels

	Name

	Description

	Default

	exo.notification.channels

	Defines the
activated
notification
channels.

	WEB_CHANNEL, MAIL_CHANNEL

Wiki application base URI

	Name

	Description

	Default

	wiki.permalink.appuri

	Defines the base
URI for the wiki
application
permalinks.

	wiki

Files upload limit

	Name

	Description

	Default

	exo.ecms.connector.dr
ives.uploadLimit

	Maximum size (in
MB) allowed of
an uploaded
file.

	200

	exo.social.activity.upl
oadLimit

	Maximum size (in
MB) allowed of
an uploaded
image through
the CKEditor.

	200

	exo.wiki.attachment.
uploadLimit

	Maximum size (in
MB) allowed of
an uploaded file
in Wiki
application.

	200

Configure username case sensitive

By default, eXo Platform is case insensitive. You can configure it to become
case sensitive through a parameter in exo.properties
file:

	exo.auth.case.insensitive, default value set to true.

If you set the exo.auth.case.insensitive to true this means that the
username “user” is the same as “User” or “uSEr”. If it is set to false,
this means that the user should take care of capital and minimal letters
when typing the username.

User inactivity delay configuration

When a user does not make any action on the platform i.e he is inactive
for a time lapse, he is considered as offline.

The time lapse is configurable in exo.properties
file using this parameter exo.user.status.offline.delay.

The parameter is expressed in millisecond and the value default is
240000 milliseconds.

 # The delay when we consider a user as offline. Default value is 240000 milliseconds
exo.user.status.offline.delay=240000

Data directory configuration

JCR data is stored in both SQL databases and File System. JCR Database
configuration is explained in Database.
The JCR File System configuration is explained in this section.

Typically, the JCR File System data consists of four folders:

	JCR indexes.

	JCR values storage.

To store JCR value, SQL database is used as primary storage and
another directory can be used as a secondary, dedicated storage for
BLOB data. It is optional and you can configure to not store BLOB
data in File System, by changing the default configuration in the
exo.properties file.

exo.jcr.storage.enabled=true

	JTA (Transaction information).

	Swap data (temporary memory space).

By default, these four folders are located under a common directory that
is $PLATFORM_TOMCAT_HOME/gatein/data (Tomcat),
$PLATFORM_JBOSS_HOME/standalone/data/gatein (JBoss).

In production, it is recommended to configure it to use a directory
separated from the package. Especially in cluster mode, it should be a
network shared folder.

Configuration in Platform Tomcat

In Tomcat, the directory is configured by the environment variable
EXO_DATA_DIR. Edit the bin/setenv-customize.(sh|bat) script:

EXO_DATA_DIR=/mnt/nfs/shared/exo/data

You need to create the script file by copying/renaming the sample
bin/setenv-customize.sample.(sh|bat). See Customizing environment variables
for more information.

Configuration in Platform JBoss

In JBoss, the directory is configured by the system property
exo.data.dir. Edit standalone/configuration/standalone-exo.xml
like below:

<system-properties>
 ...
 <property name="exo.data.dir" value="/mnt/nfs/shared/exo/data"/>
 ...
</system-properties>

Note that if you are configuring the cluster mode, the configuration
might be different. The file should be standalone-exo-cluster.xml
and the property should be exo.shared.dir. See Setting up eXo Platform cluster.

Assets version configuration

Between versions, eXo Platform makes various changes on various layers. To
avoid that browsers use cached assets and display old behavior, a
parameter exo.assets.version is added in
exo.properties file.

When eXo Platform is updated, his parameter allows to:

	Enforce browsers to reload javascript and css.

	Build eXo Platform urls for resources serving.

	Avoid asking users to clear their browser’s cache.

By default, this parameter is set to eXo Platform package version, i.e for
the version 5.0.x it is set to 5.0.x.

Assets versions used in static resources URLs. Useful to manage caches.
exo.assets.version=5.0.x

Quartz Scheduler configuration

eXo Platform uses Quartz Scheduler [http://www.quartz-scheduler.org/],
the Java Framework for scheduling jobs, in a wide range of features.
When eXo Platform runs in cluster mode, it is important to prevent jobs to
execute concurrently. Quartz has its own cluster mode, with each
instance of eXo Platform server as a node of Quartz load balancing and
failover group.

Since the version 4.4 of eXo Platform, Quatrz is used in persisted mode. So
it is automatically configured in eXo Platform. As an administrator, you can
change default Quartz settings in eXo Platform through
exo.properties file.

By default, here are Quartz properties:

#Configure Main Scheduler Properties
#exo.quartz.scheduler.instanceName=ExoScheduler
#exo.quartz.scheduler.instanceId=AUTO

#Configure ThreadPool
#exo.quartz.threadPool.class=org.quartz.simpl.SimpleThreadPool
#exo.quartz.threadPool.threadPriority=5
#exo.quartz.threadPool.threadCount=25

#Configure JobStore
#exo.quartz.jobStore.misfireThreshold=6000
#exo.quartz.jobStore.class=org.quartz.impl.jdbcjobstore.JobStoreTX
#For SQL server set exo.quartz.jobStore.driverDelegateClass=org.quartz.impl.jdbcjobstore.MSSQLDelegate
#For postgres set exo.quartz.jobStore.driverDelegateClass=org.quartz.impl.jdbcjobstore.PostgreSQLDelegate
#exo.quartz.jobStore.driverDelegateClass=org.quartz.impl.jdbcjobstore.StdJDBCDelegate
#exo.quartz.jobStore.useProperties=false
#exo.quartz.jobStore.dataSource=quartzDS
#exo.quartz.jobStore.tablePrefix=QRTZ_
#exo.quartz.jobStore.isClustered=false
#exo.quartz.jobStore.clusterCheckinInterval=20000
#exo.quartz.jobStore.maxMisfiresToHandleAtATime=20
#exo.quartz.jobStore.dontSetAutoCommitFalse=false
#exo.quartz.jobStore.acquireTriggersWithinLock=false
#exo.quartz.jobStore.lockHandler.class=
#exo.quartz.jobStore.driverDelegateInitString=
#exo.quartz.jobStore.txIsolationLevelSerializable=false
#exo.quartz.jobStore.selectWithLockSQL=SELECT * FROM {0}LOCKS WHERE SCHED_NAME = {1} AND LOCK_NAME = ? FOR UPDATE
#exo.quartz.dataSource.quartzDS.jndiURL=java:/comp/env/exo-jpa_portal

More details about the definition and default values of the above
properties could be found in the table Properties reference.
You can also refer to Quartz Configuration Reference [http://www.quartz-scheduler.org/documentation/quartz-2.x/configuration/]
documentation for more details about quartz parameters.

Configure documents multiupload in the activity stream

Through the MultiUpload feature, you are able to
upload up to 20 files per activity having each one 200 MB as max size.

You can change the default behavior through
exo.properties file by
configuring these two parameters:

	exo.social.composer.maxToUpload=20, default value set to 20.

	exo.social.composer.maxFileSizeInMB=200, default value set to 200
MB.

Transaction service

The JCR transaction timeout is 420 seconds by default. If your
application runs longer transactions, you might need a bigger timeout.

Configure the timeout by adding the exo.jcr.transaction.timeout
property in exo.properties
file.

exo.jcr.transaction.timeout=3600

The value is in seconds.

Server base URL

The property exo.base.url is used to generate links in some cases,
like a topic link in an email notification.

Generally you need to configure it to the base URL that users use to
access eXo Platform. For example, if you use a reverse proxy, the URL
should be the proxy’s host.

The following is the default configuration. To change it, edit
exo.properties
file.

The Server Base URL is the URL via which users access eXo platform. All links created (for emails etc) will be prefixed by this URL.
The base URL must be set to the same URL by which browsers will be viewing your eXo platform instance.
Sample: exo.base.url=https://intranet.mycompany.com
exo.base.url=http://localhost:8080

Wiki application base URI

The property wiki.permalink.appuri allows you to define the base URI
for the wiki application permalinks.

It is configurable through
exo.properties file.
Its default value is wiki.

The parameter wiki.permalink.appuri utility is to well redirect wiki
pages when moving wiki application to different location than the
default one.

wiki.permalink.appuri=wiki

Account setup

At the first startup of eXo Platform, the Account Setup and Greetings!
screens will appear by default. However, in some scenarios, these
screens are not necessary, for example:

	When you have an extension that declares sample users.

	When you want to connect to an existing user directory.

To skip these screens, simply change the default value from “false” into
“true” in the exo.properties
file.

exo.accountsetup.skip=true

Custom data validators configuration

Custom data validator, or user-configurable validator is the mechanism
allowing users to define their own validation rules. For example, the
username must be lowercase, or shorter than 20 characters. In eXo Platform,
there are 6 validators that administrators can configure to use and the
architecture allows developers to add more validators as they wish.

The validators can be configured via properties in
exo.properties file.

A configuration is created by adding an entry with the
gatein.validators. prefix in
exo.properties
file. This prefix is followed by a validator name, a period ‘.’ and a
validator aspect. Currently, there are the following validators and
validator aspects:

	Validators:

	username: Validates the ‘Username’ field in the Create or Edit
user form.

	groupmembership: There is a built-in regex that is currently
not used to validate any field:

GROUP_MEMBERSHIP_VALIDATION_REGEX = "^(\\p{Lower}[\\p{Lower}\\d\\._]+)(\\s*,\\s*(\\p{Lower}[\\p{Lower}\\d\\._]+))*$";

	email: Validates the Email Address field in the Create or Edit
user form.

	displayname: Validates the Display Name field in the Create or
Edit user form.

	jobtitle: Validates the Job Title field in the User Profile
form.

	grouplabel: Validates the Label field in Add or Edit group
form.

	pagename: Validates the page name field in the Add new
page form. Its label is Page Name if you create a page from the
Page ManagementAdd New Page menu. In the Page Creation Wizard,
the label is Node Name.

	Validator aspects:

	gatein.validators.{validatorName}.length.min: The minimum
length of the validated field.

	gatein.validators.{validatorName}.length.max: The maximum
length of the validated field.

	gatein.validators.{validatorName}.regexp: The regular
expression to which the validated field must conform.

	gatein.validators.{validatorName}.format.message: The
information message that is displayed when the field does not
conform to the specified regular expression.

See details about the “username” validator as below. For
instructions on how to add a new validator (not in the above list), see
Developing your own validator.

Configuration of username validator

By default, the username will be validated as follows:

	The length must be between 3 and 30 characters.

	Only lowercase letters, numbers, underscores (_) and period (.) can
be used.

	No consecutive underscores (_) or periods (.) can be used.

	Must start with a lowercase letter.

	Must end with a lowercase letter or number.

Note

Some components that leverage GateIn depend on usernames being all
lowercase. Therefore, you are strongly recommended to use a
lowercase username only.

If you want to validate that username format is email-like, you could
use the following configuration:

validators
gatein.validators.username.regexp=^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}$
gatein.validators.username.format.message=Username must be a valid email address

When the username field does not conform to this rule, the account is
not created and there will be a warning message:

The field "User Name" must match the format "Username must be a valid email address".

In case you do not define gatein.validators.username.format.message,
the value of gatein.validators.username.regexp will be used in the
warning message:

The field "User Name" must match the format "^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,4}$".

Outgoing mail service

eXo Platform includes an email sending service that needs to be configured
before it can function properly. This service, for instance, is used to
send notifications of connection requests.

The service requires an external SMTP server that allows accounts to
send email from applications. A suggestion is to use Google SMTP, as
detailed below.

In configuration, you need to provide your account and password, and
other information so that eXo Platform can connect to the SMTP server.

The configuration file
exo.properties is as
follows:

Here is the default configuration (it will not work of course, you will
need to edit it):

Email display in "from" field of emails sent by eXo platform.
exo.email.smtp.from=noreply@exoplatform.com
SMTP Server hostname.
exo.email.smtp.host=localhost
SMTP Server port.
exo.email.smtp.port=25
True to enable the secure (TLS) SMTP. See RFC 3207.
exo.email.smtp.starttls.enable=false
True to enable the SMTP authentication.
exo.email.smtp.auth=false
Username to send for authentication. Sample: exo.email.smtp.username=account@gmail.com
exo.email.smtp.username=
Password to send for authentication.
exo.email.smtp.password=
Specify the port to connect to when using the specified socket factory. Sample: exo.email.smtp.socketFactory.port=465
exo.email.smtp.socketFactory.port=
This class will be used to create SMTP sockets. Sample: exo.email.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory
exo.email.smtp.socketFactory.class=

Read the inline comments to understand each property. Here are some
remarks:

	You need to provide SMTP server host/port, a username/password to be
authenticated by that server. Others are optional.

	Typically, administrators want to mask the From field in the system
emails with something like no-reply@exoplatform.com so that the
receivers recognize it is robotic. Many SMTP services allow you to
set From field in outgoing emails to another email address than the
authenticated account. That’s why here you see the property
exo.email.smtp.from.

If this parameter is not valid, the value of
exo.email.smtp.username will be used instead.

	If you want to use SMTP gateway over SSL, configure a certificate
truststore containing your SMTP server’s public certificate.
Depending on the key sizes, you may then also need to install Java
Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy
Files for your Java Runtime Environment.

Using Gmail as your SMTP server

Here is the sample using smtp.gmail.com server:

exo.email.smtp.from=noreply@exoplatform.com
exo.email.smtp.host=smtp.gmail.com
exo.email.smtp.port=465
exo.email.smtp.starttls.enable=true
exo.email.smtp.auth=true
exo.email.smtp.username=exo.test100@gmail.com
exo.email.smtp.password=***
exo.email.smtp.socketFactory.port=465
exo.email.smtp.socketFactory.class=javax.net.ssl.SSLSocketFactory

To make the configuration work, you need to:

	Register a Google account that is exo.test100@gmail.com in the
sample.

	Enable POP and IMAP for that account. This can be done simply in your
Gmail settings, see the screenshot below.

[image: image0]

Here [https://support.google.com/mail/answer/78775?hl=en] is a
checklist provided by Google to help you solve problem if any.

Besides, for securing your account, Google may block access from an app
and send you an email to review the access. So in case the mail service
does not work, check your inbox and get the link to allow the app
access.

Note

In case of Gmail, exo.email.smtp.from must be a real account
that you own. It does not need to be a Gmail account, as you can
guess by the sample. You will configure your main account (that is
exo.email.smtp.username) to add this from email as another
“send as”.

To do so, follow this guide of
Google [https://support.google.com/mail/answer/22370?hl=en].

In case the from parameter is not valid, it does not fail the email
sending and the main account will be displayed instead.

Changing sender information of email notification

In eXo Platform, email notifications are sent to users when significant
actions involving them occur (for example, new users, connection
request, space invitation, and more). These emails help them to track of
activities taking place in their Social Intranet.

As an administrator, you can configure information (name and email
address) of the sender, from which all notifications are sent, via two
ways:

	In UI, click AdministrationPortalNotifications. Then edit Email
Notification Sender section.

	Via exo.properties file. See Configuration overview
if you have not created this file yet.

exo.notification.portalname=eXo
exo.email.smtp.from=noreply@exoplatform.com

In which:

	exo.notification.portalname: Name of the sender. The default
value is eXo.

	exo.email.smtp.from: Email address of the sender. The default
value is noreply@exoplatform.com.

Subscribing to notifications of document changes

The function Watch document in Sites Explorer allows users to receive
notification by email when a document is updated. The email address of
receivers is the email they declare in their profile. Administrators can
customize the sender, subject, mimetype and content of the notification.

Note

To get the email notification feature work, you first need to
configure Outgoing mail service first.

To customize the email notification, simply add the following properties
in exo.properties file.

Email content for WatchDocumentService
exo.ecms.watchdocument.subject=Your watching document is changed
exo.ecms.watchdocument.mimetype=text/html
exo.ecms.watchdocument.content=Dear $user_name,

The document $doc_name ($doc_title) has changed.

Please go to $doc_title to see this change.

In which:

	Property

	Default value

	Description

	exo.ecms.watchdocument.subj
ect

	Your watching
document is changed

	The subject of the
email notification.

	exo.ecms.watchdocument.mime
type

	text/html

	The format of the
email content. There
are two types:
text/html and
text/plain.

	exo.ecms.watchdocument.cont
ent

	Dear
$user_name,

The
document $doc_name
($doc_title) has
changed.

Plea
se
go to $do
c_title
to see this
change.

	The content of the
email notification.

You can use four parameters below in the
exo.ecms.watchdocument.content property:

	$user_name: The full name of the receiver.

	$doc_name: The name of the document.

	$doc_title: The title of the document.

	$doc_url: The link to view the document in Sites Explorer.

WebDAV configuration

The embedded WebDAV server lets you configure some parameter via exo.properties file.

JCR Webdav configuration
 exo.webdav.def-folder-node-type=nt:folder
 exo.webdav.def-file-node-type=nt:file
 exo.webdav.def-file-mimetype=application/octet-stream
 exo.webdav.update-policy=update
 exo.webdav.folder-icon-path=/eXoWCMResources/skin/images/file/nt-folder.png
 exo.webdav.cache-control=text/*:max-age=3600;image/*:max-age=1800;application/*:max-age=1800;*/*:no-cache

	exo.webdav.def-folder-node-type

	Default (JCR) node type which is used
for the creation of collections.

	exo.webdav.def-file-node-type

	Default (JCR) node type which is used
for the creation of files.

	exo.webdav.def-file-mimetype

	A mime-type is detected by file
extension or HTTP request header. If
those are not found, this parameter
is used.

	exo.webdav.update-policy

	This defines the behavior when a PUT
command is executed against an
existing resource:

	add: It tries to add new resource
with the same name.

	create-version: It creates a new
version of the resource.

	Otherwise, the PUT command
updates the resource and its last
modification date.

	exo.webdav.folder-icon-path

	The default path is an icon in
eXoWCMResources webapp.

	exo.webdav.cache-control

	This determines the live time of the
caches for each type of responses. Use
no-cache if you want a type to be not
cached.

Secure the listing of the contents of JCR folders through Webdav

For security reasons, it is important to an administrator to secure the
access to WebDAV urls of JCR folders.

You can define which JCR folders could be listed through Webdav by using
the parameter exo.webdav.folder.listing.paths.allowed.regex in
exo.properties file:

exo.webdav.folder.listing.paths.allowed.regex=(collaboration:/Users/(.*)/(.*)/(.*)/(.*))|(collaboration:/Groups/(.*))|(collaboration:/sites/(.*))|(portal-system:/production/app:gadgets/(.*))

The above example allows the listing access to theses folders: users folders,
groups folders, sites folders and gadgets folders.

Note

The value of the parameter exo.webdav.folder.listing.paths.allowed.regex
should respect this pattern : wokspace_Name:/regex.

The default value of exo.webdav.folder.listing.paths.allowed.regex is set to empty
which means that the contents of All JCR folders are listed.

Open in Office configuration

With the Open in Office feature, you are able to easily edit documents,
spreadsheets and presentations in the native applications installed on
your client, without keeping a local copy.

By default, there are 4 labels displayed for corresponding file types as
below:

	Label

	File types

	Open in Word

	docx, doc, docm, dot, dotm, dotx.

	Open in Excel

	xltx, xltm, xlt, xlsx, xlsm, xlsb, xls, xll,
xlam, xla.

	Open in Powerpoint

	pptx, pptm, ppt, ppsx, ppsm, pps, ppam, ppa,
potx, potm, pot

	Open on Desktop

	Non-MS Office files, such as Open Document text
files (odp, ods, odt, and more) or archive files
(zip, rar, war, and more).

As an administrator, you can easily configure the file types associated
with the application named as in “Open in Word”, and set a new label via
exo.properties file.

exo.remote-edit.$CATEGORY=$SET_OF_FILETYPES
exo.remove-edit.$CATEGORY.label=$LABEL

	Replace $CATEGORY with any text as you want, but it should
represent the application in correspondence to the file types defined
in $SET_OF_FILETYPES.

	Replace $LABEL with the application label that will be displayed in
the UI, for example “Word” or “MS Word”.

Here are some examples:

	Changing the default labels from “Open in Word”, “Open in Excel”, and
“Open in Powerpoint” into “Open in MS Word”, “Open in MS Excel” and
“Open in MS Powerpoint”:

#MS Word
exo.remote-edit.word=docx,doc,docm,dot,dotm,dotx
exo.remote-edit.word.label=MS Word

#MS Excel
exo.remote-edit.excel=xltx,xltm,xlt,xlsx,xlsm,xlsb,xls,xll,xlam,xla
exo.remote-edit.excel.label=MS Excel

#MS Powerpoint
exo.remote-edit.powerpoint=pptx,pptm,ppt,ppsx,ppsm,pps,ppam,ppa,potx,potm,pot
exo.remote-edit.powerpoint.label=MS Powerpoint

[image: image1]

	Adding a new label “Open in LibreOffice” for some Open Document Text
file types:

exo.remote-edit.libreoffice=odp,ods,odt
exo.remote-edit.libreoffice.label=LibreOffice

[image: image2]

	Setting a new label “Open in Writer” for some both Word and Open
Document Text file types:

exo.remote-edit.writer=docx,doc,odm,odt
exo.remote-edit.writer.label=Writer

[image: image3]

JODConverter configuration

In Sites Explorer or Activity Stream, users can preview documents of
various types, without downloading it. To support this feature, eXo Platform
uses the JODConverter service that requires OpenOffice or LibreOffice to
be installed locally (in the same machine with the eXo Platform server).

Installing OpenOffice/LibreOffice

Follow OpenOffice
guideline [http://www.openoffice.org/installation/] or LibreOffice
guideline [http://www.libreoffice.org/get-help/installation/] to
install.

Note that those softwares might be installed in some Linux distributions
by the OS already.

Note

JODConverter is already built in eXo Platform, so you do not need to install it.

Sigar Framework

In Windows, Sigar [http://www.hyperic.com/products/sigar] is
recommended. JODConverter uses Sigar - if available - to manage Office
processes. Without Sigar, there is possibility that Office processes are
not stopped successfully when you shut down eXo Platform, and it causes
problem in your next start.

So download [http://sourceforge.net/projects/sigar/files/] the
following files and install them to the lib folder
($PLATFORM_TOMCAT_HOME/lib in Tomcat,
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/lib in
JBoss:

	sigar.jar

	sigar-x86-winnt.dll for Windows 32.

	sigar-amd64-winnt.dll for Windows 64.

JODConverter version

eXo Platform uses JODConverter
v3.0 [https://code.google.com/p/jodconverter/wiki/WhatsNewInVersion3]
that enhances processing different file types much.

Activating and deactivating

JODConverter is activated by default. You can deactivate it (and
consequently not use the preview feature) by setting
exo.jodconverter.enable=false in
exo.properties file.

Configurations

Note

In most cases, you do not need to configure JODConverter because it
can work with default configurations. However, if you are using

OpenOffice 4 (or later), or have installed the Office server
untypically, you will need to specify
exo.jodconverter.officehome by yourself. See Specifying exo.jodconverter.officehome.

JODConverter configurations can be edited in the exo.properties
file. See Configuration overview if the
file has not been created yet.

JOD Converter
exo.jodconverter.enable=true
exo.jodconverter.portnumbers=2002
exo.jodconverter.officehome=
exo.jodconverter.taskqueuetimeout=30000
exo.jodconverter.taskexecutiontimeout=120000
exo.jodconverter.maxtasksperprocess=200
exo.jodconverter.retrytimeout=120000

	Key

	Default
value

	Description

	exo.jodconverter.portnumbers

	2002

	List of ports, separated by
commas - those used by each
JODConverter processing
thread. The number of
office instances is equal
to the number of ports.

	exo.jodconverter.officehome

	See
here

	The absolute path to Office
installed folder.

	exo.jodconverter.taskqueuetimeo
ut

	30000

	The maximum living time of
a task in the conversation
queue. The task will be
removed from the queue if
the waiting time is longer
than taskQueueTimeout.

	exo.jodconverter.taskexecutiont
imeout

	120000

	The maximum time to process
a task. If the processing
time of a task is longer
than
taskExecutionTimeout,
this task will be aborted
and the next task is
processed.

	exo.jodconverter.maxtasksperpro
cess

	200

	The maximum number of tasks
are processed.

	exo.jodconverter.retrytimeout

	120000

	The interval time to
restart the Office services
after an unexpected crash.

Specifying exo.jodconverter.officehome

Again, the default configuration should work in many cases. Most likely
you need to change it for OpenOffice 4.

Note

Note that EXO_JODCONVERTER_OFFICEHOME variable is not used as of
4.1.0. The customize script does not overlap JODConverter
configuration anymore, so only use exo.properties for it.

Here are some examples of the property:

	In Windows:
exo.jodconverter.officehome=C:\\Program Files (x86)\\OpenOffice 4

Note

Remember to use double slash (\) for Windows.

	In OS X:
exo.jodconverter.officehome=/Applications/OpenOffice.app/Contents
(OpenOffice 4) or
exo.jodconverter.officehome=/Applications/LibreOffice.app/Contents
(LibreOffice).

	In Linux: exo.jodconverter.officehome=/opt/openoffice4.

In Linux, if you do not know the path, you might check the
followings:

	/opt/openoffice.org3

	/opt/libreoffice

	/usr/lib/openoffice

	/usr/lib/libreoffice

Services details

To support as many as possible document types, it is recommended you
install all available services of Open Office. However, if you do not
want to do so, refer to the following table to know which packages are
needed for which services.

	File
extensions

	Service names

	Open Office
installation package

	Libre Office
installation package

	doc

docx

odt

	writer

	openoffice.org-writer

	libreoffice-writer

	odf

	math

	openoffice.org-math

	libreoffice-math

	odg

	draw

	openoffice.org-draw

	libreoffice-draw

	odp

ppt

pptx

	impress

	openoffice.org-impres
s

	libreoffice-impress

	ods

ots

xls

xlsx

xlt

	calc

	openoffice.org-calc

	libreoffice-calc

Limiting size of uploaded files

Files can be uploaded in multiple applications such as Documents, Wiki,
Forum, … The maximum allowed size for the uploaded files can be
changed by configuration for each application.

In Documents application

When you upload a file in Documents or Sites Explorer, its size is
limited to 200 MB by default.

To change this limit, edit the exo.ecms.connector.drives.uploadLimit
property in
exo.properties file.

For example:

exo.ecms.connector.drives.uploadLimit=300

Note

As of 4.1, this configuration also takes effect on files uploaded
from Activity Stream (using the Share function).

In activities posts and comments

In a message post or a comment, it is possible to attach an image
through the CKEditor. By default the image size is limited to 200 MB.

You can change this limit by editing the value of the
exo.social.activity.uploadLimit property in
exo.properties file.

For example:

exo.social.activity.uploadLimit=200

In Wiki application

Same as for the previous applications, files upload size in Wiki is
limited, by default to 200 MB which could be redefined through the
property exo.wiki.attachment.uploadLimit in
exo.properties file.

For example:

exo.wiki.attachment.uploadLimit=200

In Forum application

In forum application, you can upload files as attachements in topics or
import a whole forum to eXo Platform forum application.

Both sizes could be defined through these properties:

	File size in topic:

exo.forum.attachment.upload.limit=10

	Forum import size:

exo.forum.import.upload.limit=200

Note

The size is in MB for all the above properties.

Warning

If you are using eXo Platform in JBoss application server, note that in
addition to the parameters described above aiming to customize files
size, you should configure the value of the parameter
max-post-size in standalone/configuration/standalone-exo.xml
which is set by default to 200 MB in eXo Platform package.

<http-listener name="default" socket-binding="http" redirect-socket="https" max-post-size="209715200"/>

Tip

For any others file upload location, the maximum file size is defined by the property exo.uploadLimit.

Default value set to 10 Mb.

Limiting public access to the upload service

By default, unauthenticated users are not allowed to upload resources to
the server through the Upload component on UI or by accessing directly
the “/upload” handler, because this may cause some problems of server
disk space. However, you can definitely configure the UploadHandler to
allow this.

To change this restriction, edit the
exo.portal.uploadhandler.public-restriction property in the
exo.properties file as follows:

exo.portal.uploadhandler.public-restriction=false

Customizing site data

eXo Platform provides 2 built-in sites: Intranet and ACME. In case you want
to customize data of these sites, for example, modifying or overwriting
the existing data, use the externalized parameters in
exo.properties file.

Intranet

	exo.intranet.portalConfig.metadata.override: Allow (true) or
not allow (false) overriding the Intranet data. See Overriding Portal Data
for more details.

	exo.intranet.portalConfig.metadata.importmode: Customize data
import strategy (CONSERVE, INSERT, MERGE, or OVERWRITE). See
here
for more details about these modes.

Enabling/Disabling auto-creating a taxonomy tree

eXo Platform allows you to enable/disable auto-creating a taxonomy tree
during a new site creation by adding the
ecms.taxonomy.autoCreateWithNewSite parameter to
exo.properties file.

Configuration for a taxonomy tree
ecms.taxonomy.autoCreateWithNewSite=false

By default, the parameter is set to false, it means the creation of
a taxonomy tree is disabled when you create a new site.

To enable the function, simply set the parameter to true.

Enabling/Disabling any activity type

eXo Platform allows you to enable/disable any activity type. Disabling an
activity type means that this kind of activities will not be posted in
the streams.

To enable/disable an activity type, you need to add
exo.activity-type.activity-type-key.enabled parameter to
exo.properties file.

Configuration for activity type enabling/disabling
exo.activity-type.activity-type-key=false

By default, the parameter is set to true, it means the activity of
type `` activity-type-key`` is enabled i.e it posts in the streams.

To disable the activity type, simply set the parameter to false.

Note

In the exo.activity-type.activity-type-key.enabled,
activity-type-key could take many values depending on the activity type.
Learn more about different activity types below.

activity-type-key could take these values:

	DEFAULT_ACTIVITY: Activity posted by a user,
without documents or link attached.

	SPACE_ACTIVITY: Activity posted when a space is
created. It contains the space’s description and the
number of members.

	USER_ACTIVITIES_FOR_SPACE: Activity posted when a
user creates an activity in a space.

	LINK_ACTIVITY: Activity with a link attachement.

	sharecontents\:spaces: Activity for contents sharing
in a space.

	USER_PROFILE_ACTIVITY: Activity automatically posted
the first time a user updates his/her profile.

	DOC_ACTIVITY: Activity with document posted via the
Share feature of the mobile application.

	files\:spaces: Activity with documents attached.

	sharefiles\:spaces: Activity automatically posted when a
document is shared in a space.

	contents\:spaces: Activity automatically posted when a
content is created.

	cs-calendar\:spaces: Activity automatically posted when a
new event is created.

	ks-forum\:spaces: Activity automatically posted when a new
forum topic or post is created.

	ks-answer\:spaces: Activity automatically posted when a
new question or answer is created.

	ks-poll\:spaces: Activity automatically posted when a new
poll is created.

	ks-wiki\:spaces: Activity automatically posted when a new
wiki page is created in a space wiki.

	USER_ACTIVITIES_FOR_RELATIONSHIP: Activity
automatically posted the first time a user is getting
connected to another one, containing the number of
relations.

	CALENDAR_ACTIVITY: Comment posted when an event is
updated

	exosocial\:people: Comment posted when a user updates
his/her profile.

	exosocial\:spaces: Comment posted when a member
joins/leaves a space.

	poll\:spaces: Comment posted when a poll is updated.

	USER_COMMENTS_ACTIVITY_FOR_RELATIONSHIP: Comment
automatically posted when two users are getting connected.

	sharecontents\:spaces: Activity automatically posted when
a content is shared in a space.

	exosocial\:relationship: Activity post when two user are
connected together.

Configure spaces administration group

By default, only the super user is able to manage all the spaces of the
platform:

	Create pages on spaces.

	Add/delete/promote members.

	Add/modify/delete space data (Wiki pages, forum Posts, activities,
tasks…).

With eXo Platform 5.0 it is possible to define a group of users to
manage spaces. This group of users is able to edit and delete all kind
of spaces: visible and hidden.

The group of spaces administrators could be defined by adding this
property to
exo.properties file:

	exo.social.spaces.administrators

Note

	You should specify the membership type (*, member, manager…)

in the value of the property.

	It is possible to specify a list of groups separated by commas ,.

In this example, all users of the two groups /platform/administrators
and /developers are allowed to manage spaces:

exo.social.spaces.administrators=*:/platform/administrators,*:/developers

Logs

The logs of eXo Platform are controlled by the Java Logging
API [http://docs.oracle.com/javase/7/docs/technotes/guides/logging/index.html].

By default, the logs are configured to:

	log errors and warnings on the console.

	log $PLATFORM_TOMCAT_HOME/logs/platform.log (Tomcat), or
$PLATFORM_JBOSS_HOME/standalone/log/server.log (JBoss).

The logs are configured via the file:

	$PLATFORM_TOMCAT_HOME/conf/logging.properties (Tomcat). Please
refer to Tomcat’s Logging
Documentation [http://tomcat.apache.org/tomcat-7.0-doc/logging.html]
for more information on how to adjust this file to your needs.

	$PLATFORM_JBOSS_HOME/standalone/configuration/logging.properties
(JBoss).

Hibernate properties for JPA

Since 4.3 version, eXo Platform uses Java Persistance API (JPA) to
manage relational data and Hibernate as a JPA provider.
In tis section, we will define properties allowing to configure
Hibernate in eXo Platform. The following properties should be set in
exo.properties file.

	Name

	Description

	Value

	General
configuration

	
	

	exo.jpa.hibernat
e.dialect

	The classname of a Hibernate
org.hibernate.dialect.Dialect

	A
fully-qualified
classname for
example for HSQl
database it is
org.hibernate.di
alect.HSQLDialec
t

	exo.jpa.hibernat
e.show_sql

	Enables/disables log about
SQL statements.

	true or false

	exo.jpa.hibernat
e.format_sql

	Format log about SQL
statements.

	true or false

	exo.jpa.hibernat
e.default_schema

	The schema name.

	${gatein.idm.dat
asource.schema:}

	exo.jpa.hibernat
e.default_catalo
g

	The catalog name, it
qualifies unqualified table
names with the given catalog
in generated SQL.

	

	exo.jpa.hibernat
e.session_factor
y_name

	The
org.hibernate.SessionFactory
is automatically bound to
this name in JNDI after it is
created.

	JNDI name

	exo.jpa.hibernat
e.max_fetch_dept
h

	Sets a maximum depth for the
outer join fetch tree for
single-ended associations. A
single-ended assocation is a
one-to-one or many-to-one
assocation. A value of 0
disables default outer join
fetching.

	A value between
0 and 3

	exo.jpa.hibernat
e.default_batch_
fetch_size

	Default size for Hibernate
batch fetching of
associations.

	4,8 or 16

	exo.jpa.hibernat
e.default_entity
_mode

	Default mode for entity
representation for all
sessions opened from this
SessionFactory, defaults to
pojo.

	dynamic-map or
pojo

	exo.jpa.hibernat
e.order_updates

	Forces Hibernate to order SQL
updates by the primary key
value of the items being
updated. This reduces the
likelihood of transaction
deadlocks in
highly-concurrent systems.

	true or false

	exo.jpa.hibernat
e.order_by.defau
lt_null_ordering

	Defines precedence of null
values in ORDER BY clause.
Defaults to none which varies
between RDBMS implementation.

	none, first or
last

	exo.jpa.hibernat
e.generate_stati
stics

	Causes Hibernate to collect
statistics for performance
tuning

	true or false

	exo.jpa.hibernat
e.use_identifier
_rollback

	if true, generated identifier
properties are reset to
default values when objects
are deleted.

	true or false

	exo.jpa.hibernat
e.use_sql_commen
ts

	If true, Hibernate generates
comments inside the SQL, for
easier debugging.

	true or false

	Database
configuration:
JDBC

	
	

	exo.jpa.hibernat
e.jdbc.fetch_siz
e

	A non-zero value determines
the JDBC fetch size, by
calling
Statement.setFetchSize().

	An integer or 0

	exo.jpa.hibernat
e.jdbc.batch_siz
e

	A non-zero value causes
Hibernate to use JDBC2 batch
updates.

	A value between
5 and 30

	exo.jpa.hibernat
e.jdbc.batch_ver
sioned_data

	Set this property to true if
your JDBC driver returns
correct row counts from
executeBatch(). This option
is usually safe, but is
disabled by default. If
enabled, Hibernate uses
batched DML for automatically
versioned data.

	true or false

	exo.jpa.hibernat
e.jdbc.factory_c
lass

	Select a custom
org.hibernate.jdbc.Batcher.
Irrelevant for most
applications.

	The
fully-qualified
class name of
the factory

	exo.jpa.hibernat
e.jdbc.use_scrol
lable_resultset

	Enables Hibernate to use
JDBC2 scrollable resultsets.
This property is only
relevant for user-supplied
JDBC connections. Otherwise,
Hibernate uses connection
metadata.

	true or false

	exo.jpa.hibernat
e.jdbc.use_strea
ms_for_binary

	Use streams when writing or
reading binary or
serializable types to or from
JDBC. This is a system-level
property.

	true or false

	exo.jpa.hibernat
e.jdbc.use_get_g
enerated_keys

	Allows Hibernate to use JDBC3
PreparedStatement.getGenerate
dKeys()
to retrieve
natively-generated keys after
insert. You need the JDBC3+
driver and JRE1.4+. Disable
this property if your driver
has problems with the
Hibernate identifier
generators. By default, it
tries to detect the driver
capabilities from connection
metadata.

	true or false

	Database
configuration:
Cache
properties

	
	

	exo.jpa.hibernat
e.cache.provider
_class

	The classname of a custom
CacheProvider.

	org.hibernate.ca
che.HashtableCac
heProvider

	exo.jpa.hibernat
e.cache.use_mini
mal_puts

	Optimizes second-level cache
operation to minimize writes,
at the cost of more frequent
reads. This is most useful
for clustered caches and is
enabled by default for
clustered cache
implementations.

	true or false

	exo.jpa.hibernat
e.cache.use_quer
y_cache

	Enables the query cache. You
still need to set individual
queries to be cachable.

	true or false

	exo.jpa.hibernat
e.cache.use_seco
nd_level_cache

	Completely disable the second
level cache, which is enabled
by default for classes which
specify a cache mapping.

	true or false

	exo.jpa.hibernat
e.cache.query_ca
che_factory

	A custom QueryCache
interface. The default is the
built-in StandardQueryCache.

	Fully-qualified
classname

	exo.jpa.hibernat
e.cache.region_p
refix

	A prefix for second-level
cache region names.

	a string

	exo.jpa.hibernat
e.cache.use_stru
ctured_entries

	Forces Hibernate to store
data in the second-level
cache in a more
human-readable format.

	true or false

	exo.jpa.hibernat
e.cache.use_refe
rence_entries

	Optimizes second-level cache
operation to store immutable
entities (aka “reference”)
which do not have
associations into cache
directly, this case, lots of
disassemble and deep copy
operations could be avoided.
Default value of this
property is false.

	true or false

	Database
configuration:
Transactions
properties

	
	

	exo.jpa.hibernat
e.transaction.fa
ctory_class

	The classname of a
TransactionFactory to use
with Hibernate Transaction
API. The default is
JDBCTransactionFactory.

	org.hibernate.tr
ansaction.JTATra
nsactionFactory

	exo.jpa.hibernat
e.jta.UserTransa
ction

	The JTATransactionFactory
needs a JNDI name to obtain
the JTA UserTransaction from
the application server.

	a JNDI name

	exo.jpa.hibernat
e.transaction.ma
nager_lookup_cla
ss

	The classname of a
TransactionManagerLookup,
which is used in conjunction
with JVM-level or the hilo
generator in a JTA
environment.

	org.hibernate.tr
ansaction.JBossT
ransactionManage
rLookup

	exo.jpa.hibernat
e.transaction.fl
ush_before_compl
etion

	Causes the session be flushed
during the before completion
phase of the transaction. If
possible, use built-in and
automatic session context
management instead.

	true or false

	exo.jpa.hibernat
e.transaction.au
to_close_session

	Causes the session to be
closed during the after
completion phase of the
transaction. If possible, use
built-in and automatic
session context management
instead.

	true or false

	Database
configuration:
Miscellaneous
properties

	
	

	exo.jpa.current_
session_context_
class

	Supply a custom strategy for
the scoping of the Current
Session.

	jta, thread,
managed, or
custom.Class

	exo.jpa.factory_
class

	Chooses the HQL parser
implementation.

	org.hibernate.hq
l.internal.ast.A
STQueryTranslato
rFactory
or
org.hibernate.hq
l.internal.class
ic.ClassicQueryT
ranslatorFactory

	exo.jpa.query.su
bstitutions

	Map from tokens in Hibernate
queries to SQL tokens, such
as function or literal names.

	hqlLiteral=SQL_L
ITERAL
or
hqlFunction=SQLF
UNC

	exo.jpa.hbm2ddl.
auto

	Validates or exports schema
DDL to the database when the
SessionFactory is created.
With create-drop, the
database schema is dropped
when the SessionFactory is
closed explicitly.

	validate,
update, create,
create-drop

	Connection
pool
properties

	
	

	exo.jpa.hibernat
e.proxool.xml

	Configure Proxool provider
using an XML file (.xml is
appended automatically)

	

	exo.jpa.hibernat
e.proxool.proper
ties

	Configure the Proxool
provider using a properties
file (.properties is appended
automatically)

	

	exo.jpa.hibernat
e.proxool.existi
ng_pool

	Whether to configure the
Proxool provider from an
existing pool.

	

	exo.jpa.hibernat
e.proxool.pool_a
lias

	Proxool pool alias to use.
Required.

	

JCR Configuration

Because JCR Configuration is a very advanced topic, it is recommended
you:

	Learn about eXo JCR
configuration.

	Use default values, change them only if you know what you are doing.

	Understand how to configure datasource in the
Database chapter.

The configurations introduced here are a subset of JCR configurations.
There are many JCR configurations which are packed in .war files, so
you have to unpack to edit them. To avoid unpacking them, the subset is
externalized to be configured easily in
exo.properties file.

Here is the list of externalized configurations with their short
descriptions.

	Repository:

exo.jcr.repository.default=repository
exo.jcr.workspace.default=collaboration
exo.jcr.workspace.system=system

In which, “repository”, “collaboration” and “system” are names of
default repository, default workspace and system workspace
respectively. Refer to Repository
Configuration
for details.

	Datasource:

exo.jcr.datasource.name=java:/comp/env/exo-jcr
exo.jcr.datasource.dialect=auto
exo.jcr.db-structure-type=single

These configurations are applied to all workspaces. Refer to
Workspace for
details.

	Jgroups:

exo.jcr.cluster.jgroups.config-url=file:${exo.jcr.cluster.jgroups.config}

This externalizes the jgroups-configuration parameter of all
workspace caches, query-handlers and lock-managers. Refer to
Workspace for
details.

	Value Storage:

exo.jcr.storage.enabled=true

This externalizes the enabled property of file system
value-storage (that is configured at workspace level). The true
value (default) means all binary values are stored in file system.
The false value means all binary values are stored in the
database. Refer to Value Storage plugin for data container
for details.

Cache configuration

To retrieve and display content faster, eXo Platform uses some cache
services. See Basic concepts for
explanation of properties used for eXo Platform caches.

Note

More details about the eXo Platform caches can be found in:

	eXo Cache in Foundation Reference Guide.

	Cache Levels in User Guide.

	Cache management view.

The below properties are all the cache configuration properties with
their default value.

Note

Default values should be changed to better tune eXo Platform.

Portal caches

eXo Platform provides a list of Portal caches, including:

	MOPCache

	NavigationCache

	DescriptionCache

	PageCache

	TemplateCache

	ResourceBundleCache

These Portal caches can be overridden in
exo.properties file.

Portal Cache Configuration - MOP session Manager
exo.cache.portal.mop.MaxNodes=5000
exo.cache.portal.mop.TimeToLive=-1
exo.cache.portal.mop.strategy=LIRS
For Cluster mode
exo.cache.portal.mop.cacheMode=asyncInvalidation

Portal Cache Configuration - Navigation Service
exo.cache.portal.navigation.MaxNodes=5000
exo.cache.portal.navigation.TimeToLive=-1
exo.cache.portal.navigation.strategy=LIRS
For Cluster mode
exo.cache.portal.navigation.cacheMode=asyncInvalidation

Portal Cache Configuration - Description Service
exo.cache.portal.description.MaxNodes=5000
exo.cache.portal.description.TimeToLive=-1
exo.cache.portal.description.strategy=LIRS
For Cluster mode
exo.cache.portal.description.cacheMode=asyncReplication

Portal Cache Configuration - Page Service
exo.cache.portal.page.MaxNodes=5000
exo.cache.portal.page.TimeToLive=-1
exo.cache.portal.page.strategy=LIRS
For Cluster mode
exo.cache.portal.page.cacheMode=asyncInvalidation

Portal Cache Configuration - Template Service
exo.cache.portal.template.MaxNodes=5000
exo.cache.portal.template.TimeToLive=-1
exo.cache.portal.template.strategy=LIRS
For Cluster mode
exo.cache.portal.template.cacheMode=asyncInvalidation

Portal Cache Configuration - ResourceBundleData
exo.cache.portal.ResourceBundleData.MaxNodes=3000
exo.cache.portal.ResourceBundleData.TimeToLive=-1

The specific configuration of Portal caches can be found in the files:

i. For MOPSessionManager, NavigationService,
DescriptionService, PageService:

	$PLATFORM_TOMCAT_HOME/webapps/portal.war!/WEB-INF/conf/portal/portal-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/exo.portal.web.portal.war!/WEB-INF/conf/portal/portal-configuration.xml
(JBoss).

ii. For TemplateService and ResourceBundle:

	$PLATFORM_TOMCAT_HOME/webapps/platform-extension.war!/WEB-INF/conf/platform/cache-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/platform-extension-webapp.war!/WEB-INF/conf/platform/cache-configuration.xml
(JBoss).

MOPCache

The MOPCache caches all model objects of the portal (MOP), such as
sites, pages and preferences. When the cached MOP objects are called,
they will be directly retrieved from cache rather than the database.

	The cached MOP object is invalidated when it is modified or removed.

	The MOPCache size equals to the number of MOP objects in cache.

	The maximum heap size cannot be calculated exactly because the
MOPCache caches many types of MOP objects that are different in
size.

NavigationCache

The NavigationCache caches data of navigation. When the cached
navigation is accessed, it will be retrieved from cache rather than the
database.

	The cached navigation is invalidated when it is modified or
destroyed.

	The NavigationCache size equals to the number of navigations in
cache.

	The size of each cached navigation is dependent on length of its
string field. The navigation size is often less than 250 bytes, so
the maximum heap size equals to the cache size multiplied by 250
bytes.

DescriptionCache

The DescriptionCache caches a pair of name-description. Accordingly,
the cached pair of name-description will be taken directly from cache
rather than the database.

	The cached pair of name-description is invalidated when the data of
this name-description pair is modified or destroyed.

	The DescriptionCache size equals to the number of
name-description pairs in cache.

	The maximum heap size is dependent on length of name and description
of each pair stored in cache. The size of a name-description pair is
often less than 200 bytes, so the maximum heap size equals to the
cache size multiplied by 200 bytes.

PageCache

The PageCache caches data of a page when one user visits it for the
first time. When the cached page is visited, it will be loaded from
cache rather than the database.

	The cached page is invalidated when the page is destroyed. When the
page is modified, its new data will be updated into cache.

	The PageCache size equals to the number of pages in cache.

	The maximum heap size is dependent on some dynamic attributes of a
page, for example, site name that contains the page, length of
access/edit permission, display name of page.

TemplateCache

The TemplateCache caches all Groovy templates of the portal by its
template path and ResourceResolver. When the cached template is called,
it will be loaded from cache rather than the database or the file
system.

	The cached Groovy template is invalidated when it is removed or
modified.

	The TemplateCache size equals to the number of Groovy templates
in cache.

	The maximum heap size is dependent on length of Groovy template. The
size of a Groovy template is often less than 100KB, so the maximum
heap size equals to the cache size multiplied by 100KB.

ResourceBundleCache

The ResourceBundleCache caches all resource bundles by name and
locale. When the cached resource bundle is called, it will be directly
loaded from cache rather than the database or the file system.

	The cached resource bundle is invalidated when it is removed or
modified.

	The ResourceBundleCache size equals to the number of resource
bundles in cache.

	The maximum heap size is dependent on the size of resource bundle.
The size of a resource bundle is often less than 100KB, so the
maximum heap size equals to the cache size multiplied by 100KB.

Notications, settings and user state caches

eXo Platform provides a list of Caches for notifications, settings and
user state:

	SettingCache

	Web Notification Count Cache

	Web Notification Cache

	Web Notifications Cache

	User State Service

	User Setting Service

The Settings, Notifications and User State caches can be
overridden in exo.properties
file.

#== Notications, settings and user state Caches Configuration == #

Commons Cache Configuration - Settings Service
exo.cache.commons.SettingService.MaxNodes=2000
exo.cache.commons.SettingService.TimeToLive=360000
exo.cache.commons.SettingService.strategy=LIRS
For cluster mode
exo.cache.commons.SettingService=asyncInvalidation

Commons Cache Configuration - Web Notification Count
exo.cache.commons.WebNotificationCountCache.MaxNodes=5000
exo.cache.commons.WebNotificationCountCache.TimeToLive=-1
exo.cache.commons.WebNotificationCountCache.strategy=LIRS
exo.cache.commons.WebNotificationCountCache.cacheMode=asyncReplication

Commons Cache Configuration - Web Notification
exo.cache.commons.WebNotificationCache.MaxNode=5000
exo.cache.commons.WebNotificationCache.TimeToLive=3600
exo.cache.commons.WebNotificationCache.strategy=LIRS
exo.cache.commons.WebNotificationCache.cacheMode=asyncReplication

Commons Cache Configuration - Web Notifications
exo.cache.commons.WebNotificationsCache.MaxNodes=5000
exo.cache.commons.WebNotificationsCache.TimeToLive=3600
exo.cache.commons.WebNotificationsCache.strategy=LIRS
exo.cache.commons.WebNotificationsCache.cacheMode=asyncReplication

Commons Cache Configuration - User State Service
exo.cache.commons.UserStateService.MaxNodes=5000
exo.cache.commons.UserStateService.TimeToLive=600
exo.cache.commons.UserStateService.strategy=LIRS
exo.cache.commons.UserStateService.cacheMode=asyncReplication

Commons Cache Configuration - User Setting Service
exo.cache.commons.UserSettingService.MaxNodes=5000
exo.cache.commons.UserSettingService.TimeToLivee=86400
exo.cache.commons.UserSettingService.strategy=LIRS
exo.cache.commons.UserSettingService.cacheMode=asyncInvalidation

The specific configuration of SettingCache can be found in the file:

	$PLATFORM_TOMCAT_HOME/lib/commons-component-common-X.Y.Z.jar!/conf/portal/configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib/commons-component-common.jar!/conf/portal/configuration.xml
(JBoss).

SettingCache

The SettingCache caches the setting value for all contexts and all
scopes. When any users ask for the cached setting value, it will be
retrieved from cache rather than the database.

	The SettingCache is never invalidated.

	The SettingCache size equals to the number of setting values in
cache.

	Each entry of cache is a pair and key is a composite key(Context
context, Scope scope, String key). The value is String, Double, Long
or Boolean. In reality, the size of these values should be less than
100 bytes, so the maximum heap size equals to the cache size
multiplied by 400 bytes.

ECMS caches

eXo Platform provides a list of ECMS caches, including:

	Drive Cache

	Script Cache

	Fragment Cache

	Template Cache

	Initial Web Content Cache

	PDF Viewer Cache

	SEO Cache

Here are the configurations in exo.properties
file:

== ECMS Caches Configuration ==

ECMS Cache Configuration - Drive Service
 exo.cache.ecms.drive.MaxNodes=5000
 exo.cache.ecms.drive.TimeToLive=600
 exo.cache.ecms.drive.strategy=LIRS
 exo.cache.ecms.drive.cacheMode=syncInvalidation

 # ECMS Cache Configuration - Script Service
 exo.cache.ecms.scriptservice.MaxNodes=300
 exo.cache.ecms.scriptservice.TimeToLive=86400

 # ECMS Cache Configuration - Fragment Cache Service (Markup Cache)
 exo.cache.ecms.fragmentcacheservice.MaxNodes=10000
 exo.cache.ecms.fragmentcacheservice.TimeToLive=30

 # ECMS Cache Configuration - Templates Service
 exo.cache.ecms.templateservice.MaxNodes=100
 exo.cache.ecms.templateservice.TimeToLive=-1
 exo.cache.ecms.TemplateService.strategy=LIRS
 exo.cache.ecms.templateservice.cacheMode=asyncReplication

 # ECMS Cache Configuration - Initial Webcontent
 exo.cache.ecms.initialwebcontentplugin.MaxNodes=300
 exo.cache.ecms.initialwebcontentplugin.TimeToLive=86400
 exo.cache.ecms.InitialWebContentPlugin.strategy=LIRS
 exo.cache.ecms.initialwebcontentplugin.cacheMode=asyncInvalidation

 # ECMS Cache Configuration - PDF Viewer Service
 exo.cache.ecms.PDFViewerService.MaxNodes=1000
 exo.cache.ecms.PDFViewerService.TimeToLive=3600
 exo.cache.ecms.PDFViewerService.strategy=LIRS
 exo.cache.ecms.PDFViewerService.cacheMode=syncInvalidation

 # ECMS Cache Configuration - SEO Cache
 exo.cache.ecms.seoservice.MaxNode=1000
 exo.cache.ecms.seoservice.TimeToLive=3600
 exo.cache.ecms.seoservice.strategy=LIRS
 exo.cache.ecms.seoservice.cacheMode=asyncReplication

 # ECMS Cache Configuration - Query Service
 exo.cache.ecms.queryservice.MaxNodes=5000
 exo.cache.ecms.queryservice.TimeToLive=600000
 exo.cache.ecms.queryservice.strategy=LIRS
 exo.cache.ecms.queryservice.cacheMode=asyncReplication

 # ECMS Cache Configuration - SiteSearch Service found
 exo.cache.ecms.sitesearchservice.found.MaxNodes=10000
 exo.cache.ecms.sitesearchservice.found.TimeToLive=3600

 # ECMS Cache Configuration - SiteSearch Service drop
 exo.cache.ecms.sitesearchservice.drop.MaxNodes=10000
 exo.cache.ecms.sitesearchservice.drop.TimeToLive=3600

 # ECMS Cache Configuration - Javascript Cache
 exo.cache.ecms.javascript.MaxNodes=1000
 exo.cache.ecms.javascript.TimeToLive=3600
 exo.cache.ecms.javascript.strategy=LIRS
 exo.cache.ecms.javascript.cacheMode=asyncReplication

 # ECMS Cache Configuration - Lock
 exo.cache.ecms.lockservice.MaxNodes=300
 exo.cache.ecms.lockservice.TimeToLive=-1
 exo.cache.ecms.LockService.strategy=LIRS
 exo.cache.ecms.lockservice.cacheMode=replication

 # ECMS Cache Configuration - Folksonomy Service
 exo.cache.ecms.folkservice.MaxNodes=300
 exo.cache.ecms.folkservice.TimeToLive=-1
 exo.cache.ecms.folkservice.strategy=LIRS
 exo.cache.ecms.folkservice.cacheMode=asyncReplication

These properties are exposed via exo.properties for administrators.
The full configuration can be found in XML configuration files. For SEO
Cache, the file is:

	$PLATFORM_TOMCAT_HOME/webapps/ecm-wcm-extension.war!/WEB-INF/conf/wcm-extension/wcm/seo-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/ecms-packaging-wcm-webapp.war!/WEB-INF/conf/wcm-extension/wcm/seo-configuration.xml (JBoss).

For the other caches, the file is:

	$PLATFORM_TOMCAT_HOME/webapps/ecm-wcm-core.war!/WEB-INF/conf/wcm-core/core-services-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/ecms-core-webapp.war!/WEB-INF/conf/wcm-core/core-services-configuration.xml (JBoss).

Drive Cache

The managedrive caches visited drives of Sites Explorer by their
names. When any users visit the cached drives, these drives will be
directly retrieved from cache rather than the database.

	The cache is invalidated when the drive is removed or added.

	The cache size equals to the number of drives in cache.

	The maximum heap size consumed by the cache are calculated as below:

	Each item of drive cache contains: name, workspace, homePath,
permission, view, icon, allowcreatefolders, viewReferences,
viewNondocument, viewSidebar, showHiddenNode.

	The first 7 elements are String and their length often should not
be greater than 1000 bytes.

	The last 4 elements are Boolean and the size of each element is 1
byte.

	Thus, the maximum heap size equals to the cache size multiplied by
7004 bytes.

Script Cache

The scriptservice caches the ECMS Script objects. When there are any
requests for cached scripts, these scripts are retrieved from cache
rather than the database.

	The scriptservice cache is never invalidated.

	The cache size equals to the number of scripts in cache.

	The maximum heap size equals to the cache size multiplied by size of
the script object.

Template Cache

The templateservice caches the list of document nodetypes. When any
users call for the cached document nodetypes, data will be retrieved
from cache rather than the database.

	The templateservice cache is invalidated when the document
template is updated.

	The cache size is 1.

	The heap size consumed by the cache is unlimited. However the cache
contains node names only, so it consumes less than 10KB.

Initial Web Content Cache

The webcontent.initialwebcontentplugin caches the artifacts (nodes)
that are used to initialize a new portal. When a cached artifact is
called, it will be read and returned from cache rather than the
database.

	The cache is never invalidated because the initial artifact is never
changed.

	The cache size equals to the number of the cached artifacts.

	The maximum heap size equals to the total size of all artifacts.

Fragment Cache

The fragmentcacheservice caches content of SCVs and CLVs. When any
users call for these cached portlets, these portlets will be retrieved
from cache rather than the database.

	The fragmentcacheservice is invalidated when SCVs and CLVs are
switched from the edit to the live mode.

	The cache size equals to the number of SCVs/CLVs in cache.

	The maximum heap size consumed by the cache: total size of cached
SCVs/CLVs (the SCVs/CLVs size is unlimited).

PDF Viewer Cache

The pdfviewer caches the path to a specific page of a specific PDF
file. In eXo Platform, when a user views an Office document or PDF file, the
viewed page is extracted into a PDF file, and REST is used to return
that file content to client browser.

	The pdfviewer cache is never invalidated.

	The cache size equals to the number of pages viewed by users.

	The maximum heap size equals to the cache size multiplied by 200
bytes (supposing that the longest file path is 200 characters).

SEO Cache

The seoservice caches the SEO metadata of all pages in all sites.
When the SEO metadata of these cached pages are called, the created
pages will be got based on the page path from cache rather than the
database.

	The seoservice cache is never invalidated.

	The cache size equals to the number of pages to which the SEO
metadata is added.

	The maximum heap size is calculated as follows:

	Each Metadata object contains 8 String objects: uri, rbcontent,
keywords, description, title, frequency, fullStatus,
pageReference. Each object is usually less than 100 characters.

	5 bytes (a float and a boolean) for priority and sitemap.

	Thus, the total heap size equals to the cache size multiplied by
805 bytes.

Social caches

eXo Platform provides 4 Social caches, including:

	IdentityCache

	RelationshipCache

	SpaceCache

	ActivityCache

You can change values of these Social caches in
exo.properties file.

In particular:

== SOCIAL Caches Configuration ==

Social Cache Configuration - Identity
exo.cache.social.IdentityCache.MaxNodes=5000
exo.cache.social.IdentityCache.TimeToLive=86400
exo.cache.social.IdentityCache.strategy=LIRS
exo.cache.social.IdentityCache.cacheMode=asyncInvalidation

Social Cache Configuration - Identity Index
exo.cache.social.IdentityIndexCache.MaxNodes=5000
exo.cache.social.IdentityIndexCache.TimeToLive=86400
exo.cache.social.IdentityIndexCache.strategy=LIRS
exo.cache.social.IdentityIndexCache.cacheMode=asyncInvalidation

Social Cache Configuration - Profile
exo.cache.social.ProfileCache.MaxNodes=5000
exo.cache.social.ProfileCache.TimeToLive=86400
exo.cache.social.ProfileCache.strategy=LIRS
exo.cache.social.ProfileCache.cacheMode=asyncInvalidation

Social Cache Configuration - Identities
exo.cache.social.IdentitiesCache.MaxNodes=5000
exo.cache.social.IdentitiesCache.TimeToLive=86400
exo.cache.social.IdentitiesCache.strategy=LIRS
exo.cache.social.IdentitiesCache.cacheMode=asyncInvalidation

Social Cache Configuration - Identities Count
exo.cache.social.IdentitiesCountCache.MaxNodes=5000
exo.cache.social.IdentitiesCountCache.TimeToLive=86400
exo.cache.social.IdentitiesCountCache.strategy=LIRS
exo.cache.social.IdentitiesCountCache.cacheMode=asyncInvalidation

Social Cache Configuration - Relationship
exo.cache.social.RelationshipCache.MaxNodes=10000
exo.cache.social.RelationshipCache.TimeToLive=86400
exo.cache.social.RelationshipCache.strategy=LIRS
exo.cache.social.RelationshipCache.cacheMode=asyncReplication

Social Cache Configuration - Relationship From Identity
exo.cache.social.RelationshipFromIdentityCache.MaxNodes=10000
exo.cache.social.RelationshipFromIdentityCache.TimeToLive=86400
exo.cache.social.RelationshipFromIdentityCache.strategy=LIRS
exo.cache.social.RelationshipFromIdentityCache.cacheMode=asyncReplication

Social Cache Configuration - Relationships Count
exo.cache.social.RelationshipsCountCache.MaxNodes=5000
exo.cache.social.RelationshipsCountCache.TimeToLive=86400
exo.cache.social.RelationshipsCountCache.strategy=LIRS
exo.cache.social.RelationshipsCountCache.cacheMode=asyncReplication

Social Cache Configuration - Relationships
exo.cache.social.RelationshipsCache.MaxNodes=5000
exo.cache.social.RelationshipsCache.TimeToLive=86400
exo.cache.social.RelationshipsCache.strategy=LIRS
exo.cache.social.RelationshipsCache.cacheMode=asyncReplication

Social Cache Configuration - Activity
exo.cache.social.ActivityCache.MaxNodes=6000
exo.cache.social.ActivityCache.TimeToLive=3600
exo.cache.social.ActivityCache.strategy=LIRS
exo.cache.social.ActivityCache.cacheMode=asyncReplication

Social Cache Configuration - Activities Count
exo.cache.social.ActivitiesCountCache.MaxNodes=5000
exo.cache.social.ActivitiesCountCache.TimeToLive=86400

Social Cache Configuration - Activities
exo.cache.social.ActivitiesCache.MaxNodes=5000
exo.cache.social.ActivitiesCache.TimeToLive=86400

Social Cache Configuration - Space
exo.cache.social.SpaceCache.MaxNodes=500
exo.cache.social.SpaceCache.TimeToLive=86400
exo.cache.social.SpaceCache.strategy=LIRS
exo.cache.social.SpaceCache.cacheMode=asyncReplication

Social Cache Configuration - Space Ref
exo.cache.social.SpaceRefCache.MaxNodes=2000
exo.cache.social.SpaceRefCache.TimeToLive=86400
exo.cache.social.SpaceRefCache.strategy=LIRS
exo.cache.social.SpaceRefCache.cacheMode=asyncReplication

Social Cache Configuration - Spaces Count
exo.cache.social.SpacesCountCache.MaxNodes=5000
exo.cache.social.SpacesCountCache.TimeToLive=86400
exo.cache.social.SpacesCountCache.strategy=LIRS
exo.cache.social.SpacesCountCache.cacheMode=asyncInvalidation

Social Cache Configuration - Spaces
exo.cache.social.SpacesCache.MaxNodes=5000
exo.cache.social.SpacesCache.TimeToLive=86400
exo.cache.social.SpacesCache.strategy=LIRS
exo.cache.social.SpacesCache.cacheMode=asyncInvalidation

Social Cache Configuration - Active Identities
exo.cache.social.ActiveIdentitiesCache.MaxNodes=4000
exo.cache.social.ActiveIdentitiesCache.TimeToLive=86400
exo.cache.social.ActiveIdentitiesCache.strategy=LIRS
exo.cache.social.ActiveIdentitiesCache.cacheMode=asyncInvalidation

Social Cache Configuration - Suggestions Cache
exo.cache.social.SuggestionsCache.MaxNodes=5000
exo.cache.social.SuggestionsCache.TimeToLive=86400
exo.cache.social.SuggestionsCache.strategy=LIRS
exo.cache.social.SuggestionsCache.cacheMode=asyncInvalidation

The specific configuration of each Social cache can be found in:

	$PLATFORM_TOMCAT_HOME/webapps/social-extension.war!/WEB-INF/conf/social-extension/social/cache-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/social-extension-war.war!/WEB-INF/conf/social-extension/social/cache-configuration.xml
(JBoss).

IdentityCache

The IdentityCache caches information related to identities, such as
index, count or profile. When any users view or take actions on
users/spaces or activity page that contains the cached identity
information, information will be directly retrieved from cache rather
than the database.

	The IdentityCache is invalidated when the user/space is deleted
or updated.

	The IdentityCache size equals to the number of identities in
cache.

	The maximum heap size is calculated as follows:

	Identity Data: 33Kb (Max size: 500)

	Identity Index: 24Kb (Max size: 500)

	Identities List: 3747Kb (Max size: 2000)

	Identities Count: 739Kb (Max size: 2000)

	Profile Data: 170Kb (Max size: 500)

RelationshipCache

The RelationshipCache caches relationship information of users in
the social networking. Any connection status (connection, pending,
invitation, suggestion and count of relationships) is cached. When any
users ask for these cached relationships, their information will be
retrieved from cache rather than the database.

	The RelationshipCache is invalidated when the connection is
changed/removed or when a new connection is added.

	The RelationshipCache size equals to the number of relationships
in cache.

	The maximum heap size is calculated as follows:

	Relationship Data: 14610Kb (Max size: 20000)

	Relationships Count: 16Kb (Max size: 800)

	Relationships: 171Kb (Max size: 800)

	Suggestion: 400Kb (Max size: 500)

SpaceCache

The SpaceCache caches all information of spaces, including the count
and space references. When any users visit the cached spaces, their
information will be retrieved from cache rather than the database.

	The SpaceCache is invalidated when the space is deleted or
updated.

	The SpaceCache size equals to the number of spaces in cache.

	The maximum heap size is calculated as follows:

	Space Data: 1177Kb (Max size: 1000)

	Spaces List: 1126Kb (Max size: 1000)

	Spaces Count: 203Kb (Max size: 4000)

	Space Ref: (38Kb) (Max size: 10000)

ActivityCache

The ActivityCache caches information related to activities, such as
the count of activities. When any users visit the cached activities,
information of these activities will be retrieved from cache rather than
the database.

	The ActivityCache is invalidated when the activity is deleted or
updated (a new comment is added to the activity).

	The ActivityCache size equals to the number of activities in
cache.

	The maximum heap size is calculated as follows:

	Activities Data: 3697Kb (Max size: 10000)

	Activities List: 2555Kb (Max size: 4000)

	Activities Count: 98Kb (Max size: 4000)

Forum caches

eXo Platform provides 9 Forum caches, including:

	UserProfilesCache

	CategoriesCache

	ForumsCache

	TopicsCache

	PostsCache

	WatchesCache

	ObjectNameDataCache

	MiscDataCache

	BBCodeCache

You can override these Forum caches in exo.properties
file.

== FORUM Caches Configuration ==

Forum Cache Configuration - ForumPermissions
exo.cache.forum.ForumPermissionsUsers.MaxNodes=300
exo.cache.forum.ForumPermissionsUsers.TimeToLive=-1
exo.cache.forum.ForumPermissionsUsers.strategy=LIRS
exo.cache.forum.ForumPermissionsUsers.cacheMode=asyncInvalidation

Forum Cache Configuration - BBCodeData
exo.cache.forum.BBCodeData.MaxNodes=500
exo.cache.forum.BBCodeData.TimeToLive=-1
exo.cache.forum.BBCodeData.strategy=LIRS
exo.cache.forum.BBCodeData.cacheMode=asyncReplication

Forum Cache Configuration - BBCodeListData
exo.cache.forum.BBCodeListData.MaxNodes=500
exo.cache.forum.BBCodeListData.TimeToLive=-1
exo.cache.forum.BBCodeListData.strategy=LIRS
exo.cache.forum.BBCodeListData.cacheMode=asyncReplication

Forum Cache Configuration - User Profile
exo.cache.forum.UserProfile.MaxNodes=800
exo.cache.forum.UserProfile.TimeToLive=14400
exo.cache.forum.UserProfile.strategy=LIRS
exo.cache.forum.UserProfile.cacheMode=asyncInvalidation

Forum Cache Configuration - User Profile List
exo.cache.forum.UserProfileList.MaxNodes=300
exo.cache.forum.UserProfileList.TimeToLive=1800
exo.cache.forum.UserProfileList=LIRS
exo.cache.forum.UserProfileList.cacheMode=asyncInvalidation

Forum Cache Configuration - User Profiles List Count
exo.cache.forum.UserProfileListCount.MaxNodes=300
exo.cache.forum.UserProfileListCount.TimeToLive=1800
exo.cache.forum.UserProfileListCount=LIRS
exo.cache.forum.UserProfileListCount.cacheMode=asyncInvalidation

Forum Cache Configuration - Login User Profiles
exo.cache.forum.LoginUserProfile.MaxNodes=500
exo.cache.forum.LoginUserProfile.TimeToLive=-1
exo.cache.forum.LoginUserProfile.strategy=LIRS
exo.cache.forum.LoginUserProfile.cacheMode=asyncInvalidation

Forum Cache Configuration - Category List
exo.cache.forum.CategoryList.MaxNodes=50
exo.cache.forum.CategoryList.TimeToLive=-1
exo.cache.forum.CategoryList.strategy=LIRS
exo.cache.forum.CategoryList.cacheMode=asyncInvalidation

Forum Cache Configuration - Category Data
exo.cache.forum.CategoryData.MaxNodes=150
exo.cache.forum.CategoryData.TimeToLive=-1
exo.cache.forum.CategoryData.strategy=LIRS
exo.cache.forum.CategoryData.cacheMode=asyncReplication

Forum Cache Configuration - Forum List
exo.cache.forum.ForumList.MaxNodes=100
exo.cache.forum.ForumList.TimeToLive=-1
exo.cache.forum.ForumList.strategy=LIRS
exo.cache.forum.ForumList.cacheMode=asyncInvalidation

Forum Cache Configuration - Forum Data
exo.cache.forum.ForumData.MaxNodes=500
exo.cache.forum.ForumData.TimeToLive=-1
exo.cache.forum.ForumData.strategy=LIRS
exo.cache.forum.ForumData.cacheMode=asyncReplication

Forum Cache Configuration - Topic Data
exo.cache.forum.TopicData.MaxNodes=2000
exo.cache.forum.TopicData.TimeToLive=86400
exo.cache.forum.TopicData.strategy=LIRS
exo.cache.forum.TopicData.cacheMode=asyncReplication

Forum Cache Configuration - Topic List
exo.cache.forum.TopicList.MaxNodes=500
exo.cache.forum.TopicList.TimeToLive=-1
exo.cache.forum.TopicList.strategy=LIRS
exo.cache.forum.TopicList.cacheMode=asyncInvalidation

Forum Cache Configuration - Topic List Count
exo.cache.forum.TopicListCount.MaxNodes=500
exo.cache.forum.TopicListCount.TimeToLive=-1
{exo.cache.forum.TopicListCount.strategy=LIRS
exo.cache.forum.TopicListCount.cacheMode=asyncInvalidation

Forum Cache Configuration - Post data
exo.cache.forum.PostData.MaxNodes=20000
exo.cache.forum.PostData.TimeToLive=-1
exo.cache.forum.PostData.strategy=LIRS
exo.cache.forum.PostData.cacheMode=asyncReplication

Forum Cache Configuration - Post List
exo.cache.forum.PostList.MaxNodes=500
exo.cache.forum.PostList.TimeToLive=-1
exo.cache.forum.PostList.strategy=LIRS
exo.cache.forum.PostList.cacheMode=asyncInvalidation

Forum Cache Configuration - Post List Count
exo.cache.forum.PostListCount.MaxNodes=500
exo.cache.forum.PostListCount.TimeToLive=-1
exo.cache.forum.PostListCount.strategy=LIRS
exo.cache.forum.PostListCount.cacheMode=asyncInvalidation

Forum Cache Configuration - Poll Data
exo.cache.poll.PollData.MaxNodes=100
exo.cache.poll.PollData.TimeToLive=-1
exo.cache.poll.PollData.strategy=LIRS
exo.cache.poll.PollData.cacheMode=asyncInvalidation

Forum Cache Configuration - Poll List
exo.cache.poll.PollList.MaxNodes=500
exo.cache.poll.PollList.TimeToLive=-1
exo.cache.poll.PollList.strategy=LIRS
exo.cache.poll.PollList.cacheMode=asyncInvalidation

Forum Cache Configuration - Poll Summary Data
exo.cache.poll.PollSummaryData.MaxNodes=500
exo.cache.poll.PollSummaryData.TimeToLive=-1
exo.cache.poll.PollSummaryData.strategy=LIRS
exo.cache.poll.PollSummaryData.cacheMode=asyncInvalidation

Forum Cache Configuration - Watch List Data
exo.cache.forum.WatchListData.MaxNodes=5000
exo.cache.forum.WatchListData.TimeToLive=-1
exo.cache.forum.WatchListData.strategy=LIRS
exo.cache.forum.WatchListData.cacheMode=asyncInvalidation

Forum Cache Configuration - Link List Data
exo.cache.forum.LinkListData.MaxNodes=150
exo.cache.forum.LinkListData.TimeToLive=-1
exo.cache.forum.LinkListData.strategy=LIRS
exo.cache.forum.LinkListData.cacheMode=asyncInvalidation

Forum Cache Configuration - Object Name Data
exo.cache.forum.ObjectNameData.MaxNodes=10000
exo.cache.forum.ObjectNameData.TimeToLive=-1
exo.cache.forum.ObjectNameData.strategy=LIRS
exo.cache.forum.ObjectNameData.cacheMode=asyncReplication

Forum Cache Configuration - Misc Data
exo.cache.forum.MiscData.MaxNodes=10000
exo.cache.forum.MiscData.TimeToLive=86400
exo.cache.forum.MiscData.strategy=LIRS
exo.cache.forum.MiscData.cacheMode=asyncReplication

The specific configuration of each Forum cache can be found in:

	$PLATFORM_TOMCAT_HOME/webapps/forum-extension.war!/WEB-INF/ks-extension/ks/forum/cache-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/forum-extension-webapp.war!/WEB-INF/ks-extension/ks/forum/cache-configuration.xml
(JBoss).

UserProfilesCache

The UserProfilesCache caches information of users, for example,
name, number of topics, number of posts, user settings information in
the forum system. These cached information will be used when the users
log in the forum for next times.

	The UserProfilesCache is invalidated when the user is deleted or
updated, or when the user creates a new topic/post or changes his/her
user settings, logs in/out of the system.

	The UserProfilesCache size equals to the number of user profiles
in forum.

	The maximum heap size of UserProfilesCache is 213Kb (Max size:
500).

CategoriesCache

The CategoriesCache caches information of categories, such as name,
order, description, permissions. Information of these cached categories
are used when the Forums application is opened not for the first time.

	The CategoriesCache is invalidated when the category is modified
(for example, when the user updates his/her profile, or watches a
category, or adds/deletes a space).

	The CategoriesCache size equals to the number of categories in
cache.

	The maximum heap size is calculated as follows:

	Categories List: 207Kb (Max size: 50)

	Categories Data: 54Kb (Max size: 150)

ForumsCache

The ForumsCache caches information related to forums, such as name,
order, description, permission. Information of these cached forums is
used when any users open the Forums application not for the first time.

	The ForumsCache is invalidated when the forum is modified
(updating user profile, users watch on Forum, spaces updated).

	The ForumsCache size equals to the number of forums in cache.

	The maximum heap size is calculated as follows:

	Forum List: 66Kb (Max size: 500)

	Forum Data: 982Kb (Max size: 2500)

TopicsCache

The TopicsCache caches information related to topics, such as name,
description, owner, last updated time and permission. When any users go
to the cached topics, their information will be retrieved from cache
rather than the database.

	The TopicsCache is invalidated when the topic is modified (for
example, when the user watches a topic, or adds/deletes a post, or
deletes a space).

	The TopicsCache size equals to the number of topics in cache.

	The maximum heap size is calculated as follows:

	Topic List: 194Kb (Max size: 150)

	Topic Data: 581Kb (Max size: 500)

PostsCache

The PostsCache caches information of posts, such as title, message,
owner. When any users do anything related to the cached posts,
information will be retrieved from cache rather than the database.

	The PostsCache is invalidated when the post is modified (or
updated).

	The PostsCache size equals to the number of topics in cache.

	The maximum heap size is calculated as follows:

	Post List: 228Kb (Max size: 150)

	Post Data: 720Kb (Max size: 500)

WatchesCache

The WatchesCache caches information related to watches, such as
users and emails. These cached information will be used when the
forum/category/topic is loaded not for the first time.

	The WatchesCache is invalidated when a post is modified
(unwatched/watched).

	The WatchesCache size equals to the number of watches in cache.

	The maximum heap size of watched data is 257Kb (Max size: 500)

ObjectNameDataCache

The ObjectNameDataCache caches simple information of
categories/forums/topics, such as name and jcr-path. When any users ask
for these cached forums/categories/topics, the information will be
retrieved from cache rather than the database.

	The ObjectNameDataCache is invalidated when a
category/forum/topic is updated.

	The ObjectNameDataCache size equals to the number of
ObjectNameData in cache.

	The maximum heap size of ObjectNameDataCache is 239Kb (Max size:
500).

MiscDataCache

The MiscDataCache caches simple information related to categories
list size, forums list size, topic list size, screen name of users.
These cached information is used when the Forums application is opened
not for the first time.

	The MiscDataCache is invalidated when a
category/forum/topic/post/user profile is modified.

	The MiscDataCache size equals to the number of MiscData in cache.

	The maximum heap size equals to 45Kb (Max size: 600).

BBCodeCache

The BBCodeCache caches information related to BBCodes, such as tag
name, replacement, description, isOption. When any users open the topic
containing the cached BBCodeCache or add/edit the BBCode, information
will be retrieved from cache rather than the database.

	The BBCodeCache is invalidated when the BBCode is modified.

	The BBCodeCache size equals to the number of BBCodes in cache.

	The maximum heap size is calculated as follows:

	BBCode List: 9Kb (Size: 10).

	BBCode Data: 11,25Kb (Size: 50).

Wiki caches

eXo Platform provides 3 Wiki caches, including:

	RenderingCache

	UuidCache

	AttachmentCountCache

You can change these Social caches that are handled by
PageRenderingCacheService in
exo.properties file.

In particular:

== WIKI Caches Configuration ==

 # Wiki Cache Configuration - Page Rendering
 exo.cache.wiki.PageRenderingCache.MaxNodes=3500
 exo.cache.wiki.PageRenderingCache.TimeToLive=-1
 exo.cache.wiki.PageRenderingCache.strategy=LIRS
 exo.cache.wiki.PageRenderingCache.cacheMode=asyncReplication

 # Wiki Cache Configuration - Page Attachment
 exo.cache.wiki.PageAttachmentCache.MaxNodes=3500
 exo.cache.wiki.PageAttachmentCache.TimeToLive=-1
 exo.cache.wiki.PageAttachmentCache.strategy=LIRS
 exo.cache.wiki.PageAttachmentCache.cacheMode=asyncReplication

The specific configuration of each Wiki cache can be found in:

	$PLATFORM_TOMCAT_HOME/lib/wiki-service-xxx.jar!/conf/portal/cache-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/lib/wiki-service.jar!/conf/portal/cache-configuration.xml
(JBoss).

RenderingCache

The RenderingCache caches content of visited wiki pages. When any
users visit the cached wiki pages, their content will be retrieved from
cache rather than the database.

	The RenderingCache is updated when a wiki page is removed or
modified.

	The RenderingCache size equals to the number of wiki pages in
cache.

	The size of a wiki page is unlimited, so the maximum heap size
consumed by the cache is unlimited too. However, most of wiki pages
are often less than 100KB. Therefore, the maximum heap size equals to
the cache size multiplied by 100KB.

UuidCache

The UuidCache caches Uuid of nodes that stores the visited wiki
pages. When any users visit these wiki pages, Wiki gets the nodes by
UUID in cache that is much faster than query in the database.

	The UuidCache is updated when the wiki page is removed.

	The UuidCache size equals to the number of wiki pages in cache.

	Every Uuid has the length of 32 bytes, so the maximum heap size
equals to the cache size multiplied by 32 bytes.

AttachmentCountCache

The AttachmentCountCache caches the number of attachments of the
visited wiki pages. When the visited wiki pages are called, the number
of page attachments will be retrieved from cache rather than the
database.

	The AttachmentCountCache is updated when the wiki page is
removed/modified or when its attachment is added/removed.

	The AttachmentCountCache size equals to the number of wiki pages
in cache.

	The maximum heap size equals to the cache size multiplied by 4 bytes
(“4” - size of Integer).

Calendar caches

eXo Platform provides 6 Calendar caches, including:

	GroupCalendarCache

	UserCalendarCache

	GroupCalendarEventCache

	GroupCalendarRecurrentEventCache

	UserCalendarSettingCache

	Calendar Cache by ID

	Calendar originating datasource by calendarId

	EventCategoriesCache

You can change values of these Calendar caches in
exo.properties file.

== CALENDAR Caches Configuration ==

 # Calendar Cache By Id - Group/User/Shared Calendars
 exo.cache.calendar.Calendar.MaxNodes=1000
 exo.cache.calendar.Calendar.TimeToLive=3600
 exo.cache.calendar.Calendar.strategy=LIRS
 exo.cache.Calendar.Calendar.cacheMode=asyncReplication

 # Calendar originating datasource by calendarId
 exo.cache.calendar.dsNameById.MaxNodes=1000
 exo.cache.calendar.dsNameById.TimeToLive=-1

 # Calendar Cache Configuration - Group Calendar
 exo.cache.calendar.GroupCalendar.MaxNodes=100
 exo.cache.calendar.GroupCalendar.TimeToLive=86400
 exo.cache.calendar.GroupCalendar.strategy=LIRS
 exo.cache.calendar.GroupCalendar.cacheMode=asyncReplication

 # Calendar Cache Configuration - Group Calendar Event
 exo.cache.calendar.GroupCalendarEvent.MaxNodes=1000
 exo.cache.calendar.GroupCalendarEvent.TimeToLive=3600
 exo.cache.calendar.GroupCalendarEvent.strategy=LIRS
 exo.cache.calendar.GroupCalendarEvent.cacheMode=asyncReplication

 # Calendar Cache Configuration - Group Calendar Recurrent Event
 exo.cache.calendar.GroupCalendarRecurrentEvent.MaxNodes=1000
 exo.cache.calendar.GroupCalendarRecurrentEvent.TimeToLive=3600
 exo.cache.calendar.GroupCalendarRecurrentEvent.strategy=LIRS
 exo.cache.calendar.GroupCalendarRecurrentEvent.cacheMode=asyncReplication

 # Calendar Cache Configuration - User Calendar
 exo.cache.calendar.UserCalendar.MaxNodes=1000
 exo.cache.calendar.UserCalendar.TimeToLive=3600
 exo.cache.calendar.UserCalendar.strategy=LIRS
 exo.cache.calendar.UserCalendar.cacheMode=asyncInvalidation

 # Calendar Cache Configuration - User Calendar Setting
 exo.cache.calendar.UserCalendarSetting.MaxNodes=1000
 exo.cache.calendar.UserCalendarSetting.TimeToLive=3600
 exo.cache.calendar.UserCalendarSetting.strategy=LIRS
 exo.cache.calendar.UserCalendarSetting.cacheMode=asyncInvalidation

 # Calendar Cache Configuration -Event Categories
 exo.cache.calendar.EventCategories.MaxNodes=1000
 exo.cache.calendar.EventCategories.TimeToLive=3600
 exo.cache.calendar.EventCategories.strategy=LIRS
 exo.cache.calendar.EventCategories.cacheMode=asyncReplication

The specific configuration of each Calendar cache can be found in:

	$PLATFORM_TOMCAT_HOME/webapps/calendar-extension.war!/WEB-INF/cs-extension/cs/cs-configuration.xml
(Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/calendar-extension-webapp.war!/WEB-INF/cs-extension/cs/cs-configuration.xml
(JBoss).

GroupCalendarCache

The GroupCalendarCache caches the Calendar objects. This object
contains metadata information of a calendar, such as calendar name, time
zone, permissions. When any users access the cached group calendar, the
metadata of this group calendar will be retrieved from cache rather than
the database.

	The cached GroupCalendarCache is invalidated when the user
updates calendar metadata, such as creating, deleting, updating
calendars (changing time zone).

	The GroupCalendarCache size equals to the number of Calendar
objects in cache.

	Each Calendar object is approximately 75 bytes, so the maximum heap
size equals to the cache size multiplied by 75 bytes.

UserCalendarCache

The UserCalendarCache caches the Calendar object. When any users
access the cached user calendar, the metadata of this user calendar will
be retrieved from cache rather than the database.

	The UserCalendarCache is invalidated when the user updates
calendar metadata, such as creating, deleting, updating calendar
(changing time zone).

	The UserCalendarCache size equals to the number of Calendar
objects in cache.

	Each Calendar object is approximately 75 bytes, so the maximum heap
size equals to the cache size multiplied by 75 bytes.

GroupCalendarEventCache

The GroupCalendarEventCache caches information about events, for
example, summary, datetime, invitations, attachments. When any users
show content of a group calendar (for example, its events, tasks) for
the first time, a query will be made, then put the result to the cache.
When another users access the cached content, its data will be retrieved
from cache rather than the database.

	The GroupCalendarEventCache is invalidated when the users make
changes on content of the group calendar, for example, creating,
deleting tasks, updating summary of events.

	The GroupCalendarEventCache size equals to the number of events
in cache.

	If the event does not contain the attachment file, each event object
is approximately 200 bytes. Therefore, the maximum heap size equals
to the cache size multiplied by 200 bytes.

GroupCalendarRecurrentEventCache

The GroupCalendarRecurrentEventCache caches information about
recurring events, for example, summary, datetime, invitations, and
attachment. When any users show content of a group calendar that
contains the recurring event (for example, its events, tasks) for the
first time, a query will be made, then put the result to the cache. When
another users access the cached content, the data query will be
retrieved from cache rather than the database.

	The GroupCalendarRecurrentEventCache is invalidated when the user
makes changes on recurring events, for example, deleting, updating
summary of recurring events.

	The GroupCalendarRecurrentEventCache size equals to the number of
recurring events in cache.

	If the recurring event does not contain the attachment file, each
object is approximately 200 bytes. Therefore, the maximum heap size
equals to the cache size multiplied by 200 bytes.

UserCalendarSettingsCache

The UserCalendarSettingsCache caches information about calendar
settings, such as datetime format, calendar filter, view types. When the
user needs calendar settings, such as access to calendar page and need
to render current view (month view, week view), a query is made and put
the setting information to the cache. If another users access the cached
calendar settings, the data will be directly retrieved from cache rather
than the database.

	The UserCalendarSettingsCache is invalidated when the user
changes his settings or the user is deleted.

	The UserCalendarSettingsCache size equals to the number of
calendar settings in cache.

	Each Calendar setting object is approximately 80 bytes, so the
maximum heap size equals to the cache size multiplied by 80 bytes.

Calendar Cache by ID

This cache will manage:

	User private calendars by id and username.

	User shared calendar by id and username.

	Group calendar by id.

Calendar originating datasource by calendarId

This cache will manage originating datasource name (“jcr” or “task”) to
be able to search for the calendar information from the dedicated store.

EventCategoriesCache

The EventCategoriesCache caches event category names and Ids. When
an event category is called for the first time, a query is made and data
is put into the cache. For next time, when another users call the cached
event category, its data will be retrieved from cache rather than the
database.

	The EventCategoriesCache is invalidated when the user creates,
updates or deletes the event category.

	The EventCategoriesCache size equals to the number of event
categories in cache.

	The EventCategoriesCache size is approximately 24 bytes, so the
maximum heap size equals to the cache size multiplied by 24 bytes.

End-date suggestion

eXo Platform offers the end-date suggestion feature in Calendar that you can
change in
exo.properties file.

auto suggest the end of event time to 1 hour (2 x 30 min)
exo.calendar.default.event.suggest=2
auto suggest the end of task time to 30 minutes (1 x 30 min)
exo.calendar.default.task.suggest=1

In which:

	The numeric value of duration suggestion is complied with the
following rules: 1 = 30 minutes, 2 = 1 hour, 3 = 1 hour
30 minutes, 4 = 2 hours. This means 1 block equals to 30
minutes.

	exo.calendar.default.event.suggest: Defines the duration of an
event. That is, if the start-time is 7:00AM in the From field, the
end-time will be auto-increased to 8:00AM in the To field. “2” is set
by default for the duration of events.

	exo.calendar.default.task.suggest: Defines the duration of a
task. That is, if the start-time is 7:00AM in the From field, the
end-time will be auto-increased to 7:30AM in the To field. “1” is set
by default for the duration of tasks.

Predefined users, groups and memberships

When eXo Platform starts for the first time, it initializes some users,
groups and memberships, such as user root and group /platform. Some
user attributes are set also, including password, firstname, lastname
and email.

First you should get familiar with the expression of group and
membership. If a user has the member:/platform/users membership, it
means the user is a member of the /platform/users group. The groups
are organized like a tree, in which /platform/users is a sub-group of
/platform group.

A membership is formed by a membership type and a group. Member,
editor and manager are some of predefined membership types. So strictly
speaking, “membership type” and “membership” are different concepts.
However, the word “membership” is sometimes used with the meaning of
“membership type”.

Next you will learn the configurations of predefined users, groups and
memberships which are written in:

	$PLATFORM_TOMCAT_HOME/webapps/platform-extension.war!/WEB-INF/conf/organization/organization-configuration.xml
(Tomcat)

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/platform-extension-webapp.war!/WEB-INF/conf/organization/organization-configuration.xml
(JBoss)

This section does not directly aim at changing those predefined
organizational data, but if it is the further step you want to go, you
can easily perform via the extension mechanism
provided by eXo Platform.

Organizational data initializer

At top of the configuration file, you see the initializer declaration
that is supposed to create all the predefined data discussed here:

<component-plugin>
 <name>init.service.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.services.organization.OrganizationDatabaseInitializer</type>
 <description>this listener populate organization data for the first launch</description>
 <init-params>
 <value-param>
 <name>checkDatabaseAlgorithm</name>
 <description>check database</description>
 <value>entry</value>
 </value-param>
 ...
 </init-params>
</component-plugin>

Notice the value of checkDatabaseAlgorithm. If it is set to entry,
each user, group and membership listed in the configuration is checked
each time eXo Platform is started. If an entry does not exist in the database
yet, it will be created. If the value is set to empty, the data will
be updated to the database only if the database is empty.

Predefined membership types

All predefined membership types can be found under the membershipType
field. Here is an extract:

<field name="membershipType">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">
 <field name="type"><string>*</string></field>
 <field name="description"><string>Any membership type</string> </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">
 <field name="type"><string>manager</string></field>
 <field name="description"><string>manager membership type</string></field>
 </object>
 </value>
 ...
 </collection>
</field>

Predefined groups

All predefined groups can be found under the group field. Here is an
extract:

<field name="group">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.organization.OrganizationConfig$Group">
 <field name="name"><string>developers</string></field>
 <field name="parentId"><string /></field>
 <field name="description"><string>the /developers group</string></field>
 <field name="label"><string>Development</string></field>
 </object>
 </value>
 ...
 </collection>
</field>

Predefined users

All predefined users can be found under the user field. The
configurations are username, firstname, lastname, email, password and
the list of memberships granted to the user. Here is an extract:

<field name="user">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.organization.OrganizationConfig$User">
 <field name="userName"><string>${exo.super.user}</string></field>
 <field name="password"><string>gtn</string></field>
 <field name="firstName"><string>Root</string></field>
 <field name="lastName"><string>Root</string></field>
 <field name="email"><string>root@localhost</string></field>
 <field name="groups">
 <string>*:/platform/administrators,*:/platform/users,*:/platform/web-contributors,*:/organization/employees,member:/organization/management/executive-board</string>
 </field>
 </object>
 </value>
 ...
 </collection>
</field>

Note that the code above uses the exo.super.user property which is set
to root in
exo.properties file:

Gadget configuration

Gadget configuration consists of OAuth key, Shindig properties, and
security token key. By default those configuration files are located at:

	gatein/conf/gadgets for Tomcat.

	standalone/configuration/gatein/gadgets for JBoss.

To use your customized configuration files, it is recommended that you
replace default files in that location with yours.

It is possible to change the location by pointing exo.conf.dir to
another folder. However, exo.conf.dir holds many configuration files
besides gadgets, so take care that you have those files in the new
folder. Also note that the folder of gadgets files will be
${exo.conf.dir}/gadgets.

To change exo.conf.dir:

	In Tomcat: customize the variable
EXO_CONF_DIR=/path/to/your/folder (see Customizing variables
for how-to).

	In JBoss: edit the property exo.conf.dir in
standalone/configuration/standalone-exo.xml
(standalone-exo-cluster.xml in cluster mode).

<sytem-properties>
 <property name="exo.conf.dir" value="/path/to/your/folder"/>
</system-properties>

The security token key (key.txt) is automatically generated by the
server so you just need to acknowledge its location. Next is more
information about OAuth key and Shindig properties.

OAuth key configuration

In eXo Platform, the OAuth gadgets use an OAuth key to authorize with
external service providers. There is always a default key defined in the
oauthkey.pem file. This key will be used in case the OAuth gadgets
do not indicate a key. It is strongly recommended that you create your
own oauthkey.pem file by using the openssl tool and some
commands as follows:

openssl req -newkey rsa:1024 -days 365 -nodes -x509 -keyout testkey.pem -out testkey.pem -subj '/CN=mytestkey'
openssl pkcs8 -in testkey.pem -out oauthkey.pem -topk8 -nocrypt -outform PEM

Then, replace the default oauthkey.pem with yours.

Disabling Shindig online features

Some Shindig features require online access which may lead to
significant delay time at startup time. Administrators can disable those
features in the shindig.properties file. Once the online features,
for example analytics, are disabled, they will not be available in
gadgets.

Default (enabled):

shindig.features.default=res://features/default-features.txt,res://features/online-features.txt

To disable:

shindig.features.default=res://features/default-features.txt

Enabling/Disabling groovy templates statistics

Management and Monitoring Gadgets
is a set of administrative gadgets that provide a global vision for the
system and they can provide performance statistics useful for
administrators.

With eXo Platform 4.4, a new parameter configurable through
exo.properties file, was introduced:

exo.statistics.groovy.template.enabled=true

This parameter allows to enable/disable groovy templates statistics that
is collected asynchronously. Enabling it (i.e setting it to “True”)
activates the statistics collection to be made in memory without logs.

Note

This parameter is not necessary for production environements. It
could be activated for testing purposes.

Search connector configuration

There are a number of built-in Search connectors which are activated by
default in eXo Platform. You can easily turn any of them off by setting its
corresponding property to false in the
exo.properties file, as
referring the following table:

	Property

	Description

	
``exo.unified-search.connector.fi

le.enable``

	Turn on/off Unified Search connector
for all files. The default is true,
that is, all files are included in the
search scope.

	
``exo.unified-search.connector.wi

ki.enable``

	Turn on/off Unified Search connector
for all Wiki pages. The default is
true, that is, all Wiki pages are
included in the search scope.

	
``exo.unified-search.connector.pa

ge.enable``

	Turn on/off Unified Search connector
for all portal pages. The default is
true, that is, all portal pages are
included in the search scope.

	
``exo.unified-search.connector.po

st.enable``

	Turn on/off Unified Search connector
for all Forum posts. The default is
true, that is, all Forum posts are
included in the search scope.

	
``exo.unified-search.connector.ta

sksInTasks.enable``

	Turn on/off Unified Search connector
for all Calendar tasks. The default is
true, that is, all Calendar tasks are
included in the search scope.

	
``exo.unified-search.connector.s

pace.enable``

	Turn on/off Unified Search connector
for all spaces. The default is true,
that is, all spaces are included in the
search scope.

	
``exo.unified-search.connector.e

vent.enable``

	Turn on/off Unified Search connector
for all Calendar events. The default is
true, that is, all Calendar events
are included in the search scope.

	
``exo.unified-search.connector.p

eople.enable``

	Turn on/off Unified Search connector
for all users. The default is true,
that is, all users are included in the
search scope.

	
``exo.unified-search.connector.d

ocument.enable``

	Turn on/off Unified Search connector
for all documents. The default is
true, that is, all documents are
included in the search scope.

Unified Search configuration

eXo Platform exposes several parameters for effective use of Unified Search
Engine. You can change these parameters in
:ref:`exo.properties <Configuration.ConfigurationOverview>`file.

Enables Fuzzy search engine
Values: true/false
exo.unified-search.engine.fuzzy.enable=true

Sets the required similarity between the query term and the matching terms
Values : Between 0 and 1
exo.unified-search.engine.fuzzy.similarity=0.5

List characters will be ignored by indexer
exo.unified-search.excluded-characters=.-

Fuzzy parameters

Since 4.0.4, there are two properties that allow you to enable/disable
Fuzzy search and adjust its effectiveness. You can read about Fuzzy
search
here [http://lucene.apache.org/core/3_5_0/queryparsersyntax.html#Fuzzy%20Searches].
Basically, the engine searches for not only exact keyword but also
similar words. It is likely a feature expected by end-users, but it is
also a deal with search speed. That is why you should have ability to
adjust degree of similarity and enable/disable Fuzzy search.

By default, Fuzzy search is enabled. Fuzzy search will be performed when
the user adds a tilde (~) after a single keyword. So the “Home~”
keyword triggers a Fuzzy search of which the result may include “Rome”.
Also, the user can append a similarity to narrow or extend the search
result, for example “Home~0.8”.

	Property

	Description

	exo.unified-search.engine.fuzz
y.enable

	The value can be true or false that
means Fuzzy search is enabled or
disabled respectively. The default is
true.

	exo.unified-search.engine.fuzz
y.similarity

	The default similarity that varies
between 0 and 1. The closer to 1 this
value is set, the more found words are
similar to the keyword. The value of
this property is effective when the
user does not add a similarity.

Use the period (.) for floating point,
for example “0.1”, “0.2”. The default
is 0.5.

Excluded characters

By default only the whitespace is recognized as the word separator -
means if the data is “Lorem Ipsum”, there are two indexes will be
created for “Lorem” and “Ipsum”.

The built-in indexing service of eXo Platform allows more word
separators, like dot (.) or hyphen (-). To define those, edit the
property exo.unified-search.excluded-characters.

When a user types a phrase to search, the word separator is used also.
For example if hyphen is configured, and the user types “Lorem-Ipsum”,
then the query is sent as if it is two words.

Elasticsearch Embedded mode Configuration

When deployed as embedded, the Elasticsearch configuration
files [https://www.elastic.co/guide/en/elasticsearch/reference/2.3/setup-configuration.html]
(elasticsearch.yml and logging.yml) are embedded in the add-on. All the
properties can be set directly in
exo.properties and will
override the default properties defined in elasticsearch.yml and
logging.yml.

Properties of the Elasticsearch embedded node

All the properties below are standard properties of Elasticsearch. When
a property es.xxx is defined in
exo.properties,
it is automatically picked by the embedded Elasticsearch node (without
the “es.” prefix).

################################ Elasticsearch Embedded node ################################

es.cluster.name=exoplatform-es
es.node.name=exoplatform-es-embedded
es.network.host=127.0.0.1
es.discovery.zen.ping.unicast.hosts=["127.0.0.1"]
es.http.port=9200
es.path.data=gatein/data

More details about these properties can be found in the Properties reference chapter.

Properties of the Elasticsearch client

eXo Platform communicates with the Elasticsearch server via multiple
components through so-called client code. The client code differentiates
calls done to the server for indexing and for searching. It allows to
have different a deployment topology where different Elasticsearch
server have different roles. The following client paramters are
configurable in exo.properties

################################ Elasticsearch ################################
exo.es.embedded.enabled=true
exo.es.index.server.url=http://127.0.0.1:9200
exo.es.index.server.username=root
exo.es.index.server.password=xxxxx
exo.es.indexing.batch.number=1000
exo.es.indexing.replica.number.default=1
exo.es.indexing.shard.number.default=5
exo.es.indexing.request.size.limit=10485760
exo.es.reindex.batch.size=100
exo.es.search.server.url=http://127.0.0.1:9200
exo.es.search.server.username=root
exo.es.search.server.password=xxxxx

The parameter

exo.es.embedded.enabled=true

allows to enable/disable Elasticsearch Embedded node startup. It is set
to True by default. More details about the parameters in Properties reference.

Properties of the indexing processor and connectors

The properties below allow to configure indexing parameters such as the
number of shards, replicas, batch size…

For more details about indexing with Elasticseach, you can take a look
in this documentation.

################################ Properties of the indexing processor ################################
exo.es.indexing.batch.number=1000
exo.es.indexing.request.size.limit=10485760
exo.es.reindex.batch.size=100
################################ Properties of the indexing connectors ################################
exo.es.indexing.replica.number.default=1
exo.es.indexing.shard.number.default=5

More details about the parameters in Properties reference chapter.

CometD

What is CometD?

CometD [https://docs.cometd.org/current/reference/] is a set of
libraries that facilitates the writing of web applications that perform
messaging over the web such as web chat applications.

The role of CometD is to deliver messages over the wire using the best
available transport: Websocket or HTTP, independently of the APIs used
in the application. It also provides transparent fallback in case
WebSocket does not work.

CometD clustering

CometD [https://docs.cometd.org/current/reference/] provides a
clustering solution called Oort that allows you to scale horizontally
your web applications. With a CometD based system in cluster mode,
clients connect to multiple nodes instead of a single node.

Oort [https://docs.cometd.org/current/reference/#_java_oort]
clustering is not a high-availability solution. In fact, when a node is
down, all the clients are disconnected and then connected to another
node by a new handshake. When this happens then if the application did
not implement a method to retrieve information, the data build on the
client side is lost.

CometD configuration

To configure CometD in either cluster or standalone mode, some
parameters are needed. A list of parameters is provided in CometD’s Official documentation [https://docs.cometd.org/].

Note

All CometD [https://docs.cometd.org/current/reference/]
parameters are configurable in eXo Platform in the
exo.properties
file by prefixing them with exo.cometd.. For example, to
override the maximum size of Websocket messages, a value must be set
for the parameter ws.maxMessageSize. Thus, in eXo Platform this value
must be set in exo.properties
through the exo.cometd.ws.maxMessageSize.

Youtube integration

eXo Platform uses YouTube Data API v3 that provides access to YouTube data,
such as videos, playlists, and channels. To enable this, you should
configure a Youtube V3 API Key property via
exo.properties file.

For instance:

youtube.v3.api.key=AIzaSyDToZc6oTOpe7kZIJeSUMvxfyoS6hhKJuI

In which:

	youtube.v3.api.key: an API key which is generated by a specific
google account. Refer to https://console.developers.google.com to
create such a key.

Notification

The feature related to configuration in this section is the
Email/On-site notification. Here are some aspects of the feature:

	Users can receive daily/weekly emails that sum up the activities they
are interested in. This is performed in the background by jobs called
NotificationDailyJob and NotificationWeeklyJob.

	In the Web UI, the notifications pop up immediately when an activity
happens. And there is a page called “View All” where users can see
all the recent notifications.

In the background, a job called WebNotificationJob takes care to
remove notifications that are older than a configurable live time.

Here under is the list of related properties that you can configure via
exo.properties
file.

	exo.notification.NotificationDailyJob.expression

This is the Cron expression to schedule the daily emails. By default
it is 0 0 23 ? * * (11:00pm every day).

Learn to write Cron expression string here.

	exo.notification.NotificationWeeklyJob.expression

This is the Cron expression to schedule the weekly emails. By default
it is 0 0 11 ? * SUN (11:00am every Sunday).

	exo.notification.service.QueueMessage.period

When they run, the jobs divide emails into batches and send them
sequentially for preventing overloads. This configuration is the
delay time (in seconds) between two batches.

The default is 60 (one minute).

	exo.notification.service.QueueMessage.numberOfMailPerBatch

This is the (maximum) number of emails of each batch. The default is
30.

	exo.notification.portalname

This is the “from” field in the emails. The default is eXo.

	exo.notification.maxitems

The maximum number of notifications displayed in the popover list.
The default is 8.

	exo.notification.viewall

The number of days a notification takes place in the “View All” page.
When it reaches its live time, it will be removed by the
WebNotificationJob. The default is 30 (days).

	exo.notification.WebNotificationCleanJob.expression

The Cron expression to schedule the WebNotificationJob. By default it
runs at 11:00pm every day (0 0 23 ? * *).

Notification channels configuration

In eXo Platform, two notification channels are available by default:

	Web channel: notifications are sent on the web browser.

	Email channel: notifications are sent via the email.

It is possible to define which channels to activate through the
parameter exo.notification.channels in
exo.properties file.

It is a comma separated property which could take these values:

	MAIL_CHANNEL

	WEB_CHANNEL

By default (when the property is not customized or empty), all the
available channels are activated. When a notification channel is added
through an extension, it is automatically activated.

Document versioning

By default, versioning is enabled for documents contained in the
Managed Sites, Groups and Personal Documents drives. To
change this configuration, edit the
exo.ecms.documents.versioning.drives property in the
exo.properties file.

For example:

exo.ecms.documents.versioning.drives=Managed Sites,Personal Documents

in which the drives are separated by commas.

Besides, to control the data arisen from this feature, eXo Platform provides
you with the two properties:

	exo.ecms.documents.versions.max: defines the maximum number of
versions that a document can have. When the maximum number of
versions is reached, only the X last versions are kept while the
other ones are permanently deleted. A non-positive value means no
limit - by default this property is set to 0 (no limit).

	exo.ecms.documents.versions.expiration: defines the expiration
time (in days) of a document version. When the expiration time is
reached, the version is permanently deleted. The last version of a
document is never deleted. A non-positive value means no limit - by
default this property is set to 0 (no limit).

Note

If the value of the property
exo.ecms.documents.versioning.drives is updated to add or remove
drives, the documents already existing in the old and new drives are
not impacted. Only the new documents are impacted by the updates.
All the previous rules apply, depending on whether the document is
versioned or not.

Document Viewer

The Document Viewer relies on document conversion on serverside
which can take significant resources on large files. In order to avoid
excessive resource consumption, this component limits the size of files
it can display. Limits are set both in file weight and in number of
pages in the document:

	exo.ecms.documents.pdfviewer.max-file-size: defines the maximum
size in Megabytes that a file can weight to be displayed in the
document viewer. Beyond that size, the document viewer displays a
warning message instead of the document content :

[image: image4]

Default limit is 10MB. Any non-positive or invalid value will
fallback to default.

	exo.ecms.documents.pdfviewer.max-pages: defines the maximum
number of pages that a document can contain to be displayed in the
document viewer. Beyond that number of pages, the document viewer
displays a warning message instead of the document content.

[image: image5]

Default limit is 99 pages. Any non-positive value or invalid value
will fallback to default.

Forgot Password

If you forget your password, you can request the system to send you a
link to reset it. The link will be sent to your email and will expire as
soon as you successfully reset the password or after an expiration time.

The expiration time is 24 hours by default. To change it, edit the
following in
exo.properties file.

exo.portal.resetpassword.expiretime=24

The time unit is hour.

Password Encryption

For security, the user passwords are encrypted before being stored into
the database. When a user logs in, he provides a password in clear text.
This given password is then encrypted by the same algorithm and the
same encoder class before being compared with the stored password. If
they match, the user gets authenticated.

As of eXo Platform 4.3, the encoder and the algorithm can be configured via
exo.properties file.

Note

It is not likely administrators will want to change the default
encoder and algorithm. However for users who upgrade from a previous
version older than 4.3, it is important to know that the default
encoder and the default algorithm have changed, so you will need
to re-configure it back to the old one which has been used,
otherwise old users will not be able to log in.

Before 4.3, the defaults are:

	Encoder class: org.picketlink.idm.impl.credential.HashingEncoder

	Algorithm: MD5

As of 4.3, the defaults are:

	Encoder class:
org.picketlink.idm.impl.credential.DatabaseReadingSaltEncoder

	Algorithm: SHA-256

To change the defaults in 4.3 back to the old ones, edit
exo.properties to have:

exo.plidm.password.class=org.picketlink.idm.impl.credential.HashingEncoder
exo.plidm.password.hash=MD5

Task Management

Note

The Task Management application is packaged as an add-on, so you
need to install it first. Refer to this guide for more details.

To define a default workflow for new projects in the Task Management
application, you can configure a property named
exo.tasks.default.status via
exo.properties file.

For instance:

exo.tasks.default.status=To Do, In Progress, Wait, Validate, Done

in which, each status in the workflow is separated by a comma.

File storage configuration

With eXo Platform 4.4 version, a new file storage subsystem has been
introduced besides JCR. It’s currently used for wiki attachments and
user and space profile pictures. Read more in File Storage.
A property allows to indicate which file storage method should be used:

exo.files.binaries.storage.type=fs

Setting exo.files.binaries.storage.type to rdbms means that
files will be stored as BLOBs in the database.

Setting exo.files.binaries.storage.type to fs means that files
will be stored on the server file system.

Other properties related to file storage can be configured in
exo.properties file:

	exo.commons.FileStorageCleanJob.expression=0 0 11 ? * SUN:
defines the scheduling (a cron expression) of the job responsible to
clean unused files.

	exo.commons.FileStorageCleanJob.retention-time=30: defines how
long unused files should be retained before deletion. It is set to 30
days by default.

	exo.commons.FileStorageCleanJob.enabled=true: enables/disables
the cron job. By default, the job is enabled i.e set to true.

	In case you set exo.files.binaries.storage.type to fs, you
can parameter the files storage location with this parameter:
exo.files.storage.dir. Its default value is set to
${exo.data.dir}/files

The directory exo.files.storage.dir should be shared in cluster
mode.

Chat Configuration

Configuring the eXo Chat add-on can be done by creating a
chat.properties file or using the exo.properties file (if you
have not created this file, see Configuration Overview).

These configuration files are located in:

	$PLATFORM_TOMCAT_HOME/gatein/conf/ for Tomcat.

	$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/ for JBoss.

Note

You were asked to create the files for security during the setup. If
you include any parameter below into the exo.properties, you
should add the prefix chat. to its name, such as
chat.dbServerHost. Besides, in case both of these files are
used, parameters in the exo.properties file will have higher
priority than those in the chat.properties file.

Database

	Parameter

	Default

	Description

	dbServerType

	mongo

	You should always use the default
value. The other value, embed, is
used for unit testing.

	dbServerHost

	localhost

	The host name or IP of MongoDB.

	dbServerPort

	27017

	The port number to connect to
MongoDB host.

	dbServerHosts

	
	The MongoDB nodes to connect to, as
a comma-separated list of
<host:port> values. For example
“host1:27017,host2:27017,host3:27017
“.

	dbName

	chat

	Name of the Mongo database name.

	dbAuthentication

	false

	Set it true if authentication is
required to access MongoDB.

	dbUser

	EMPTY

	Provide the username to access the
database if authentication needed.

	dbPassword

	EMPTY

	Provide the password to access the
database if authentication needed.

Warning

It is highly recommended to define the parameter dbServerHosts
instead of defining the two parameters dbServerHost and
dbServerPort as they are depracated starting from eXo Platform 5.0
version.

Generally, you do not need to configure those unless you have secured
your MongoDB. See details about connecting to secured MongoDB in
Secured MongoDB.

Mail Server

This server is used for Sending meeting notes (see Recording a discussion).
The parameters of mail configuration for the eXo Chat server are the
same as those of Outgoing Mail Service, but
without the prefix exo.. Notice that if you include these parameters
into the exo.properties file, you should add the prefix chat. to
their name.

Chat Server

	Parameter

	Default

	Description

	standaloneChatServer

	false

	The mode of the chat server:

	The parameter is set to true if
the chat is in a standalone mode.

	The parameter is set to false if
the the chat is in embedded mode.

	chatPassPhrase

	chat

	The password to access REST service
on the eXo Chat server.

	chatCronNotifCleanup

	0 0/60 * * * ?

	The notifications are cleaned up
every one hour by default. To learn
the syntax of Cron expression, see
Scheduled synchronization,
Administrator
guide

	teamAdminGroup

	/platform/adminis
trators

	The eXo group who can create teams.

	chatReadDays

	30 (days)

	When a user reads a chat, the
application displays messages of
some days in the past.

	chatReadTotalJson

	200

	The number of messages that you can
get in the Chat room.

Chat Client updates

	Parameter

	Default

	Description

	chatIntervalChat

	5000
(milliseconds)

	Time interval to refresh messages in
a chat.

	chatIntervalSession

	60000
(milliseconds)

	Time interval to keep a chat session
alive in milliseconds.

	chatIntervalStatus

	60000
(milliseconds)

	Time interval to refresh user status
in milliseconds.

	chatIntervalNotif

	5000
(milliseconds)

	Time interval to refresh
Notifications in the main menu in
milliseconds.

	chatIntervalUsers

	60000
(milliseconds)

	Time interval to refresh Users list
in milliseconds.

	chatTokenValidity

	60000
(milliseconds)

	Time after which a token will be
invalid. The use will then be
considered offline.

Configuring eXo Web Conferencing

eXo Web Conferencing add-on enables users to
make video calls through the interface of eXo Platform.
You can parameter this add-on by configuring the below variables in
exo.properties file.

	Parameter

	Default

	Description

	webconferencing.webrtc.bundlePolicy

	balanced

	WebRTC setting to indicate which
media-bundling policy to use when
gathering ICE candidates.

	webconferencing.webrtc.iceCandidatePoolSize

	0

	WebRTC setting which define the size
of the prefetched ICE pool.

	webconferencing.webrtc.iceTransportPolicy

	all

	WebRTC setting to indicate which
candidates the ICE Agent is allowed
to use.

	webconferencing.webrtc.default.stun.enabled

	true

	Indicates if the default defined
STUN servers must be used.

	webconferencing.webrtc.exo.stun.enabled

	false

	Indicates if the default defined eXo
STUN servers must be used.

	webconferencing.webrtc.xirsys.stun.enabled

	false

	Indicates if the Xirsys STUN servers
must be used.

	webconferencing.webrtc.exo.turn.enabled

	false

	Indicates if the default defined
TURN servers must be used.

	webconferencing.webrtc.exo.turn.username

	
	Username to authenticate on default
TURN servers.

	webconferencing.webrtc.exo.turn.credential

	
	Password to authenticate on default
TURN servers.

	webconferencing.webrtc.xirsys.turn.enabled

	false

	Indicates if the Xirsys TURN servers
must be used.

	webconferencing.webrtc.xirsys.username

	
	Username to authenticate on Xirsys
TURN servers.

	webconferencing.webrtc.xirsys.credential

	
	Password to authenticate on Xirsys
TURN servers.

	webconferencing.webrtc.active

	true

	Indicates if the WebRTC connector
is active.

Update of last login time

By default, eXo Platform persists the last login time information for each
user in an internal database. You may need to disable this parameter to
optimize login time especially when your system is highly solicited by a
lot of concurrent users. You can disable this feature by configuring the
parameter exo.idm.user.updateLastLoginTime in
exo.properties file.
The default value is set to true.

Setting exo.idm.user.updateLastLoginTime to true enables the update,
in the IDM database, of the last login time each time the user login
to eXo Platform.

Setting exo.idm.user.updateLastLoginTime to false disables the
update of the user’s last login time and if the platform is connected to
an external system for users storage (such as LDAP or AD), the last
login time will be updated in this external system.

Deployment

This chapter covers the following topics:

	Removing ready-made sites
Steps to remove the ready-made site Social Intranet.

	Setting up an HTTP front-end
Introduction to the base configuration for using eXo behind a
reverse-proxy front-end.

	Configuring HTTP session timeout
Instructions on how to configure the session timeout of the
Tomcat and Jboss servers.

Removing ready-made sites

Intranet is a ready-made site that you can access by the URL:
/portal/intranet. If you want to remove it from the eXo Platform package,
consider 2 cases below:

First case - Your package is fresh so data is empty

In Tomcat:

Remove the following files:

	$PLATFORM_TOMCAT_HOME/webapps/acme-intranet.war

	$PLATFORM_TOMCAT_HOME/webapps/acme-intranet-portlet.war

	$PLATFORM_TOMCAT_HOME/lib/platform-sample-acme-intranet-config-*.jar

In JBoss:

	Remove the following files:

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/platform-sample-acme-intranet-webapp.war

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/platform-sample-acme-intranet-portlet.war

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/lib/platform-sample-acme-intranet-config.jar

	Open the
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/META-INF/application.xml
file to comment out the following lines:

<module>
<web>
 <web-uri>platform-sample-acme-intranet-portlet.war</web-uri>
 <context-root>acme-intranet-portlet</context-root>
</web>
</module>
<module>
<web>
 <web-uri>platform-sample-acme-intranet-webapp.war</web-uri>
 <context-root>acme-intranet</context-root>
</web>
</module>

Second case - Data has been created

Warning

You need to be clear what you will delete, so review carefully
before deletion.

To clean the data entirely, do the following steps:

	Stop the server if it is running.

	Remove the files (and change the configuration file for JBoss) as
described above.

	Remove associated data. If you did not change the default data
configuration, just need to remove:

	$PLATFORM_TOMCAT_HOME/gatein/data/ (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/data/gatein/* (in JBoss).

	Restart your server.

Setting up an HTTP frontend

It may be necessary to use an HTTP server as a front-end (aka a
reverse-proxy) for your eXo Platform application server to allow :

	Accessing more than one application server on the same host;

	Accessing these app servers with the separate DNS names, without
adding a port to the URL;

	Serving maintenance pages if the server is not available.

	Instrumenting your http request (for Single Sign on authentication
for example)

	Caching and/or load-balancing

	Improving security with server isolation

This diagram represents a standard deployment with a reverse proxy We
recommand to use the http protocol as communication protocol between
the HTTP proxy and the eXo Platform server as it’s simpler to configure than
the AJP protocol for the same performances.

	Setting up Apache front-end

	Setting up an Nginx front-end

	Setting up tomcat behind a front-end

Setting up Apache front-end

Basic configuration for Apache

To allow Apache to act as a reverse proxy, you first need to activate
some modules :

	mod_proxy

	mod_proxy_http

	Optional
mod_proxy_wstunnel
to use websocket for the notification websockets

This can be acheived with the following command : a2enmod proxy
proxy_http proxy_wstunnel

Next, declare a new virtual host to access you eXo Platform instance :

Note

You can find more information on how to configure apache vhosts on
here [http://httpd.apache.org/docs/2.4/vhosts/].

<VirtualHost *:80>

 ServerName my.server.name # <--- change here

 ServerAdmin my@server.name # <--- change here

 # don't loose time with IP address lookups
 HostnameLookups Off
 # needed for named virtual hosts
 UseCanonicalName Off
 # configures the footer on server-generated documents
 ServerSignature Off

 ProxyRequests Off
 ProxyPreserveHost On
 ProxyVia On

 # Notifications via web socket, must be declared before the general ProxyPass definition
 <IfModule proxy_wstunnel_module>
 ProxyPass /cometd ws://127.0.0.1:8080/cometd max=100 acquire=5000 retry=5 disablereuse=on flushpackets=on # <--- change here and adapt the options to your load
 </IfModule>

 ProxyPass / http://127.0.0.1:8080/ acquire=1000 retry=30 max=100 # <--- change here and adapt the options to your load
 ProxyPassReverse / http://127.0.0.1:8080/ # <--- change here

 #####################
 # Log configuration
 #####################
 ErrorLog ${APACHE_LOG_DIR}/my.server.name-error.log # <--- change here
 CustomLog ${APACHE_LOG_DIR}/my.server.name-access.log log_with_durations # <--- change here

</VirtualHost>

Note

We are assuming the eXo Platform server is reachable at the ip 127.0.0.1 on port 8080. You have to adapt the configuration according to your installation.

Warning

Due to a bug in Apache Server prior version 2.4.13, an incorrect
websocket configuration can impact the standard HTTP navigation. If
you randomly have blank pages or portlet errors, please check the
websocket tunnels are correctly working

This example use a log definition called log_with_durations. This is
a customization of the default combined apache log format with the
request durations. It’s totally optional, if you don’t want to override
the log configuration, use the combined format You can add it to
your Apache installation by adding the following content in your
configuration :

LogFormat "%h %l %u %t \"%r\" %>s %O \"%{Referer}i\" \"%{User-Agent}i\" %T" log_with_durations

Note

It is also recommanded to enable the apache status page to be able
to monitor the apache behavior. More info are available
here [https://httpd.apache.org/docs/current/mod/mod_status.html]

Setting up an Nginx front-end

Basic configuration for Nginx

Note

You can find the detailled documentation on the nginx configuration as reverse proxy
here [https://docs.nginx.com/nginx/admin-guide/web-server/reverse-proxy/]

Nginx supports reverse-proxy instructions without the need to add
modules.

This is an example of a nginx server configuration acting as a reverse
proxy of a eXo Platform back-end :

server {
 listen 80 default_server;
 server_name my.server.name;

 # TODO Adapt this value to your needs
 client_max_body_size 250m;

 location / {
 proxy_pass http://127.0.0.1:8080;
 # Pass the client informations the the backend
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
 # Websocket for notifications
 location /cometd/cometd {
 proxy_pass http://127.0.0.1:8080;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }

 access_log /my/path/my.server.name-access.log log_with_durations;
 error_log /my/path/my.server.name-error.log;

}

Note

We are assuming the eXo Platform server is reachable at the ip 127.0.0.1
on port 8080. You have to adapt the configuration according to your
installation.

This example uses a log definition called log_with_durations. This
is a customization of the default combined log format with the request
durations. It’s totaly optional, if you don’t want to override the log
configuration, use the combined format You can add it to your nginx
configuration by adding the following line in your host section :

log_format combined_with_durations '$remote_addr - $remote_user [$time_local] '
 '"$request" $status $body_bytes_sent '
 '"$http_referer" "$http_user_agent" $request_time';

It’s also good to add this option to limit the server exposition:

server_tokens off;

Note

It is also recommanded to enable the apache status page to be able
to monitor the apache behavior. More info are available
here [https://httpd.apache.org/docs/current/mod/mod_status.html]

Setting up a Tomcat for a front-end

Base configuration for Tomcat

The tomcat configuration must be adapted to be used behind a http
frontend.

	An HTTP Connectormust be declares and specifically configured to
reply to the reverse proxy. In the server.xml file, add or edit
a HTTP connecter :

<Connector address="127.0.0.1" scheme="http" secure="false" proxyName="community-qa.exoplatform.com" port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
 enableLookups="false" redirectPort="8443" bindOnInit="false"
 connectionTimeout="20000" disableUploadTimeout="true"
 URIEncoding="UTF-8"
 compression="off" compressionMinSize="2048"
 noCompressionUserAgents=".*MSIE 6.*" compressableMimeType="text/html,text/xml,text/plain,text/css,text/javascript" />

Note

The complete documentation of the Tomcat connector can be found here [https://tomcat.apache.org/tomcat-7.0-doc/config/http.html]

This is a standard connector configuration with the important paramters
for a reverse proxy context :

	scheme

	If your reverse proxy acts as a ssl termination, specify https,
specify https otherwise

	secure

	If your reverse proxy acts as a ssl termination, specify true,
specify false otherwise

	proxyName

	The name of eXo Platform instance as viewed by the user

	bindOnInit

	Must be set to false to avoid the connector to be started
before eXo Platform was completely deployed and ready to respond.

	A valve must be added to retreive the original user information like
ip, scheme instead of the reverse-proxy properties. In the section
Engine/Host of the server.xml, add this definition:

<Valve className="org.apache.catalina.valves.RemoteIpValve" internalProxies="127.0.0.1" remoteIpHeader="x-forwarded-for" proxiesHeader="x-forwarded-by" protocolHeader="x-forwarded-proto" />

Parameters

	internalProxies

	Declare your reverse proxy ips. IP range accepted

	*Header

	The name of the headers your reverse proxy will set. The values
on the example are the default names used by most of the reverse
proxies. It’s true for Apache [https://httpd.apache.org/docs/current/mod/mod_proxy.html#x-headers]
, it must be explicitely specified for nginx.

Note

The complete documentation of the RemoteIpHeader is available
here [https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/valves/RemoteIpValve.html]

Configuring HTTP session timeout

The session timeout defines the validation period of a session. In the
portal environment, such as eXo Platform, it is highly recommended that all
web applications have the same session timeout value.

The session timeout is configurable individually for each web
application in the web.xml file:

<session-config>
 <session-timeout>30</session-timeout>
</session-config>

The value is in minute.

In Tomcat, you can set session timeout globally by modifying the
conf/web.xml file.

JMX/REST Management

In this chapter, the following topics are included:

	Introduction to eXo Platform management
Overall information about managing resources of eXo Platform, JMX and
REST interfaces.

	Management views of eXo Platform
Introduction to the following set of management view types of
eXo Platform and their Object Names:

	PortalContainer management view

	Cache management view

	Content management view

	JCR management view

	Portal management view

	Forum management view

	Jobs and Job Scheduler
List of the Cron Jobs and the Job Scheduler MBean.

	eXo Platform notifications monitoring
A step by step to monitor notifications.

Introduction to eXo Platform management

Managing resources of eXo Platform is critical for IT operators and system
administrators to monitor and supervise the production system. eXo Platform
can be managed using JMX (Java Management Extension) tools or REST
service.

To use JMX, some settings are required. To use REST service, you just
need a browser. As you will see later in this chapter, all operations
are available in JMX and some of them are available in REST. So use JMX
if you need all operations and use REST in some cases, for example, you
are on a machine that JMX is not installed, or at remote region where
JMX is inaccessible because of security setup.

How to manage eXo Platform with JMX

JMX and JMX Client

Note

See Oracle’s Documentation [http://docs.oracle.com/javase/1.5.0/docs/guide/jmx/overview/intro.html] to learn about JMX (Java Management Extension).

To manage eXo Platform with JMX, you need a JMX Client, or more exactly
an MBean Browser.
JConsole [http://docs.oracle.com/javase/6/docs/technotes/guides/management/jconsole.html]
is a built-in tool, and it features an MBean browser, so it does not
require any installation. Another suggestion is
VisualVM [http://visualvm.java.net/], which requires some steps to
install its MBean plugin [https://visualvm.java.net/plugins.html].

The tools are graphical and you may just try and use to explore MBean.
In this chapter, the following terms will be used to describe an
individual or a group of similar MBeans:

	Object Name is used to identify and indicate an MBean. All MBeans
introduced in this chapter can be found under a group “exo”, however
their organization may make it difficult to find an MBean. For
example, you will see three groups with the same name “portal”, so
this document will not indicate an MBean by its position in the
MBeans tree, but by its Object Name.

If you are using VisualVM, you can see Object Name in the “Metadata”
tab.

	Attribute is a pair of “Name” and “Value”. A list of Attributes
shows the state of an MBean object.

	Operation is a function that you can invoke. Each MBean provides
some (or no) Operations. Some Operations are “Set” and some
Operations are “Get”. An Operation may require data inputs.

Configuring eXo Platform to allow JMX access

The JMX configurations are JVM options and thus basically not specific
to eXo Platform. Such configurations are explained at Oracle’s
Documentation [http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html].

In eXo Platform, by default JMX is not configured. Thus, local access is
enabled and remote access is disabled. Authentication is disabled as
well, this means username and password are not required. If you want to
enable remote access or authorization, you need to start customizing
eXo Platform, as instructed in the Customizing environment variables
section.

After the start, put your JMX configurations in the form described in
Advanced Customization <AdvancedCustomization> section.

Although the two sections are written for Tomcat bundle, it is very
similar for JBoss, except the customized configuration file. In JBoss,
the file is $PLATFORM_JBOSS_HOME/bin/standalone-customize.conf for
Linux, $PLATFORM_JBOSS_HOME/bin/standalone-customize.conf.bat for
Windows. You can create it by using the sample file
$PLATFORM_JBOSS_HOME/bin/standalone-customize.sample.conf for Linux
or $PLATFORM_JBOSS_HOME/bin/standalone-customize.sample.conf.bat for
Windows.

Securing JMX connection

It is recommended to enable security for production system. You may:

	Enable SSL. See Using
SSL [http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdemv].

	Enable Password Authentication. See Using Password
Authentication [http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdenv]
and Using Password and Access
Files [http://docs.oracle.com/javase/6/docs/technotes/guides/management/agent.html#gdeup].

How to manage eXo Platform with REST service

Using REST service, you can do some operations with a browser. It
requires no setup.

You need to be member of /platform/administrators to access REST
services.

You also need to know the URL of a service (or its attributes and
operations) to access it. You can get the URLs as follows:

	Enter the base URL: http://[your_server]:[your_port]/rest/private/management,
which is to access all management REST services, in your browser,
then log in.
The page returns a list of available REST services in plain text.

	Select a service name and append it to the base URL. You will have
the service’s URL, for example:
http://[your_server]:[your_port]/rest/private/management/skinservice.
Entering this URL, you will get a list of attributes (as “properties”)
and operations (as “method”).

	Continue appending an attribute of Step 2 to have URL of a method or
property. Let’s see the “skinservice” as an example:

	Its property “SkinList” can be accessed by the URL:
http://[your_server]:[your_port]/rest/private/management/skinservice/SkinList.

	Its method “reloadSkins” can be invoked by the URL:
http://[your_server]:[your_port]/rest/private/management/skinservice/reloadSkins.

	The URL of the method “reloadSkin” is a bit complex because the
method requires parameter “skinId” (to know which Skin will be
reloaded):
http://[your_server]:[your_port]/rest/private/management/skinservice/reloadSkin?skinId=Default.

Management views of eXo Platform

	PortalContainer management view
The management view of all objects and configurations of a given
portal.

	Cache management view
The management view of eXo Platform caches at several levels that
provides the critical performance information, especially useful for
tuning the server.

	Content management view
The management view of WCMService.

	JCR management view
The management view of SessionRegistry, LockManager, Repository, and
Workspace that allow you to monitor sessions, locks, repository
configurations, and workspace configurations respectively.

	Portal management view
A set of the Portal management views, including Template statistics,
Template service, Skin service, TokenStore, Portal statistics, and
Application statistics.

	Forum management view
A set of the Forum management views, including Forum, Job, Plugin,
Storage that allows you to control rules, statistics, information of
data storage.

PortalContainer management view

PortalContainer manages all objects and configurations of a given
portal.

	The Object Name of PortalContainer MBeans:
exo:container=portal,name=portal.

	Attribute

	Description

	ConfigurationXML

	Configuration information of the specified
portal container in the XML format.

	Name

	The name of the portal container.

	RegisteredComponentName
s

	The list of the registered component names.

	Started

	Indicates if the portal container is started
or not.

	Operation

	Description

	getConfigurationXML

	Returns configuration information of the
portal container calculated by the loading
mechanism. The returned value is an XML
document in the eXo Kernel format.

	getName

	Returns the portal container name.

	getRegisteredComponentN
ames

	Returns the list of all registered component
names.

	isStarted

	Checks if the portal container is started or
not. The portal container is only started once
all its components have been started.

Note

PortalContainer can be controlled through the following path:
- http://mycompany.com:8080/rest/management/pcontainer.

Cache management view

eXo Platform uses caches at several levels. Monitoring them can provide the
critical performance information, especially useful for tuning the
server. Each cache is exposed with statistics and management operations.

CacheService

	There are many Cache MBeans of which the Class Name is common:
org.exoplatform.services.cache.concurrent.ConcurrentFIFOExoCache
and the Object Names are: exo:service=cache,name={CacheName}
where CacheName is specified for each MBean.

	Attribute

	Description

	Name

	The name of the cache.

	MaxNodes

	The maximum capacity (nodes) of the cache.

	HitCount

	The total number of times the cache was
successfully queried.

	MissCount

	The total number of times the cache was queried
without success.

	Size

	The number of entries in the cache.

	TimeToLive

	The valid period of the cache in seconds. If the
value is set to -1, the cache never expires.

	Operation

	Description

	clearCache()

	Evicts all entries from the cache. This method can
be used to force a programmatic flush of the cache.

	getName

	Returns the cache name.

	getLiveTime

	Returns the valid lifetime of an entry in the cache
in seconds.

	setLiveTime

	Sets the valid lifetime of an entry in the cache in
seconds.

	getCacheHit

	Returns the total number of successful hits.

	getCacheMiss

	Returns the total number of unsuccessful hits.

	getMaxSize

	Returns the maximum capacity of the cache.

	setMaxSize

	Sets the maximum capacity of the cache.

	getCacheSize

	Returns the number of entries in the cache.

CacheManager

The CacheManager MBean has no attribute and only one method to clear all
the Caches.

	The Object Name of CacheManager Mbeans: exo:service=cachemanager.

	Operation

	Description

	clearCaches()

	Forces a programmatic flush of all the registered
caches.

PicketLinkIDMCacheService

PicketLinkIDMCacheService is the default implementation for the
organization model. It has no attribute.

	The Object Name of PicketLinkIDMCacheService MBean:
exo:portal=”portal”,service=PicketLinkIDMCacheService,name=plidmcache.

	Operation

	Description

	invalidateAll

	Invalidates all cache entries.

	invalidate(namespa
ce)

	Invalidates a specific cache namespace.

	printCaches

	Lists out all cache entries.

Note

PicketLinkIDMCacheService can be controlled through the following path:

	http://mycompany.com:8080/rest/management/plidmcache.

However, the REST View managements of CacheService and CacheManager are not currently exposed in this version.

Content management view

WCMService

	The Object Name of WCMService MBean:
exo:portal=portal,service=wcm,view=portal,type=content.

	Attribute

	Description

	PortletExpirationCac
he

	The expiration period of portlet cache in
seconds.

	Operation

	Description

	getPortletExpiration
Cache

	Returns the expiration period of portlet cache in
seconds.

	setPortletExpiration
Cache (expirationCache
)

	Sets the expiration period of portlet cache by
entering the value into the expirationCache
field.

Note

WCMService can be controlled through the following paths respectively:
- http://mycompany.com:8080/rest/management/wcmservice/.

JCR management view

Java Content Repository (JCR) provides a management view to monitor
sessions, locks, repository configurations, and workspace
configurations.

Repository

	The Object Name of Repository MBean:
exo:portal=portal,repository=repository.

	Attribute

	Description

	Name

	The name of the repository container.

	RegisteredComponentName
s

	The list of registered component names in the
repository.

	Operation

	Description

	getName

	Returns the repository container name.

	getRegisteredComponentN
ames

	Returns the list of registered component names
in the repository.

SessionRegistry

	The Object Name of SessionRegistry MBean:
exo:portal=portal,repository=repository,service=SessionRegistry.

	Attribute

	Description

	TimeOut

	The expiration period of a JCR session.

	Size

	The number of currently active sessions.

	Operation

	Description

	runCleanup

	Cleans all JCR sessions timed out.

	getTimeOut

	Returns the session timeout.

	setTimeOut

	Sets the session timeout in seconds.

	getSize

	Returns the number of currently active sessions.

Workspace

	There are several default workspaces listed below, each of them
corresponds to a Workspace MBean:

	Workspace Name

	Description

	collaboration

	Data, such as sites content, documents, groups,
records space, tags, and users.

	dms-system

	Data of DMS, including node types, templates, views,
taxonomy trees.

	knowledge

	Data of Forum, FAQ and Poll applications.

	portal-system

	Data of the Portal model objects, such as navigations,
pages, sites, and application registry.

	portal-work

	Information of Gadget token and Remember me token.

	social

	Data of Social, including activity, identity, profile,
relationship and space.

	system

	Data of system, including versions storage, node
types, namespaces.

	The Object Name of Workspace MBeans:
exo:portal=portal,repository=repository,workspace={WorkspaceName}
where WorkspaceName is the name of each workspace.

	Attribute

	Description

	Name

	The name of the workspace container.

	RegisteredComponentNam
es

	The list of registered component names in the
workspace.

	Operation

	Description

	getName

	Returns the workspace container name.

	getRegisteredComponent
Names

	Returns the list of registered component names
in the workspace.

LockManager

	Each Workspace has an MBean to manage locks.

The Object Name of LockManager MBeans:
exo:portal=portal,repository=repository,workspace={WorkspaceName},service=lockmanager
where WorkspaceName is the name of each workspace.

	Attribute

	Description

	NumLocks

	The number of active locks.

	Operation

	Description

	cleanExpiredLock
s

	Removes all expired JCR locks.

	getNumLocks

	Returns the number of active JCR locks.

Note

	Currently, the REST View managements of SessionRegistry,

	LockManager, Repository and Workspace are not exposed in this

version.

Portal management view

Template statistics

Template statistics exposes various templates used by the portal and its
components to render markups. Various statistics are available for
individual templates, and aggregated statistics, such as the list of the
slowest templates. Most management operations are performed on a single
template; those operations take the template identifier as an argument.

	The Object Name of Template statistics MBean:
exo:portal=portal,service=statistic,view=portal,type=template.

	Attribute

	Description

	TemplateList

	The list of templates loaded.

	SlowestTemplates

	The list of the 10 slowest templates.

	MostExecutedTemplat
es

	The list of the 10 most used templates.

	FastestTemplates

	The list of 10 fastest templates.

	Operation

	Description

	getAverageTime(template
Id)

	Returns the average rendering time of a
specified template in seconds.

	getExecutionCount(templ
ateId)

	Returns the number of times executed by the
specified template.

	``getMinTime(templateId)`
`

	Returns the minimum rendering time of the
specified template in seconds.

	``getMaxTime(templateId)`
`

	Returns the maximum rendering time of the
specified template in seconds.

	getSlowestTemplates

	Returns the list of the 10 slowest templates.

	getMostExecutedTemplate
s

	Returns the list of the 10 most used
templates.

	getTemplateList

	Returns the list of templates loaded.

	getFastestTemplates

	Returns the list of the 10 fastest templates.

Template management

Template management provides the capability to force the reload of a
specified template.

	The Object Name of Template management MBean:
exo:portal=portal,service=management,view=portal,type=template.

	Operation

	Description

	reloadTemplates

	Clears the template cache.

	``listCachedTemplates`
`

	Lists identifiers of the cached templates.

	reloadTemplate(templ
ateId)

	Clears the template cache for a specified
template identifier.

Skin management

	The Object Name of Skin management MBean:
exo:portal=portal,service=management,view=portal,type=skin.

	Attribute

	Description

	SkinList

	The list of loaded skins by the skin service.

	Operation

	Description

	reloadSkin(skinId
)

	Forces a reload of the specified skin and the
operation.

	reloadSkins

	Forces a reload of the loaded skins.

	getSkinList

	Returns the list of loaded skins by the skin
service.

TokenStore

	The Object Name of TokenStore MBeans:
exo:portal=portal,service=TokenStore,name={Name} where Name
is the name of each specific token.

	Attribute

	Description

	Name

	The name of one specific token.

	ValidityTime

	The expiration period of one specific token in
seconds.

	PeriodTime

	The expiration daemon period of one specific token
in seconds. The token is deleted after the specified
period.

	Operation

	Description

	cleanExpiredToken
s

	Removes all expired tokens.

	size

	Returns the number of tokens, including valid tokens
and expired tokens undeleted yet.

	getName

	Returns the token name.

	getValidityTime

	Returns the expiration time of one specific token in
seconds.

	getPeriodTime

	Returns the expiration daemon period of one specific
token in seconds.

eXo Platform provides the following TokenStore instances:

	Token Name

	Description

	gadget-token

	Stores tokens of the Oauth gadget into the JCR node,
such as org.exoplatform.portal.gadget.core.Gadget
TokenInfoService.

	jcr-token

	Stores common tokens into the JCR node, such as
org.exoplatform.web.security.security.CookieTokenS
ervice,
and
org.exoplatform.web.security.security.RemindPasswo
rdTokenService.

Portal statistics

	The Object Name of Portal statistics MBean:
exo:portal=portal,service=statistic,view=portal,type=portal.

	Attribute

	Description

	PortalList

	The list of identifiers of loaded portals.

	Operation

	Description

	getThroughput(portalId
)

	Returns the number of requests for the specified
portal per second.

	getAverageTime(portalI
d)

	Returns the average execution time of the
specified portal in seconds.

	getExecutionCount(port
alId)

	Returns the number of times the specified portal
has been executed.

	getMinTime(portalId)

	Returns the minimum time of the specified portal
in seconds.

	getMaxTime(portalId)

	Returns the maximum time of the specified portal
in seconds.

	getPortalList

	Returns the list of identifiers of loaded
portals.

Application statistics

Various applications are exposed to provide relevant statistics.

	The Object Name of Application statistics MBean:
exo:portal=portal,service=statistic,view=portal,type=application.

	Attribute

	Description

	ApplicationList

	The list of loaded applications.

	SlowestApplications

	The list of the 10 slowest applications.

	``MostExecutedApplications`
`

	The list of the 10 most executed
applications.

	FastestApplications

	The list of the 10 fastest applications.

	Operation

	Description

	getAverageTime(applicatio
nId)

	Returns the average time spent of the
specified application.

	getExecutionCount(applica
tionId)

	Returns the number of times the specified
application has been executed.

	``getMinTime(applicationId)
``

	Returns the minimum time spent of the
specified application.

	``getMaxTime(applicationId)
``

	Returns the maximum time spent of the
specified application.

	getSlowestApplications

	Returns the list of the 10 slowest
applications.

	getMostExecutedApplicatio
ns

	Returns the list of the 10 most executed
applications.

	getFastestApplications

	Returns the list of the 10 fastest
applications.

	getApplicationList

	Returns the list of application identifiers
classified in the alphabetic order.

Note

Template statistics, Template management, Skin management,
Portal statistics and Application statistics can be controlled
through the following paths respectively:

	http://mycompany.com:8080/rest/management/templatestatistics

	http://mycompany.com:8080/rest/management/templateservice

	http://mycompany.com:8080/rest/management/skinservice

	http://mycompany.com:8080/rest/management/portalstatistic

	http://mycompany.com:8080/rest/management/applicationstatistic

However, the REST View management of TokenStore is currently
not exposed in this version.

Forum management view

Some MBeans are provided to manage Forum application.

Forum

	The Object Name of Forum MBean: exo:portal=portal,service=forum.

	Attribute

	Description

	AdminRules

	The list of rules defining administrators.

	ContactProvider

	The string containing the specific
ContactProvider implementation name which
provides user profile to the forum.

	MailServiceConfig

	The string containing the configuration of the
Mail service used for the notifications in Forum.

	OnlineUsers

	The list of currently online users.

	Operation

	Description

	countOnlineUsers

	Returns the number of currently online users.

	hasForumAdminRole(St
ring username)

	Checks if the user is the forum administrator or
not.

	getAdminRules

	Returns the list of rules defining
administrators.

	getOnlineUsers

	Returns the list of online users.

	getContactProvider

	Returns the name of a specific ContactProvider
implementation.

	setContactProvider(S
tring contactProviderC
lassName

	Sets ContactProvider implementation.

	``getMailServiceConfig
``

	Returns the Mail service configuration used to
send notifications in Forum.

Jobs

	The Object Name of Forum Job MBeans:
exo:portal=portal,service=forum,view=jobs,name={Name} where
Name is specified for each job (listed later).

	Attribute

	Description

	DataMap

	The map containing the state information for Job
instances.

	JobClassName

	The FQDN of the job.

	Name

	The name of the Job.

	Operation

	Description

	getName

	Returns the names of Job instances.

	``getJobClassName`
`

	Returns the FQDN of the job.

	getDataMap

	Returns the state information of Job instances.

The list of Forum Jobs:

	Job

	Description

	DeactiveJob

	Deactivates topics which meet TWO predefined
deactivation properties: inactiveDays and
forumName in Forum.

	DelayWritesJob

	Updates the view count of topics and the list of
viewers.

	LoginJob

	Updates information of users logged in, serving for
statistics.

	RecountActiveUse
rJob

	Indicates the number of active users in Forum.

	SendMailJob

	Sends email notifications in Forum.

RoleRulesPlugin

The Object Name of RoleRulesPlugin MBean:
exo:portal=portal,service=forum,view=plugins,name=”add.role.rules.plugin”.

	Attribute

	Description

	AllRules

	The list of all rules of RoleRulesPlugin. For
example, the rule defining ‘root’ user as an
administrator follows the form of ADMIN=root.

	Description

	The brief description of RoleRulesPlugin functions.

	Name

	The name of RoleRulesPlugin.

	RuleNames

	The list of possible rule names; for example, the
rule defining administrators is named ADMIN.

	Operation

	Description

	addRule

	Adds a rule. For example, to add the ADMIN rule for
a user, you need to input two parameters: “ADMIN” in
the p1 and user name in the p2.

	getRules

	Returns the list of rules defining the user with the
role inputted in p1.

	getName

	Returns the name of the plugin.

	getRuleNames

	Returns the list of possible rule names. For
example, if ‘user1’ and ‘user2’ are defined as ADMIN
(ADMIN=*user1, user2*), the list of returned rule
names will be ADMIN.

	getDescription

	Returns the brief description of the plugin.

	getAllRules

	Returns all rules added to the plugin.

Storage

This MBean enables you to get storage information (data path,
repository, workspace) of Forum application.

	The Object Name of Forum Storage MBean:
exo:portal=portal,service=forum,view=storage.

	Attribute

	Description

	Path

	The JCR data path of the Forum Storage.

	Repository

	The name of repository containing the workspace where
Forum data is stored.

	Workspace

	The name of workspace containing Forum data.

	Operation

	Description

	getRepository

	Returns the name of repository of the Forum Storage.

	getWorkspace

	Returns the name of workspace of the Forum Storage.

	getPath

	Returns the JCR data path of the Forum Storage.

Note

Currently, the REST View managements of Forum, Job, Plugin, Storage
are not exposed in this version.

Jobs and Job Scheduler

Jobs are components that run in background and perform scheduled tasks,
such as sending notification emails every day.

In eXo Platform, jobs are managed by Quartz Scheduler. This framework
allows to schedule jobs using simple patterns (daily, weekly) and
Cron expressions.

The following tables are the jobs and their default configuration:

	Name

	Description

	Schedule

	changeStateJobToPubli
shed
(Content)

	Scans collaboration:/sites for
awaiting content and publishes them.

	Every 2
minutes

	changeStateJobToUnpub
lished
(Content)

	Scans collaboration:/sites for
awaiting content and unpublishes
them.

	Every 2
minutes

	NotificationWeeklyJob

	Sends weekly notification.

	11 am, every
Sunday

	NotificationDailyJob

	Sends daily notification.

	11 pm, every
day

	WebNotificationJob

	Cleans the web notifications that are
older than 30 days.

	On the 23rd
of every
month

	ReminderJob
(Calendar)

	Searches for incoming events and
sends email reminders.

	Every 15
seconds

	PopupReminderJob
(Calendar)

	Searches for incoming events and
shows popup reminders.

	Every 15
seconds

	periodically (Forum)

	Saves forum statistic data.

	Every 12
hours

	SendMailJob (Forum)

	Sends email notification in Forum.

	Every 2
minutes

	DelayWritesJob
(Forum)

	Updates view count of topics.

	Every 1
minute

	DeactiveJob (Forum)

	Watches a forum and deactivates the
topics that have no post for a
period. Currently it is configured to
a non-existing forum.

	Every 2 hours

	RecountActiveUserJob
(Forum)

	Updates statistic of active users
(who have posted in the last 15
days).

	Every 2 hours

	LoginJob (Forum)

	Updates information for users who are
currently logged in.

	Every 2
minutes

You can suspend or resume the jobs via JMX. Find the MBean
exo:portal=portal,service=JobSchedulerService like in the
screenshot, it gives you the two operations.

[image: image0]

eXo Platform notifications monitoring

Monitoring is a means to be aware about your system’s state. You can
monitor different parts of eXo Platform through JConsole.

To monitor and observe notification settings in eXo Platform, you should
follow these steps:

	In the file exo.properties,
add this property exo.social.notification.statistics.active and
set it to true.

	Start your server and then open a new terminal to start JConsole
using the command jconsole.

	Go to MBeans tab.

	Navigate in the tree to exo –> portal –> notification
–> statistic to get statistics about eXo Platform notifications.

[image: image1]

Clustering

Cluster mode is the solution for high performance system. It offers
Load Balancing and High Availability features.

A Platform cluster is a set of nodes that communicate via JGroups -
UDP or TCP - in the back-end, and a front-end Load Balancer like
Apache that distributes HTTP requests to the nodes. The High
Availability is achieved in the data layer natively by the RDBMS or
Shared File Systems, such as SAN and NAS.

The following diagram illustrates a cluster field with two nodes
(each node uses its local JCR index storage, but you can enable
shared JCR indexing, as described in the chapter).

[image: image0]

In this chapter:

	Setting up eXo Platform cluster
How to set up eXo Platform cluster.

	JCR index in cluster mode
Configuration and explanation of JCR index strategies (local and
shared).

	Activating TCP default configuration files
How to use TCP default configuration files.

	Configuring JGroups via exo.properties
A list of default values and variable names that you can
configure via exo.properties.

	Using customized JGroups xml files
In case you have a configuration that is not externalized, or you
want to migrate your JGroups xml files from previous versions,
read this section to activate your xml files.

	Setting up a HTTP proxy
How to set up load balancing using a HTTP proxy

	FAQs of clustering
Common questions and answers that are useful for administrators
when doing a clustering on eXo Platform.

Setting up eXo Platform cluster

	Install eXo Platform package by following Installation and Startup.

If you are using eXo Chat addon, you should install
it in all the cluster nodes.

	Create a copy of the package for each cluster node. Assume that you
have two nodes: node1.your-domain.com and node2.your-domain.com.

Note

For testing or troubleshooting context, in case you are using
Tomcat as application server and if you will run the cluster
nodes in the same environment (same Operating System), you
should configure different Tomcat ports.

	Configure the RDBMS datasources in each cluster node (follow this
documentation) to use one of the
supported database systems: Postgres, MySQL, MSSQL, Oracle, MariaDB.

Note

	It is not possible to use the default configured hsql embedded database as noted in Configuring eXo Platform with database.

	The different cluster nodes must use the same RDBMS datasources.

	eXo Platform comes with Elasticsearch embedded.
For clustering, you MUST use a seperate Elasticsearch process. Please
follow the steps described here.

	eXo Platform uses databases and a disk folders to store its data:

	Datasources:

	IDM: datasource to store user/group/membership entities.

	JCR: datasource to store JCR Data.

	JPA: datasource to store entities mapped by Hibernate. Quartz
tables are stored in this datasource by default.

	Disk:

	File storage data: Stored by default under a file system
folder and could be configured to store files in JPA datasource
instead. More details here.

If the file system storage implementation is configured, the
folder must be shared between all cluster nodes.

The folder location can be configured by using this property
exo.files.storage.dir=/exo-shared-folder-example/files/.
It is possible to modify it through
exo.properties file.

	JCR Binary Value Storage: Stored by default under a file
system folder and could be configured to store files in JCR
datasource instead. More details here.

If the file system storage implementation is configured, the
folder must be shared between all cluster nodes.

The folder location can be configured by using this property
exo.jcr.storage.data.dir=/exo-shared-folder-example/jcrvalues/.
It is possible to modify it through
exo.properties file.

Tip

Choosing file system or RDBMS storage depens on your needs and your system environment.(See more details in Comparing file system and RDBMS storage.

	JCR indexes: Stored under a local file system folder in each
cluster node. More details here.

eXo Platform uses by default local JCR indexes and this is the
recommended mode for clustering. In fact read and write operations
take less time in local mode than in shared mode.

	Other systems: Such as MongoDB if eXo Chat addon
is installed.

	Configure exo.cluster.node.name property. Use a different name
for each node:

	In JBoss, edit this property in the standalone-exo-cluster.xml
file:

<system-properties>
 <property name="exo.cluster.node.name" value="node1"/>
</system-properties>

	In Tomcat, add the property in setenv-customize.sh (.bat for
windows environments):

	For windows:

SET "CATALINA_OPTS=%CATALINA_OPTS% -Dexo.cluster.node.name=node1"

	For Linux:

CATALINA_OPTS="${CATALINA_OPTS} -Dexo.cluster.node.name=node1"

	eXo Platform uses UDP protocol by default for JGroups. This protocol
is not recommended for production environements, you need to
configure TCP as transport protocol instead. For that purpose, please
follow this documentation.

	Configure CometD Oort URL. Replace localhost in the following
examples with the IP or host name of the node.

	In JBoss, edit standalone-exo-cluster.xml:

<property name="exo.cometd.oort.url" value="http://localhost:8080/cometd/cometd"/>

	In Tomcat, edit exo.properties:

exo.cometd.oort.url=http://localhost:8080/cometd/cometd

CometD is used to perform messaging over the web, and Oort is a CometD
extension that supports clustering. The configuration is necessary to
make the On-site Notification work properly.

	Configure CometD group port. This step is optional.

CometD Oort nodes will automatically join others in the same network
and the same group, so to prevent stranger nodes from joining your
group, you might specify your group with a port that is different
from the default port (5577). The situation is likely to happen
in a testing environment.

	In JBoss, edit standalone-exo-cluster.xml file:

<!-- Configure the same port for all nodes in your cluster -->
<property name="exo.cometd.oort.multicast.groupPort" value="5579"/>

	In Tomcat, edit exo.properties file:

Configure the same port for all nodes in your cluster
exo.cometd.oort.multicast.groupPort=5579

	The above last step is applicable when multicast is available on the
system where CometD is deployed. Otherwise, the static discovery mechanism [https://docs.cometd.org/current/reference/#_static_discovery_configuration]
should be used by adding the following properties in exo.properties
file:

exo.cometd.oort.configType=static
exo.cometd.oort.cloud=http://host2:port2/cometd/cometd,http://host3:port3/cometd/cometd

	The default value for exo.cometd.oort.configType is
“multicast”, and only the two values “multicast” and “static” are
available.

	The parameter exo.cometd.oort.cloud must contain a
comma-separated list of the Cometd endpoint of all the other
nodes of the cluster. So in the example above, we assume that the
node of this exo.properties is host1:port1, and that the
cluster is composed of three nodes : host1, host2 and host3.

	Only in Tomcat, configure the following:

	In setenv-customize.sh (.bat for Windows):

EXO_PROFILES="all,cluster"

	In exo.properties:

gatein.jcr.config.type=cluster
gatein.jcr.index.changefilterclass=org.exoplatform.services.jcr.impl.core.query.ispn.LocalIndexChangesFilter
Default JCR indexing is local so you need to use a different folder for each node.
With the value below, you do not have to create the folder.
exo.jcr.index.data.dir=gatein/data/jcr/index

	Start the servers. You must wait until node1 is fully started,
then start node2.

In JBoss, you need to indicate the configuration file with -c option:
./bin/standalone.sh -b 0.0.0.0 -c standalone-exo-cluster.xml
(.bat for Windows).

Only in JBoss, some other options that you can use in the start command:

	-Dexo.cluster.node.name=a-node-name overrides the node name
in the configuration file.

	-Djboss.socket.binding.port-offset=101

This is useful in case you set up nodes in the same machine for
testing. You will not need to configure the port for every node.
Just use a different port-offset in each start command.

Note

If you run two nodes in the same machine for testing, change the default ports of node2 to avoid port conflict.

In Tomcat, ports are configured in conf/server.xml.

In JBoss, use -Djboss.socket.binding.port-offset option mentioned above.

To configure a front-end for your nodes, follow Setting up Apache front-end.

To configure load balancing, follow Setting up a load balancer.

Note

eXo Platform only supports sticky session mode for clustering (no session replication). This must be configured in the load balancer configuration.

JCR index in cluster mode

Note

eXo Platform uses local JCR index by default. You can switch between local index and shared index by configuration.

The local indexing is defaulted for simplifying configuration. Each
strategy has its pros and cons. Here is brief of their characteristics,
but it is strongly recommended you read the given links for better
understanding:

	Local indexing: Each node manages its own local index storage.
The “documents” (to be indexed) are replicated within nodes.

“Documents” are Lucene term that means a block of data ready for
indexing. The same “documents” are replicated between nodes and each
node locally indexes it, so the local indexes are updated for the
running nodes.

There are additional mechanisms for a new node that starts for the
first time to initiate its local index, and for a node joining the
cluster after downtime to update its local index.

Read this link
for details.

	Shared indexing: Every node has read access to a shared index and
has its own in-memory index. A single “coordinator” node is
responsible for pulling in-memory indexes and updating the shared
index.

It allows searching for newly added content immediately. However,
there are rare cases that search result is different between nodes
for a while.

Read this link
for details.

For LOCAL INDEXING, the index directory should be a local path for each
node. In JBoss it is set already by default:

<property name="exo.jcr.index.data.dir" value="${exo.jcr.data.dir}/index"/>

But for Tomcat, you need to set it yourself, in exo.properties file:

exo.jcr.index.data.dir=gatein/data/jcr/index

If you want to use a SHARED INDEX for every node:

Enable the profile cluster-index-shared.

	In JBoss, edit
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo-cluster.xml:

<property name="exo.profiles" value="all,cluster,cluster-index-shared"/>

	In Tomcat, edit setenv-customize.sh (.bat for Windows, see
Customizing environment variables):

EXO_PROFILES="all,cluster,cluster-index-shared"

Set the index directory (exo.jcr.index.data.dir) to a network
sharing path.

	In JBoss, edit
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo-cluster.xml:

<property name="exo.jcr.index.data.dir" value="${exo.shared.dir}/jcr/index"/>

	In Tomcat, if you do not configure it, exo.jcr.index.data.dir is
already set to a sub-folder of the shared directory EXO_DATA_DIR.
It is done in setenv.*:

CATALINA_OPTS="$CATALINA_OPTS -Dexo.jcr.index.data.dir=\"${EXO_DATA_DIR}/jcr/index\""

You can override it in exo.properties:

exo.jcr.index.data.dir=/path/of/a/shared/folder/for/all/nodes

Activating TCP default configuration files

The default protocol for JGroups is UDP. However, TCP is still
pre-configured in
platform-extension-config.jar!/conf/platform/jgroups and you can
simply activate it.

The files contain externalized variable names and default values for
TCP. In case you want to use TCP instead of UDP, it is recommended that
you activate those files and, if you need to, change the default
settings via exo.properties. See Configuration overview
for the exo.properties file.

To activate TCP default configuration files, enable the profile
cluster-jgroups-tcp:

	In JBoss, edit standalone-exo-cluster.xml:

<system-properties>
 ...
 <property name="exo.profiles" value="all,cluster,cluster-jgroups-tcp"/>
 ...
</system-properties>

	In Tomcat, edit setenv-customize.sh (.bat for Windows, see Customizing environment variables):

EXO_PROFILES="all,cluster,cluster-jgroups-tcp"

When switching to use TCP instead of UDP, you need to add some
properties in exo.properties:

Assume node1 is 192.168.1.100 and node2 is 192.168.1.101. Here is configuration for node1:

exo.jcr.cluster.jgroups.tcp.bind_addr=192.168.1.100
exo.jcr.cluster.jgroups.tcpping.initial_hosts=192.168.1.100[7800],192.168.1.101[7800]

exo.idm.cluster.jgroups.tcp.bind_addr=192.168.1.100
exo.idm.cluster.jgroups.tcpping.initial_hosts=192.168.1.100[7900],192.168.1.101[7900]

Configuring JGroups via exo.properties

JGroups configuration is externalized for both JCR and IDM. In this
section you find a list of default values and externalized variables
that you can configure via exo.properties. See Configuration overview
for the exo.properties file.

It is recommended you configure JGroups via exo.properties. Only
when the variables are not enough, or when migrating from previous
versions you want to re-use your JGroups xml files, you will customize
JGroups xml files as described in next section.

UDP configuration for JCR

	JGroups name

	Default
value

	eXo variable

	UDP

	
	

	singleton_name

	exo-transpor
t-udp

	exo.jcr.cluster.jgroups.udp.singleton
_name

	bind_addr

	127.0.0.1

	exo.jcr.cluster.jgroups.udp.bind_add
r

	bind_port

	16600

	exo.jcr.cluster.jgroups.udp.bind_por
t

	mcast_addr

	228.10.10.10

	exo.jcr.cluster.jgroups.udp.mcast_ad
dr

	mcast_port

	17600

	exo.jcr.cluster.jgroups.udp.mcast_po
rt

	tos

	8

	exo.jcr.cluster.jgroups.udp.tos

	ucast_recv_buf_siz
e

	20000000

	exo.jcr.cluster.jgroups.udp.ucast_re
cv_buf_size

	ucast_send_buf_siz
e

	640000

	exo.jcr.cluster.jgroups.udp.ucast_se
nd_buf_size

	mcast_recv_buf_siz
e

	25000000

	exo.jcr.cluster.jgroups.udp.mcast_re
cv_buf_size

	mcast_send_buf_siz
e

	640000

	exo.jcr.cluster.jgroups.udp.mcast_se
nd_buf_size

	loopback

	false

	exo.jcr.cluster.jgroups.udp.loopback

	discard_incompatible
_packets

	true

	exo.jcr.cluster.jgroups.udp.discard_
incompatible_packets

	max_bundle_size

	64000

	exo.jcr.cluster.jgroups.udp.max_bund
le_size

	max_bundle_timeout

	30

	exo.jcr.cluster.jgroups.udp.max_bund
le_timeout

	use_incoming_packet
_handler

	true

	exo.jcr.cluster.jgroups.udp.use_inco
ming_packet_handler

	ip_ttl

	2

	exo.jcr.cluster.jgroups.udp.ip_ttl

	enable_bundling

	false

	exo.jcr.cluster.jgroups.udp.enable_b
undling

	enable_diagnostics

	true

	exo.jcr.cluster.jgroups.udp.enable_d
iagnostics

	diagnostics_addr

	224.0.75.75

	exo.jcr.cluster.jgroups.udp.diagnosti
cs_addr

	diagnostics_port

	7500

	exo.jcr.cluster.jgroups.udp.diagnosti
cs_port

	thread_naming_patte
rn

	cl

	exo.jcr.cluster.jgroups.udp.thread_n
aming_pattern

	use_concurrent_stac
k

	true

	exo.jcr.cluster.jgroups.udp.use_conc
urrent_stack

	thread_pool.enabled

	true

	exo.jcr.cluster.jgroups.udp.thread_p
ool.enabled

	thread_pool.min_thr
eads

	10

	exo.jcr.cluster.jgroups.udp.thread_p
ool.min_threads

	thread_pool.max_thr
eads

	1000

	exo.jcr.cluster.jgroups.udp.thread_p
ool.max_threads

	thread_pool.keep_al
ive_time

	5000

	exo.jcr.cluster.jgroups.udp.thread_p
ool.keep_alive_time

	thread_pool.queue_e
nabled

	true

	exo.jcr.cluster.jgroups.udp.thread_p
ool.queue_enabled

	thread_pool.queue_m
ax_size

	1000

	exo.jcr.cluster.jgroups.udp.thread_p
ool.queue_max_size

	thread_pool.rejectio
n_policy

	discard

	exo.jcr.cluster.jgroups.udp.thread_p
ool.rejection_policy

	oob_thread_pool.ena
bled

	true

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.enabled

	oob_thread_pool.min
_threads

	5

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.min_threads

	oob_thread_pool.max
_threads

	1000

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.max_threads

	oob_thread_pool.kee
p_alive_time

	5000

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.keep_alive_time

	oob_thread_pool.que
ue_enabled

	false

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.queue_enabled

	oob_thread_pool.que
ue_max_size

	1000

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.queue_max_size

	oob_thread_pool.rej
ection_policy

	Run

	exo.jcr.cluster.jgroups.udp.oob_thre
ad_pool.rejection_policy

	PING

	
	

	timeout

	2000

	exo.jcr.cluster.jgroups.ping.timeout

	num_initial_members

	1

	exo.jcr.cluster.jgroups.ping.num_ini
tial_members

	MERGE2

	
	

	max_interval

	30000

	exo.jcr.cluster.jgroups.merge2.max_i
nterval

	min_interval

	10000

	exo.jcr.cluster.jgroups.merge2.min_i
nterval

	FD

	
	

	timeout

	10000

	exo.jcr.cluster.jgroups.fd.timeout

	max_tries

	5

	exo.jcr.cluster.jgroups.fd.max_tries

	shun

	true

	exo.jcr.cluster.jgroups.fd.shun

	VERIFY_SUSPECT

	
	

	timeout

	1500

	exo.jcr.cluster.jgroups.verify_suspe
ct.timeout

	pbcast.NAKACK

	
	

	use_stats_for_retr
ansmission

	false

	exo.jcr.cluster.jgroups.pbcast.nakack
.use_stats_for_retransmission

	exponential_backoff

	150

	exo.jcr.cluster.jgroups.pbcast.nakack
.exponential_backoff

	use_mcast_xmit

	true

	exo.jcr.cluster.jgroups.pbcast.nakack
.use_mcast_xmit

	gc_lag

	0

	exo.jcr.cluster.jgroups.pbcast.nakack
.gc_lag

	retransmit_timeout

	50,300,600,1
200

	exo.jcr.cluster.jgroups.pbcast.nakack
.retransmit_timeout

	discard_delivered_m
sgs

	true

	exo.jcr.cluster.jgroups.pbcast.nakack
.discard_delivered_msgs

	UNICAST

	
	

	timeout

	300,600,1200

	exo.jcr.cluster.jgroups.unicast.timeo
ut

	pbcast.STABLE

	
	

	stability_delay

	1000

	exo.jcr.cluster.jgroups.pbcast.stable
.stability_delay

	desired_avg_gossip

	50000

	exo.jcr.cluster.jgroups.pbcast.stable
.desired_avg_gossip

	max_bytes

	1000000

	exo.jcr.cluster.jgroups.pbcast.stable
.max_bytes

	VIEW_SYNC

	
	

	avg_send_interval

	60000

	exo.jcr.cluster.jgroups.view_sync.av
g_send_interval

	pbcast.GMS

	
	

	print_local_addr

	true

	exo.jcr.cluster.jgroups.pbcast.gms.pr
int_local_addr

	join_timeout

	3000

	exo.jcr.cluster.jgroups.pbcast.gms.jo
in_timeout

	shun

	false

	exo.jcr.cluster.jgroups.pbcast.gms.sh
un

	view_bundling

	true

	exo.jcr.cluster.jgroups.pbcast.gms.vi
ew_bundling

	FC

	
	

	max_credits

	500000

	exo.jcr.cluster.jgroups.fc.max_credi
ts

	min_threshold

	0.20

	exo.jcr.cluster.jgroups.fc.min_thres
hold

	FRAG2

	
	

	frag_size

	60000

	exo.jcr.cluster.jgroups.frag2.frag_s
ize

TCP configuration for JCR

See how to activate TCP default configuration in Activating TCP default configuration files.

	JGroups name

	Default
value

	eXo variable

	TCP

	
	

	singleton_name

	exo-transpor
t-tcp

	exo.jcr.cluster.jgroups.tcp.singleton
_name

	bind_addr

	127.0.0.1

	exo.jcr.cluster.jgroups.tcp.bind_add
r

	start_port

	7800

	exo.jcr.cluster.jgroups.tcp.start_po
rt

	loopback

	true

	exo.jcr.cluster.jgroups.tcp.loopback

	recv_buf_size

	20000000

	exo.jcr.cluster.jgroups.tcp.recv_buf
_size

	send_buf_size

	640000

	exo.jcr.cluster.jgroups.tcp.send_buf
_size

	discard_incompatible
_packets

	true

	exo.jcr.cluster.jgroups.tcp.discard_
incompatible_packets

	max_bundle_size

	64000

	exo.jcr.cluster.jgroups.tcp.max_bund
le_size

	max_bundle_timeout

	30

	exo.jcr.cluster.jgroups.tcp.max_bund
le_timeout

	use_incoming_packet
_handler

	true

	exo.jcr.cluster.jgroups.tcp.use_inco
ming_packet_handler

	enable_bundling

	true

	exo.jcr.cluster.jgroups.tcp.enable_b
undling

	use_send_queues

	true

	exo.jcr.cluster.jgroups.tcp.use_send
_queues

	sock_conn_timeout

	300

	exo.jcr.cluster.jgroups.tcp.sock_con
n_timeout

	skip_suspected_memb
ers

	true

	exo.jcr.cluster.jgroups.tcp.skip_sus
pected_members

	use_concurrent_stac
k

	true

	exo.jcr.cluster.jgroups.tcp.use_conc
urrent_stack

	thread_pool.enabled

	true

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.enabled

	thread_pool.min_thr
eads

	10

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.min_threads

	thread_pool.max_thr
eads

	100

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.max_threads

	thread_pool.keep_al
ive_time

	60000

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.keep_alive_time

	thread_pool.queue_e
nabled

	true

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.queue_enabled

	thread_pool.queue_m
ax_size

	1000

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.queue_max_size

	thread_pool.rejectio
n_policy

	Discard

	exo.jcr.cluster.jgroups.tcp.thread_p
ool.rejection_policy

	oob_thread_pool.ena
bled

	true

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.enabled

	oob_thread_pool.min
_threads

	10

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.min_threads

	oob_thread_pool.max
_threads

	100

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.max_threads

	oob_thread_pool.kee
p_alive_time

	60000

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.keep_alive_time

	oob_thread_pool.que
ue_enabled

	false

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.queue_enabled

	oob_thread_pool.que
ue_max_size

	1000

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.queue_max_size

	oob_thread_pool.rej
ection_policy

	Discard

	exo.jcr.cluster.jgroups.tcp.oob_thre
ad_pool.rejection_policy

	TCPPING

	
	

	timeout

	3000

	exo.jcr.cluster.jgroups.tcpping.timeo
ut

	initial_hosts

	localhost[78
00]

	exo.jcr.cluster.jgroups.tcpping.initi
al_hosts

	port_range

	0

	exo.jcr.cluster.jgroups.tcpping.port_range

	num_initial_members

	1

	exo.jcr.cluster.jgroups.tcpping.num_
initial_members

	MERGE2

	
	

	max_interval

	100000

	exo.jcr.cluster.jgroups.merge2.max_i
nterval

	min_interval

	20000

	exo.jcr.cluster.jgroups.merge2.min_i
nterval

	FD

	
	

	timeout

	10000

	exo.jcr.cluster.jgroups.fd.timeout

	max_tries

	5

	exo.jcr.cluster.jgroups.fd.max_tries

	shun

	true

	exo.jcr.cluster.jgroups.fd.shun

	VERIFY_SUSPECT

	
	

	timeout

	1500

	exo.jcr.cluster.jgroups.verify_suspe
ct.timeout

	pbcast.NAKACK

	
	

	use_mcast_xmit

	false

	exo.jcr.cluster.jgroups.pbcast.nakack
.use_mcast_xmit

	gc_lag

	0

	exo.jcr.cluster.jgroups.pbcast.nakack
.gc_lag

	retransmit_timeout

	300,600,1200
,2400,4800

	exo.jcr.cluster.jgroups.pbcast.nakack
.retransmit_timeout

	discard_delivered_m
sgs

	true

	exo.jcr.cluster.jgroups.pbcast.nakack
.discard_delivered_msgs

	UNICAST

	
	

	timeout

	300,600,1200

	exo.jcr.cluster.jgroups.unicast.timeo
ut

	pbcast.STABLE

	
	

	stability_delay

	1000

	exo.jcr.cluster.jgroups.pbcast.stable
.stability_delay

	desired_avg_gossip

	50000

	exo.jcr.cluster.jgroups.pbcast.stable
.desired_avg_gossip

	max_bytes

	1m

	exo.jcr.cluster.jgroups.pbcast.stable
.max_bytes

	VIEW_SYNC

	
	

	avg_send_interval

	60000

	exo.jcr.cluster.jgroups.view_sync.av
g_send_interval

	pbcast.GMS

	
	

	print_local_addr

	true

	exo.jcr.cluster.jgroups.pbcast.gms.pr
int_local_addr

	join_timeout

	3000

	exo.jcr.cluster.jgroups.pbcast.gms.jo
in_timeout

	shun

	true

	exo.jcr.cluster.jgroups.pbcast.gms.sh
un

	view_bundling

	true

	exo.jcr.cluster.jgroups.pbcast.gms.vi
ew_bundling

	FC

	
	

	max_credits

	2000000

	exo.jcr.cluster.jgroups.fc.max_credi
ts

	min_threshold

	0.10

	exo.jcr.cluster.jgroups.fc.min_thres
hold

	FRAG2

	
	

	frag_size

	60000

	exo.jcr.cluster.jgroups.frag2.frag_s
ize

UDP configuration for IDM

	JGroups name

	Default
value

	eXo variable

	UDP

	
	

	singleton_name

	idm-transpor
t-udp

	exo.idm.cluster.jgroups.udp.singleton
_name

	bind_addr

	127.0.0.1

	exo.idm.cluster.jgroups.udp.bind_add
r

	bind_port

	26600

	exo.idm.cluster.jgroups.udp.bind_por
t

	mcast_addr

	228.10.10.10

	exo.idm.cluster.jgroups.udp.mcast_ad
dr

	mcast_port

	27600

	exo.idm.cluster.jgroups.udp.mcast_po
rt

	tos

	8

	exo.idm.cluster.jgroups.udp.tos

	ucast_recv_buf_siz
e

	20m

	exo.idm.cluster.jgroups.udp.ucast_re
cv_buf_size

	ucast_send_buf_siz
e

	640k

	exo.idm.cluster.jgroups.udp.ucast_se
nd_buf_size

	mcast_recv_buf_siz
e

	25m

	exo.idm.cluster.jgroups.udp.mcast_re
cv_buf_size

	mcast_send_buf_siz
e

	640k

	exo.idm.cluster.jgroups.udp.mcast_se
nd_buf_size

	loopback

	true

	exo.idm.cluster.jgroups.udp.loopback

	discard_incompatible
_packets

	true

	exo.idm.cluster.jgroups.udp.discard_
incompatible_packets

	max_bundle_size

	64000

	exo.idm.cluster.jgroups.udp.max_bund
le_size

	max_bundle_timeout

	30

	exo.idm.cluster.jgroups.udp.max_bund
le_timeout

	ip_ttl

	2

	exo.idm.cluster.jgroups.udp.ip_ttl

	enable_bundling

	true

	exo.idm.cluster.jgroups.udp.enable_b
undling

	enable_diagnostics

	true

	exo.idm.cluster.jgroups.udp.enable_d
iagnostics

	diagnostics_addr

	224.0.75.75

	exo.idm.cluster.jgroups.udp.diagnosti
cs_addr

	diagnostics_port

	7500

	exo.idm.cluster.jgroups.udp.diagnosti
cs_port

	thread_naming_patte
rn

	pl

	exo.idm.cluster.jgroups.udp.thread_n
aming_pattern

	thread_pool.enabled

	true

	exo.idm.cluster.jgroups.udp.thread_p
ool.enabled

	thread_pool.min_thr
eads

	20

	exo.idm.cluster.jgroups.udp.thread_p
ool.min_threads

	thread_pool.max_thr
eads

	300

	exo.idm.cluster.jgroups.udp.thread_p
ool.max_threads

	thread_pool.keep_al
ive_time

	5000

	exo.idm.cluster.jgroups.udp.thread_p
ool.keep_alive_time

	thread_pool.queue_e
nabled

	true

	exo.idm.cluster.jgroups.udp.thread_p
ool.queue_enabled

	thread_pool.queue_m
ax_size

	1000

	exo.idm.cluster.jgroups.udp.thread_p
ool.queue_max_size

	thread_pool.rejectio
n_policy

	Discard

	exo.idm.cluster.jgroups.udp.thread_p
ool.rejection_policy

	oob_thread_pool.ena
bled

	true

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.enabled

	oob_thread_pool.min
_threads

	20

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.min_threads

	oob_thread_pool.max
_threads

	300

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.max_threads

	oob_thread_pool.kee
p_alive_time

	1000

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.keep_alive_time

	oob_thread_pool.que
ue_enabled

	false

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.queue_enabled

	oob_thread_pool.que
ue_max_size

	100

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.queue_max_size

	oob_thread_pool.rej
ection_policy

	Discard

	exo.idm.cluster.jgroups.udp.oob_thre
ad_pool.rejection_policy

	PING

	
	

	timeout

	2000

	exo.idm.cluster.jgroups.ping.timeout

	num_initial_members

	1

	exo.idm.cluster.jgroups.ping.num_ini
tial_members

	MERGE2

	
	

	max_interval

	100000

	exo.idm.cluster.jgroups.merge2.max_i
nterval

	min_interval

	20000

	exo.idm.cluster.jgroups.merge2.min_i
nterval

	FD

	
	

	timeout

	6000

	exo.idm.cluster.jgroups.fd.timeout

	max_tries

	5

	exo.idm.cluster.jgroups.fd.max_tries

	VERIFY_SUSPECT

	
	

	timeout

	1500

	exo.idm.cluster.jgroups.verify_suspe
ct.timeout

	pbcast.NAKACK

	
	

	use_mcast_xmit

	true

	exo.idm.cluster.jgroups.pbcast.nakack
.use_mcast_xmit

	retransmit_timeout

	300,600,1200
,2400,4800

	exo.idm.cluster.jgroups.pbcast.nakack
.retransmit_timeout

	discard_delivered_m
sgs

	true

	exo.idm.cluster.jgroups.pbcast.nakack
.discard_delivered_msgs

	UNICAST2

	
	

	timeout

	300,600,1200
,2400,3600

	exo.idm.cluster.jgroups.unicast2.time
out

	stable_interval

	5000

	exo.idm.cluster.jgroups.unicast2.stab
le_interval

	max_bytes

	1m

	exo.idm.cluster.jgroups.unicast2.max_bytes

	pbcast.STABLE

	
	

	stability_delay

	1000

	exo.idm.cluster.jgroups.pbcast.stable
.stability_delay

	desired_avg_gossip

	50000

	exo.idm.cluster.jgroups.pbcast.stable
.desired_avg_gossip

	max_bytes

	400000

	exo.idm.cluster.jgroups.pbcast.stable
.max_bytes

	pbcast.GMS

	
	

	print_local_addr

	true

	exo.idm.cluster.jgroups.pbcast.gms.pr
int_local_addr

	join_timeout

	3000

	exo.idm.cluster.jgroups.pbcast.gms.jo
in_timeout

	view_bundling

	true

	exo.idm.cluster.jgroups.pbcast.gms.vi
ew_bundling

	view_ack_collection
_timeout

	5000

	exo.idm.cluster.jgroups.pbcast.gms.vi
ew_ack_collection_timeout

	resume_task_timeout

	7500

	exo.idm.cluster.jgroups.pbcast.gms.re
sume_task_timeout

	UFC

	
	

	max_credits

	2000000

	exo.idm.cluster.jgroups.ufc.max_cred
its

	ignore_synchronous_
response

	true

	exo.idm.cluster.jgroups.ufc.ignore_s
ynchronous_response

	MFC

	
	

	max_credits

	2000000

	exo.idm.cluster.jgroups.mfc.max_cred
its

	ignore_synchronous_
response

	true

	exo.idm.cluster.jgroups.mfc.ignore_s
ynchronous_response

	FRAG2

	
	

	frag_size

	60000

	exo.idm.cluster.jgroups.frag2.frag_s
ize

	RSVP

	
	

	timeout

	60000

	exo.idm.cluster.jgroups.rsvp.timeout

	resend_interval

	500

	exo.idm.cluster.jgroups.rsvp.resend_
interval

	ack_on_delivery

	false

	exo.idm.cluster.jgroups.rsvp.ack_on_delivery

	timeout

	60000

	exo.jcr.cluster.jgroups.rsvp.timeout

	resend_interval

	500

	exo.jcr.cluster.jgroups.rsvp.resend_
interval

	ack_on_delivery

	false

	exo.jcr.cluster.jgroups.rsvp.ack_on_delivery

TCP configuration for IDM

See how to activate TCP default configuration in Activating TCP default configuration files.

	JGroups name

	Default
value

	eXo variable

	TCP

	
	

	singleton_name

	idm-transpor
t-tcp

	exo.idm.cluster.jgroups.tcp.singleton
_name

	bind_addr

	127.0.0.1

	exo.idm.cluster.jgroups.tcp.bind_add
r

	bind_port

	7900

	exo.idm.cluster.jgroups.tcp.bind_por
t

	port_range

	30

	exo.idm.cluster.jgroups.tcp.port_ran
ge

	loopback

	true

	exo.idm.cluster.jgroups.tcp.loopback

	recv_buf_size

	20m

	exo.idm.cluster.jgroups.tcp.recv_buf
_size

	send_buf_size

	640k

	exo.idm.cluster.jgroups.tcp.send_buf
_size

	discard_incompatible
_packets

	true

	exo.idm.cluster.jgroups.tcp.discard_
incompatible_packets

	max_bundle_size

	64000

	exo.idm.cluster.jgroups.tcp.max_bund
le_size

	max_bundle_timeout

	30

	exo.idm.cluster.jgroups.tcp.max_bund
le_timeout

	enable_bundling

	true

	exo.idm.cluster.jgroups.tcp.enable_b
undling

	use_send_queues

	true

	exo.idm.cluster.jgroups.tcp.use_send
_queues

	enable_diagnostics

	false

	exo.idm.cluster.jgroups.tcp.enable_d
iagnostics

	bundler_type

	old

	exo.idm.cluster.jgroups.tcp.bundler_
type

	thread_naming_patte
rn

	pl

	exo.idm.cluster.jgroups.tcp.thread_n
aming_pattern

	thread_pool.enabled

	true

	exo.idm.cluster.jgroups.tcp.thread_p
ool.enabled

	thread_pool.min_thr
eads

	5

	exo.idm.cluster.jgroups.tcp.thread_p
ool.min_threads

	thread_pool.max_thr
eads

	100

	exo.idm.cluster.jgroups.tcp.thread_p
ool.max_threads

	thread_pool.keep_al
ive_time

	60000

	exo.idm.cluster.jgroups.tcp.thread_p
ool.keep_alive_time

	thread_pool.queue_e
nabled

	true

	exo.idm.cluster.jgroups.tcp.thread_p
ool.queue_enabled

	thread_pool.queue_m
ax_size

	100

	exo.idm.cluster.jgroups.tcp.thread_p
ool.queue_max_size

	thread_pool.rejectio
n_policy

	Discard

	exo.idm.cluster.jgroups.tcp.thread_p
ool.rejection_policy

	oob_thread_pool.ena
bled

	true

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.enabled

	oob_thread_pool.min
_threads

	5

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.min_threads

	oob_thread_pool.max
_threads

	100

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.max_threads

	oob_thread_pool.kee
p_alive_time

	60000

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.keep_alive_time

	oob_thread_pool.que
ue_enabled

	false

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.queue_enabled

	oob_thread_pool.que
ue_max_size

	100

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.queue_max_size

	oob_thread_pool.rej
ection_policy

	Discard

	exo.idm.cluster.jgroups.tcp.oob_thre
ad_pool.rejection_policy

	TCPPING

	
	

	timeout

	3000

	exo.idm.cluster.jgroups.tcpping.timeo
ut

	initial_hosts

	localhost[79
00]

	exo.idm.cluster.jgroups.tcpping.initi
al_hosts

	port_range

	0

	exo.idm.cluster.jgroups.tcpping.port_range

	num_initial_members

	1

	exo.idm.cluster.jgroups.tcpping.num_
initial_members

	ergonomics

	false

	exo.idm.cluster.jgroups.tcpping.ergon
omics

	MERGE2

	
	

	max_interval

	30000

	exo.idm.cluster.jgroups.merge2.max_i
nterval

	min_interval

	10000

	exo.idm.cluster.jgroups.merge2.min_i
nterval

	FD

	
	

	timeout

	3000

	exo.idm.cluster.jgroups.fd.timeout

	max_tries

	3

	exo.idm.cluster.jgroups.fd.max_tries

	VERIFY_SUSPECT

	
	

	timeout

	1500

	exo.idm.cluster.jgroups.verify_suspe
ct.timeout

	pbcast.NAKACK

	
	

	use_mcast_xmit

	false

	exo.idm.cluster.jgroups.pbcast.nakack
.use_mcast_xmit

	retransmit_timeout

	300,600,1200
,2400,4800

	exo.idm.cluster.jgroups.pbcast.nakack
.retransmit_timeout

	discard_delivered_m
sgs

	false

	exo.idm.cluster.jgroups.pbcast.nakack
.discard_delivered_msgs

	UNICAST2

	
	

	timeout

	300,600,1200

	exo.idm.cluster.jgroups.unicast2.time
out

	stable_interval

	5000

	exo.idm.cluster.jgroups.unicast2.stab
le_interval

	max_bytes

	1m

	exo.idm.cluster.jgroups.unicast2.max_bytes

	pbcast.STABLE

	
	

	stability_delay

	500

	exo.idm.cluster.jgroups.pbcast.stable
.stability_delay

	desired_avg_gossip

	5000

	exo.idm.cluster.jgroups.pbcast.stable
.desired_avg_gossip

	max_bytes

	1m

	exo.idm.cluster.jgroups.pbcast.stable
.max_bytes

	pbcast.GMS

	
	

	print_local_addr

	true

	exo.idm.cluster.jgroups.pbcast.gms.pr
int_local_addr

	join_timeout

	3000

	exo.idm.cluster.jgroups.pbcast.gms.jo
in_timeout

	view_bundling

	true

	exo.idm.cluster.jgroups.pbcast.gms.vi
ew_bundling

	UFC

	
	

	max_credits

	200k

	exo.idm.cluster.jgroups.ufc.max_cred
its

	min_threshold

	0.20

	exo.idm.cluster.jgroups.ufc.min_thre
shold

	MFC

	
	

	max_credits

	200k

	exo.idm.cluster.jgroups.mfc.max_cred
its

	min_threshold

	0.20

	exo.idm.cluster.jgroups.mfc.min_thre
shold

	FRAG2

	
	

	frag_size

	60000

	exo.idm.cluster.jgroups.frag2.frag_s
ize

	RSVP

	
	

	timeout

	60000

	exo.idm.cluster.jgroups.rsvp.timeout

	resend_interval

	500

	exo.idm.cluster.jgroups.rsvp.resend_
interval

	ack_on_delivery

	false

	exo.idm.cluster.jgroups.rsvp.ack_on_delivery

Using customized JGroups xml files

JGroups configuration, for both JCR and IDM, is externalized via
exo.properties (see Configuration overview for
this file). It is recommended you use this file. See previous section
for list of default values and externalized variables.

Only when the variables are not enough, or when migrating from previous
version you want to re-use your JGroups configuration files, you will
follow this section to activate your xml files.

	Put your xml file somewhere, typically
standalone/configuration/gatein/jgroups/ in JBoss and
gatein/conf/jgroups/ in Tomcat.

	Edit the following properties in exo.properties:

exo.jcr.cluster.jgroups.config=${exo.conf.dir}/jgroups/jgroups-jcr.xml
exo.jcr.cluster.jgroups.config-url=file:${exo.jcr.cluster.jgroups.config}
exo.idm.cluster.jgroups.config=${exo.conf.dir}/jgroups/jgroups-idm.xml

In which exo.conf.dir is standalone/configuration/gatein in
JBoss and gatein/conf in Tomcat by default.

If you put your files somewhere else, pay attention that you must use an
absolute path after “file:”.

exo.jcr.cluster.jgroups.config=/path/to/your/jgroups-jcr-file
exo.jcr.cluster.jgroups.config-url=file:/path/to/your/jgroups-jcr-file
exo.idm.cluster.jgroups.config=/path/to/your/jgroups-idm-file

Setting up a load balancer

Setting up a basic load balancing with Apache

The following modules need to be activated in order to do load balancing
on several cluster nodes :

	mod_proxy_balancer

	mod_slotmem_shm (mandatory for mod_proxy_balancer)

	mod_lbmethod_byrequests if you choose the by request balancing
algorithm (can be also mod_lbmethod_bytraffic or
mod_lbmethod_bybusyness)

Part of an apache configuration to enabled load balancing :

Add a http header to explicitly identify the node and be sticky
Header add Set-Cookie "ROUTEID=.%{BALANCER_WORKER_ROUTE}e; path=/" env=BALANCER_ROUTE_CHANGED

Declare the http server pool
<Proxy "balancer://plf">
 BalancerMember "http://node1:8080" route=node1 acquire=2000 retry=5 keepalive=on ping=30 connectiontimeout=2
 BalancerMember "http://node2:8080" route=node2 acquire=2000 retry=5 keepalive=on ping=30 connectiontimeout=2
 ProxySet stickysession=ROUTEID
</Proxy>

Declare the pool dedicated to the websocket tunnels
<Proxy "balancer://plf_ws">
 BalancerMember "ws://node1:8080" route=node1 acquire=2000 retry=0 keepalive=on ping=30 connectiontimeout=2 disablereuse=on flushpackets=on
 BalancerMember "ws://node2:8080" route=node2 acquire=2000 retry=0 keepalive=on ping=30 connectiontimeout=2 disablereuse=on flushpackets=on
 ProxySet stickysession=ROUTEID
</Proxy>

Common options
ProxyRequests Off
ProxyPreserveHost On

Declare the redirection for websocket urls, must be declared before the general ProxyPass definition
ProxyPass /cometd "balancer://plf_ws/cometd"

Declare the redirection for the http requests
ProxyPass / "balancer://plf/"
ProxyPassReverse / "balancer://plf/"

Note

This configuration must be adapted to you specific needs before you go to production.

All the configuration detail can be found on the Apache configuration page [https://httpd.apache.org/docs/current/mod/mod_proxy_balancer.html]

Improving the logs

Diagnose a cluster problem can be difficult. The Apache logs can be
customized to help you to follow the load balancing behavior.

The BALANCER_WORKER_ROUTE will add in your logs the name of the node
that received the requests.

The BALANCER_ROUTE_CHANGED will set the field to 1 if the user
was redirected to different node compared his previous request. This
indicate the node was removed from the cluster pool or was not able to
received more requests. During normal processing, this flag should
always have the value -.

Example of log format with cluster diagnosis enabled :

LogFormat "%h %l %u %t \"%r\" %>s %b %{BALANCER_WORKER_ROUTE}e %{BALANCER_ROUTE_CHANGED}e" common_cluster

Note

More log options are detailed in the Apache documentation [https://httpd.apache.org/docs/current/mod/mod_proxy_balancer.html]

Setting up basic load balancing with NGINX

Note

The load balancing support on the free version of NGINX is limited.
The sticky algorithm is limited to ip hash and the nodes configuration can’t be precisly tuned.

If you have a NGINX plus license, the full load balancing documentation can be found here [https://www.nginx.com/resources/admin-guide/load-balancer/]

Basic NGINX load balancing configuration :

 upstream plf {
 ip_hash;
 server node1:8080;
 server node2:8080;
 }
server {

 listen 80;
 location / {
 proxy_pass http://plf;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for; }
 # Websocket for Cometd
 location /cometd/cometd {
 proxy_pass http://plf;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header Host $host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 }
}

FAQs of clustering

Q: How to migrate from local to the cluster mode?

A: If you intend to migrate your production system from the local
(non-cluster) to the cluster mode, follow these steps:

Update the configuration to the cluster mode as explained above on your
main server.

Use the same configuration on other cluster nodes.

Move the index and value storage to the shared file system.

Start the cluster.

Q: Why is startup failed with the “Port value out of range”
error?

A: On Linux, your startup is failed if you encounter the following
error:

[INFO] Caused by: java.lang.IllegalArgumentException: Port value out of range: 65536

This problem happens under specific circumstances when the JGroups
networking library behind the clustering attempts to detect the IP to
communicate with other nodes.

You need to verify:

	The host name is a valid IP address, served by one of the network
devices, such as eth0, and eth1.

	The host name is NOT defined as localhost or 127.0.0.1.

Q: How to solve the “failed sending message to null” error?

A: If you encounter the following error when starting up in the
cluster mode on Linux:

Dec 15, 2010 6:11:31 PM org.jgroups.protocols.TP down
 SEVERE: failed sending message to null (44 bytes)
 java.lang.Exception: dest=/228.10.10.10:45588 (47 bytes)

Be aware that clustering on Linux only works with IPv4. Therefore, when
using a cluster under Linux, add the following property to the JVM
parameters:

-Djava.net.preferIPv4Stack=true

LDAP Integration

eXo Platform organizational entities (users, groups and memberships),
can be stored in a database or a directory such as OpenLDAP or Active
Directory (AD). This chapter documents how to configure eXo Platform to
plug to a directory.

Note

Please notice that this integration is not SSO (Single Sign On).
If SSO is what you need, read the SSO chapter, eXo Add-ons guide that explains how eXo Platform works with a directory through an SSO service like CAS or OpenAM.

Warning

	eXo Platform supports only the read-only mode with a directory (LDAP/AD).

	Only one single directory is allowed.

	The mapped organizational entities from directory are imported in one way direction: from the directory to eXo Platform.

This chapter covers the following topics:

	Introduction
An introduction about directory server integration basics.

	Quick start
A step by step tutorial for eXo Platform configuration with a directory server.

	How to map multiple DNs for users?
A step by step tutorial to map multiple DNs for users from your directory to eXo Platform.

	How to change default mandatory users attributes mapping?
A step by step tutorial to map default users attributes.

	How to map additional user attributes?
A step by step tutorial to map additional users attributes than the default ones.

	How to map multiple DNs for groups?
A tutorial allowing to map multiple DNs for groups from your directory to eXo platform.

	How to map directory groups to a new eXo Platform group?
A tutorial allowing to map your directory groups to new eXo platform groups.

	Configuration reference
A reference guide about PicketLink IDM configuration and eXO Platform configuration.

	Frequently asked questions
How to resolve some possible issues of a directory integration.

Introduction

eXo Platform uses PicketLink IDM framework [http://picketlink.org/]
that allows a very flexible integration with a directory server:

	It can be plugged to an already populated directory, in read-only mode. The directory can contain users and groups, or only users.

	Structure of users and groups in the directory can be finely customized.

	The supported directory implementations are: OpenLDAP and Microsoft Active Directory. You can refer to our official
supported environments [https://www.exoplatform.com/terms-conditions/supported-environments.pdf] matrix for more
details about the supported versions.

The term “Directory users” represents users who are created in the directory by its utilities. The term “Platform users” represents users who are created via eXo Platform UI. The understanding is similar for “Directory groups” and “Platform group*”.

The following section is a step-by-step tutorial to integrate eXo Platform with a directory server.

If you want to know more about PicketLink IDM configuration, you can refer to the official documentation of PicketLink.

Quick start

Through this tutorial, you will be able to integrate eXo Platform with a populated directory server.
We suppose that your directory server has a structure similar to the following one:

[image: image0]

In this quick start, you configure eXo Platform to read information of users and groups from the directory.
It might not match your need exactly, but after this start you will have everything packaged in an extension,
that you can adapt by following the following sections.

Note

The ldap-extension is technically a portal extension that is described in
Developer guide, but
it does not require compilation as it requires only xml files, so administrators
can pack the war archive without using a Maven build. If you are a developer, you
can create a Maven project for it like any other extension.

	Create a ldap-extension directory having this structure:

ldap-extension
|__ META-INF
 |__ exo-conf
 |__ configuration.xml
|__ WEB-INF
 |__ conf
 |__ configuration.xml
 |__ organization
 |__ idm-configuration.xml
 |__ picketlink-idm-ldap-config.xml
 |__ jboss-deployment-structure.xml
 |__ web.xml

	Edit WEB-INF/conf/configuration.xml:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_3.xsd http://www.exoplatform.org/xml/ns/kernel_1_3.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_3.xsd">

 <import>war:/conf/organization/idm-configuration.xml</import>
</configuration>

	Copy content of the portal.war!/WEB-INF/conf/organization/idm-configuration.xml file of eXo Platform to your idm-configuration.xml file, then edit your file to replace:

<value>war:/conf/organization/picketlink-idm/picketlink-idm-config.xml</value>

with the path to your picketlink-idm-ldap-config.xml file:

<value>war:/conf/organization/picketlink-idm-ldap-config.xml</value>

	Copy content from one of PicketLink sample files to your picketlink-idm-ldap-config.xml file.

Note

The sample files can be found in,``portal.war!/WEB-INF/conf/organization/picketlink-idm/examples``.
Choose either of the following files:

	picketlink-idm-msad-config.xml if you use MS Active Directory.

	picketlink-idm-openldap-config.xml for OpenLDAP.

	picketlink-idm-ldap-config.xml for other LDAP compliant directories.

	Modify the picketlink-idm-ldap-config.xml file according to your directory setup. Most of the time,
the following parameters need to be changed:

	
	all the DNs locating the users and groups:

	
	ctxDNs of the USER identity object, which must be the root DN of the users.

	ctxDNs of the platform_type identity object, which must be the root DN of
the groups mapped under the eXo Platform /platform group.

	ctxDNs of the organization_type identity object, which must be the root DN
of the groups mapped under the eXo Platform /organization group

	providerURL

	adminDN

	adminPassword

	For Microsoft Active Directory (MSAD); do the following sub-steps :

	Prepare a truststore file containing the valid certificate for MSAD. It can be generated by the Linux command:

keytool -import -file certificate -keystore truststore

	Edit the following parameters in the ``picketlink-idm-ldap-config.xml``file:

	providerURL: Should use SSL (ldaps://).

	customSystemProperties: Give your truststore file path and password.

<name>customSystemProperties</name>
<value>javax.net.ssl.trustStore=/path/to/msad.truststore</value>
<value>javax.net.ssl.trustStorePassword=password</value>

	Uncomment the following entries in the idm-configuration.xml file:

	groupTypeMappings

<entry>
 <key><string>/platform/*</string></key>
 <value><string>platform_type</string></value>
</entry>
<entry>
 <key><string>/organization/*</string></key>
 <value><string>organization_type</string></value>
</entry>

	ignoreMappedMembershipTypeGroupList

 <value>
 <string>/platform/*</string>
</value>
<value>
 <string>/organization/*</string>
</value>

This step enables mapping of directory groups (platform and organization - that are predefined groups)
to eXo Platform. If you bypass this step, only user mapping is performed.

	Configure your extension by following the steps 3, 4 and 5 of
Creating a portal extension.

	Package and deploy your ldap-extension into Platform.

Note

For JBoss, don’t forget to declare deployment dependency.

	Make sure the directory server is running, then start eXo Platform.

Packaging and deploying

The extension folder must be packaged into ldap-extension.war then copied to:

	$PLATFORM_TOMCAT_HOME/webapps for Tomcat.

	$PLATFORM_JBOSS_HOME/standalone/deployments for JBoss.

To compress the folder into a .war (and decompress the .war for editing), you can use any archiver tool that supports .war extension.
You can use the JDK built-in tool jar, as follows:

	To compress, first go to inside ldap-extension directory:
cd ldap-extension

Then run: jar cvf path/to/save/ldap-extension.war *

	To decompress, run: jar xvf path/to/ldap-extension.war

Note

Do not include the ldap-extension folder itself into the .war. The .war
should contain META-INF and WEB-INF folders at root of the archive, it should
not contain ldap-extension folder. That’s why you need to go to inside the folder first.

Tip

You should have ldap-extension packaged in .war when deploying it to production. However when testing, if you feel
uncomfortable having to edit a .war, you can skip compressing it.
In Tomcat [https://tomcat.apache.org/tomcat-8.0-doc/deployer-howto.html], just deploy the original
folder ldap-extension. In JBoss [https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html/configuration_guide/deploying_applications],
rename it to ldap-extension.war.

Testing

If the integration was successful, the directory users and groups will appear in eXo Platform under the menu
Administration –> Users –> Manage Users.

How to map multiple DNs for users?

eXo Platform allows to map users dispatched in multiple directory DNs, like this:

[image: image1]

In such case, you should, in addition to previous steps described in the
Quick start section, follow these steps:

	Open the configuration file picketlink-idm-ldap-config.xml.

	Search for the option ctxDNs.

	Define the different locations of DNs where your directory users are located:

<option>
 <name>ctxDNs</name>
 <value>ou=People,o=acme,dc=example,dc=com</value>
 <value>ou=People,o=emca,dc=example,dc=com</value>
</option>

Since only one type of user can be defined, all users of these DNs must share the same attributes mapping.

How to change default mandatory users attributes mapping?

There are five attributes that should always be mapped (because they are mandatory in eXo Platform):

	username

	password

	firstname

	lastname

	email

The username mapping is defined by the option idAttributeName:

<option>
 <name>idAttributeName</name>
 <value>...</value>
</option>

The password mapping is defined by the option passwordAttributeName:

<option>
 <name>passwordAttributeName</name>
 <value>...</value>
</option>

The firstname, lastname and email mapping are defined in user attributes:

<attribute>
 <name>firstName</name>
 <mapping>givenName</mapping>
 ...
</attribute>
<attribute>
 <name>lastName</name>
 <mapping>sn</mapping>
...
</attribute>
<attribute>
 <name>email</name>
 <mapping>mail</mapping>
 …
</attribute>

The default mapping defined in the provided sample configuration files for OpenLDAP and MSAD directories
is summarized in the following table:

	eXo Platform

	Configuration attribute

	OpenLDAP default value

	MSAD default value

	username

	Option idAttributeName

	uid

	cn

	password

	Option passwordAttributeName

	userPassword

	unicodePwd

	firstname

	Attribute firstName

	cn

	givenname

	lastname

	Attribute lastName

	sn

	sn

	email

	Attribute email

	mail

	mail

You can update them in the file picketlink-idm-ldap-config.xml to match your specific mapping.

How to map additional user attributes?

As described in the previous section, by default, only 5 attributes are mapped from a directory user to an eXo Platform user.
Additional user attributes can be mapped by configuration by adding new attribute element in the attributes section of
the USER identity object type. For example if you want to map a directory attribute title to eXo Platform attribute user.jobtitle,
you must add this configuration snippet under the “attributes” tag in the file picketlink-idm-ldap-config.xml, as follows:

<attributes>
...
 <attribute>
 <name>user.jobtitle</name>
 <mapping>title</mapping>
 <type>text</type>
 <isRequired>false</isRequired>
 <isMultivalued>false</isMultivalued>
 <isUnique>false</isUnique>
 </attribute>
...
 </attributes>

How to map multiple DNs for groups?

As in previous sections, we assume that you already have a populated directory and some groups that should be mapped into eXo Platform.

Tip

To be clear about the LDAP “group”, it should be the “groupOfNames” objectClass in OpenLDAP or “group” objectClass
in Active Directory. In OpenLDAP (default core.schema), the groupOfNames must have the member attribute.

Under the context DN (ou=Groups,o=acme,dc=example,dc=com), there are several groups as shown in the diagram below:

[image: image2]

In this case, you should, in addition to previous steps described in the Quick start section,
follow these steps:

	Open the configuration file picketlink-idm-ldap-config.xml.

	Search for the option ctxDNs to define the multiple locations of DNs
where your directory groups are located:

<option>
 <name>ctxDNs</name>
 <value>ou=Groups,o=acme,dc=example,dc=com</value>
 <value>ou=Groups,o=emca,dc=example,dc=com</value>
 </option>

How to map directory groups to a new eXo Platform group?

In the Quick start chapter we map the directory groups to default eXo Platform groups
/platform and /organization. In this chapter we will learn how to map directory groups into a new eXo Platform group.
Let’s say we want to map the groups contained in the directory DN o=acme,dc=example,dc=com into the eXo Platform group /acme.
As a prerequisite, the group /acme must be already created in eXo Platform.

	PicketLink configuration

The first step is to define the mapping configuration in PicketLink configuration file
picketlink-idm-ldap-config.xml by adding a new identity object type (we call it acme_groups_type)
under the identity store PortalLDAPStore:

 <identity-store>
 <id>PortalLDAPStore</id>
 ...
 <supported-identity-object-types>
 ...
 <identity-object-type>
 <name>acme_groups_type</name>
 <relationships>
 <relationship>
 <relationship-type-ref>JBOSS_IDENTITY_MEMBERSHIP</relationship-type-ref>
 <identity-object-type-ref>USER</identity-object-type-ref>
 </relationship>
 <relationship>
 <relationship-type-ref>JBOSS_IDENTITY_MEMBERSHIP</relationship-type-ref>
 <identity-object-type-ref>acme_groups_type</identity-object-type-ref>
 </relationship>
 </relationships>
 <credentials/>
 <attributes>
 <attribute>
 <name>description</name>
 <mapping>description</mapping>
 <type>text</type>
 <isRequired>false</isRequired>
 <isMultivalued>false</isMultivalued>
 <isReadOnly>false</isReadOnly>
 </attribute>
 </attributes>
 <options>
 <option>
 <name>idAttributeName</name>
 <value>cn</value>
 </option>
 <option>
 <name>ctxDNs</name>
 <value>o=acme,dc=example,dc=com</value>
 </option>
 <option>
 <name>entrySearchFilter</name>
 <value><![CDATA[(&(cn={0})(objectClass=group))]]></value>
 </option>
 <option>
 <name>allowCreateEntry</name>
 <value>true</value>
 </option>
 <option>
 <name>parentMembershipAttributeName</name>
 <value>member</value>
 </option>
 <option>
 <name>isParentMembershipAttributeDN</name>
 <value>true</value>
 </option>
 <option>
 <name>allowEmptyMemberships</name>
 <value>true</value>
 </option>
 <option>
 <name>createEntryAttributeValues</name>
 <value>objectClass=top</value>
 <value>objectClass=group</value>
 <value>groupType=8</value>
 </option>
 </options>
 </identity-object-type>
 </supported-identity-object-types>
</identity-store>

Make sure that the attributes and options are correct, especially:

	idAttributeName: attribute name to use as the group id.

	ctxDNs: base DN of the groups in the directory.

	entrySearchFilter: search expression to filter objects to consider as groups.

	parentMembershipAttributeName: attribute which holds the list of group members. In OpenLDAP or MSAD default schemas,
the member attribute is used, but your schema may use another attribute.

Then this new object type must be referenced in the PortalRepository repository:

<repository>
 <id>PortalRepository</id>
 ...
 <identity-store-mapping>
 <identity-store-id>PortalLDAPStore</identity-store-id>
 <identity-object-types>
 ...
 <identity-object-type>acme_groups_type</identity-object-type>
 ...
 </identity-object-types>
 </identity-store-mapping>...
 </repository>

	eXo configuration

Besides the PicketLink configuration,
the eXo service configuration defined in the file idm-configuration.xml must be updated.
A new entry must be added in the fields groupTypeMappings and ignoreMappedMembershipTypeGroupList
to map the group defined in PicketLink configuration with the eXo Platform group, as follows:

<component>
 <key>org.exoplatform.services.organization.OrganizationService</key>
 <type>org.exoplatform.services.organization.idm.PicketLinkIDMOrganizationServiceImpl</type>
 ...
 <field name="groupTypeMappings">
 <map type="java.util.HashMap">
 ..
 <entry>
 <key><string>/acme/*</string></key>
 <value><string>acme_groups_type</string></value>
 </entry>
 </map>
 </field>
 ...
 <field name="ignoreMappedMembershipTypeGroupList">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value><string>/acme/*</string></value>
 ...
 </collection>
 </field>
 ...
 </component>

Configuration reference

This section is a complete description of the available configuration options.
It lists the options of both eXo configuration and PicketLink configuration.

eXo configuration

The eXo configuration related to PicketLink integration is defined in these 2 services:

	org.exoplatform.services.organization.idm.PicketLinkIDMServiceImpl

	org.exoplatform.services.organization.idm.PicketLinkIDMOrganizationServiceImpl

You can adapt the configuration by updating these services configuration
in the file idm-configuration.xml as described in the Quick Start section.

PicketLinkIDMServiceImpl service

This service has the following parameters:

	config (value-param): location of the PicketLink IDM configuration file.

<component>
 <key>org.exoplatform.services.organization.idm.PicketLinkIDMService</key>
 <type>org.exoplatform.services.organization.idm.PicketLinkIDMServiceImpl</type>
 <init-params>
 <value-param>
 <name>config</name>
 <value>war:/conf/organization/picketlink-idm-ldap-config.xml</value>
 ...

Note

The “war:” prefix allows to lookup the given location in all deployed webapps.

	hibernate.properties (properties-param): list of hibernate properties
used to create SessionFactory that will be injected in Picketlink IDM configuration registry.

<properties-param>
 <name>hibernate.properties</name>
 <description>Default Hibernate Service</description>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="false"/>
 <property name="hibernate.connection.datasource" value="${gatein.idm.datasource.name}${container.name.suffix}"/>
 <property name="hibernate.connection.autocommit" value="false"/>

 <property name="hibernate.listeners.envers.autoRegister" value="false"/>
 </properties-param>

	hibernate.annotations: list of annotated classes that will be added to Hibernate configuration.

	hibernate.mappings: list of .xml files that will be added to the hibernate configuration as mapping files.

	jndiName (value-param): if the ‘config’ parameter is not provided, this parameter will be used to perform the JNDI lookup for IdentitySessionFactory.

	portalRealm (value-param): the realm name that should be used to obtain the proper IdentitySession. The default value is ‘PortalRealm’.

<value-param>
 <name>portalRealm</name>
 <value>idm_realm${container.name.suffix}</value>
 </value-param>

PicketLinkIDMOrganizationServiceImpl service

This service has the following parameters defined as fields of object-param
of type org.exoplatform.services.organization.idm.Config:

	rootGroupName : the name of the PicketLink IDM Group that will be
used as a root parent. The default is GTN_ROOT_GROUP.

	defaultGroupType: the name of the PicketLink IDM GroupType that
will be used to store groups. The default is GTN_GROUP_TYPE.

	groupTypeMappings : this parameter maps groups added with eXo Platform
API as children of a given group ID, and stores them with a given
group type name in PicketLink IDM.
If the parent ID ends with “/*”, all child groups will have the mapped
group type. Otherwise, only direct (first level) children will use this type.
This can be leveraged by LDAP if the LDAP DN is configured in PicketLink
IDM to only store a specific group type. This will then store the given
branch in the eXo Platform group tree, while all other groups will remain in the database.

	forceMembershipOfMappedTypes: groups stored in PicketLink IDM with
a type mapped in ‘groupTypeMappings’ will automatically be members under the mapped parent.
The Group relationships linked by the PicketLink IDM group association will not be necessary.
This parameter can be set to false if all groups are added via eXo Platform APIs. This may be
useful with the LDAP configuration when being set to true, it will make every entry added to
LDAP appear in eXo Platform. This, however, is not true for entries added via eXo Platform management UI.

	ignoreMappedMembershipType: if “associationMembershipType” option is used, and this option is set to
true, Membership with MembershipType configured to be stored as PicketLink IDM association will not be
stored as PicketLink IDM Role.

	associationMembershipType : if this option is used, each Membership created with MembrshipType that
is equal to the value specified here, will be stored in PicketLink IDM as the simple Group-User association.

	passwordAsAttribute: this parameter specifies if a password should be stored using the PicketLink IDM
Credential object or as a plain attribute. The default value is set to false.

	useParentIdAsGroupType: this parameter stores the parent ID path as a group type in PicketLink IDM
for any IDs not mapped with a specific type in ‘groupTypeMappings’. If this option is set to false,
and no mappings are provided under ‘groupTypeMappings’, only one group with the given name can exist
in the eXo Platform group tree.

	pathSeparator: when ‘userParentIdAsGroupType’ is set to true, this value will be used to replace
all “/” characters in IDs. The “/” character is not allowed in the group type name in PicketLink IDM.

PicketLink IDM configuration file

Let’s see the picketlink-idm-ldap-config.xml structure:

<realms>...</realms>
<repositories>
 <repository><id>PortalRepository</id></repository>
 <repository><id>DefaultPortalRepository</id></repository>
</repositories>
<stores>
 <identity-stores>
 <identity-store><id>HibernateStore</id></identity-store>
 <identity-store><id>PortalLDAPStore</id></identity-store>
 </identity-stores>
</stores>

	Realm: identity realm used. This parameter must not be changed.

	Repository: Where your store and identity object type is used, by Id reference.

	Store: The center part of this guideline, where you configure the directory connection,
identity object types and all the attributes mapping.

With the aim of making this guideline easy to understand, DefaultPortalRepository and
HibernateStore will be excluded since they must not be re-configured, and the id references will be added.
Also, organization_type is eliminated because of its similarity to platform_type.
The structure is re-drawn as follows:

<repositories>
 <repository>
 <id>PortalRepository</id>
 <identity-store-mappings>
 <identity-store-mapping>
 <identity-store-id>PortalLDAPStore</identity-store-id>
 <identity-object-types>
 <identity-object-type>USER</identity-object-type>
 <identity-object-type>platform_type</identity-object-type>
 </identity-object-types>
 </identity-store-mapping>
 </identity-store-mappings>
 </repository>
</repositories>
<stores>
 <identity-stores>
 <identity-store>
 <id>PortalLDAPStore</id>
 <supported-identity-object-types>
 <identity-object-type>
 <name>USER</name>
 <!-- attributes & options -->
 </identity-object-type>
 <identity-object-type>
 <name>platform_type</name>
 <!-- attributes & options -->
 </identity-object-type>
 </supported-identity-object-types>
 </identity-store>
 </identity-stores>
</stores>

The directory connection

The directory connection (URL and credentials) is Store configuration. It is provided in the PortalLDAPStore:

<identity-store>
 <id>PortalLDAPStore</id>
 ...
 <options>
 <option>
 <name>providerURL</name>
 <value>ldap://localhost:389</value>
 </option>
 <option>
 <name>adminDN</name>
 <value>cn=admin,dc=example,dc=com</value>
 </option>
 <option>
 <name>adminPassword</name>
 <value>gtn</value>
 </option>
 ...
 </options>

Read-only mode

Note

It is the only supported mode.

The Read-only mode is a repository configuration. It is an option of the
repository that prevents eXo Platform from writing to the directory.
You should ensure to enable the read-only mode by setting the option to true:

<repository>
 <id>PortalRepository</id>
 <identity-store-mappings>
 <identity-store-mapping>
 <identity-store-id>PortalLDAPStore</identity-store-id>
 <options>
 <option>
 <name>readOnly</name>
 <value>true</value>
 </option>
 </options>
 </identity-store-mapping>

Search scope (entrySearchScope option)

The entrySearchScope option can be placed in identity object type,
like this:

<option>
 <name>entrySearchScope</name>
 <value>subtree</value>
</option>

In combination with ctxDNs, this option forms an LDAP query.
It is equivalent to the scope parameter of the ldapsearch command (-s in OpenLDAP).

Values: subtree, object.

	If the option is omitted, the search will return the children at
level 1 of the ctxDNs - equivalent to -s one.

	Use subtree to search in the entire tree under ctxDNs. It is
useful saving you from having to provide all the possible ctxDNs in
configuration.

	The object value is equivalent to -s base that examines only
the ctxDNs itself. If the ctxDNs entry does not match the filter, the
search result is zero.

o=acme,dc=example,dc=com
uid=user1,o=acme,dc=example,dc=com
ou=People,o=acme,dc=example,dc=com
uid=user2,ou=People,o=acme,dc=example,dc=com

Assume you are mapping the LDAP users in the tree above, using the ctxDNs
o=acme,dc=example,dc=com, then:

	subtree: user1 and user2 are mapped.

	object: no user is mapped.

	If omitted: only user1 is mapped.

Platform user attributes

The list of Platform user attribute names (the asterisk (*) marks a
mandatory attribute):

	Name

	Description

	username (*)

	user id (login name)

	firstName (*)

	first name

	lastName (*)

	last name

	displayName

	display name

	email (*)

	email (unique, user1@example.com)

	user.name.given

	given name

	user.name.family

	family name

	user.name.nickName

	nick name

	user.bdate

	birth day

	user.gender

	“Male/Female”

	user.employer

	employer

	user.department

	department

	user.jobtitle

	job title

	user.language

	language

	user.home-info.postal.name

	personal address

	user.home-info.postal.street

	personal address

	user.home-info.postal.city

	personal address

	user.home-info.postal.stateprov

	personal address

	user.home-info.postal.postalcode

	personal postal code

	user.home-info.postal.country

	personal postal country

	user.home-info.telecom.mobile.number

	personal cell phone

	user.home-info.telecom.telephone.number

	personal line number

	user.home-info.online.email

	personal email

	user.home-info.online.uri

	personal page

	user.business-info.postal.name

	office address

	user.business-info.postal.city

	office address

	user.business-info.postal.stateprov

	office address

	user.business-info.postal.postalcode

	office postal code

	user.business-info.postal.country

	office postal country

	user.business-info.telecom.mobile.number

	office mobile number

	user.business-info.telecom.telephone.number

	office landline number

	user.business-info.online.email

	business email

	user.business-info.online.uri

	business page

Placeholder - A note for OpenLDAP

Ruled by OpenLDAP default core schema, the member attribute is a MUST attribute of groupOfNames objectClass:

objectclass (2.5.6.9 NAME 'groupOfNames'
 DESC 'RFC2256: a group of names (DNs)'
 SUP top STRUCTURAL
 MUST (member $ cn)
 MAY (businessCategory $ seeAlso $ owner $ ou $ o $ description))

Therefore, PicketLink IDM uses a placeholder entry as a fake member in the creation of a groupOfNames. The placeholder DN should be configured as an option of any group type:

<identity-object-type>
 <name>platform_type</name>
 <options>
 <option>
 <name>parentMembershipAttributePlaceholder</name>
 <value>ou=placeholder,o=portal,o=gatein,dc=example,dc=com</value>
 </option>
 ...

Frequently asked questions

A: Not any condition except that the top DN should be created before being integrated.

You should ensure that the Directory contains an entry like the following:

dn: dc=example,dc=com
objectClass: top
objectClass: domain
dc: example

A: LDAP users are visible in the Users and Groups Management Page
but they are unable to sign in eXo Platform. More exactly, they do not have
access permission to any pages.

Additional steps should be done to allow them to sign in:

	Manually add users to the appropriate groups

It is performed in the User and Group Management Page
(http://[your_host]:[your_port]/portal/g/:platform:administrators/administration/management).
Just go to this page and add users to appropriate groups. The
/platform/users group is required to access the intranet page.

A: Use this option:

<option>
 <name>entrySearchScope</name>
 <value>subtree</value>
</option>

See more details at PicketLink IDM configuration.

A: This may happen with OpenLDAP, when users are created successfully but they cannot login, and there is error code 49 in your LDAP log as follows:

5630e5ba conn=1002 op=0 BIND dn="uid=firstuser,ou=People,o=portal,o=gatein,dc=steinhoff,dc=com" method=128
5630e5ba do_bind: version=3 dn="uid=firstuser,ou=People,o=portal,o=gatein,dc=steinhoff,dc=com" method=128
5630e5ba ==> bdb_bind: dn: uid=firstuser,ou=People,o=portal,o=gatein,dc=steinhoff,dc=com
5630e5ba bdb_dn2entry("uid=firstuser,ou=people,o=portal,o=gatein,dc=steinhoff,dc=com")
5630e5ba => access_allowed: result not in cache (userPassword)
5630e5ba => access_allowed: auth access to "uid=firstuser,ou=People,o=portal,o=gatein,dc=steinhoff,dc=com" "userPassword" requested
5630e5ba => dn: [1]
5630e5ba <= acl_get: done.
5630e5ba => slap_access_allowed: no more rules
5630e5ba => access_allowed: no more rules
5630e5ba send_ldap_result: conn=1002 op=0 p=3
5630e5ba send_ldap_result: err=49 matched="" text=""
5630e5ba send_ldap_response: msgid=1 tag=97 err=49

To resolve this, add an ACL (Access Control List) rule in the slapd.conf file as below:

Access and Security Restrictions (Most restrictive entries first)
access to attrs=userPassword
 by self write
 ## by dn.sub="ou=admin,dc=domain,dc=example" read ## not mandatory, useful if you need grant a permission to a particular dn
 by anonymous auth
 by users none
access to * by * read

OAuth Integration

Starting from 4.3 version, eXo Platform allows users to log in using
their social network accounts, including Facebook, Google+, Twitter,
LinkedIn. To enable the feature, you need to do the main steps
below:

	Registering an application on the social network you want.

	Making some configurations in exo.properties to enable the
social network with its registered application information.

After startup of eXo Platform, the users can log in and register into
eXo Platform via the corresponding social network.

In this chapter:

	Overview
Quick introduction to the the UI flow after one social network is
integrated with eXo Platform.

	Registering your OAuth application
How to register your OAuth applications, including Facebook,
Google+, Twitter, LinkedIn.

	Setting up eXo Platform
Steps to configure eXo Platform that enable the social network with
its registered application information.

	On-the-fly registration
Introduction to the on-the-fly registration that allows
administrator to skip the Registration form for the new social
accounts.

Overview

When a social network is integrated with eXo Platform, the UI flow will be as
follows:

The login page will have new buttons below:

[image: image0]

When clicking the Facebook button for example, the OAuth authorization
flow starts. The user will be redirected to the Facebook page and be
asked for login if not yet. Facebook then asks the user if he allows eXo
to access his profile data.

[image: image1]

If the user accepts, he is logged into eXo and redirected to the
homepage.

Registering your OAuth application

Registration will be detailed for each OAuth provider. But in all cases,
the provider will give you a pair of Client ID/Secret needed for later
configuration.

Note

Pay attention to the Redirect URL that should match your
server host and port. In the below instructions, it is assumed
that your host is server.local.network.com.

Facebook

	Go to https://developers.facebook.com/apps and register as a Facebook
developer if not yet.

	Click Create a New App. Here, enter Display Name, Namespace and
select one Category, then click Create App ID.

[image: image2]

	In your created application, select Settings. Here, input the
values:

	local.network.com for App Domains.

	http://server.local.network.com:8080 for Site URL (by
selecting Add PlatformWebsite).

[image: image3]

Before going to the production environment, you need to disable the
development mode in your registered application. If not, your
application is available only for you, your developers and users created
for your application.

[image: image4]

To switch the development mode to the public one, go to Status &
Review, then click [image: image5]Confirm.

[image: image6]

Twitter

	Go to the Twitter Developer page [https://dev.twitter.com/]. From
this page, go to the Manage Your Apps page (in the TOOLS
category near the bottom), then register your application by clicking
Create New App.

	Fill values for Name and Description. Use
http://server.local.network.com:8080 and
http://server.local.network.com:8080/portal/twitterAuth for Website
and Callback URL respectively.

[image: image7]

Note

The “Callback URL” must be filled for Twitter to recognize that it is a web application which is trying to connect.
Twitter will not accept “http://localhost:8080/portal” as a valid URL but you can use any, even “http://www.twitter.com”.
This field will be ignored but it cannot be left empty.

	In the created application, optionally edit it. In the Settings
tab, you may need to enable the Sign in with Twitter feature (by
ticking the Allow this application to be used to Sign in with
Twitter checkbox). It is recommended you enable it, otherwise your
users will need to authorize in Twitter after each login into eXo
Platform. For the Access option, the default value as Read only
is sufficient.

After finishing the whole process, you should see in the Details tab
as below:

[image: image8]

Consumer Key and Consumer Secret (in Keys and Access Token
tab) will be used to configure Client ID and Client Secret later.

LinkedIn

	Go to https://www.linkedin.com/developer/apps/. From this page,
register your application by selecting Create Application.

	Fill values for Name, Description, Application Logo URL, Application
User, Business Email and Business Phone. For Website URL, enter
http://server.local.network.com:8080.

[image: image9]

	Click Submit.

	In the Authentication part, tick two checkboxes: r_basicprofile and
r_emailaddress, then input
http://server.local.network.com:8080/portal/linkedinAuth for the
Authorized Redirect URLs field and click Update.

[image: image10]

Google+

	Go to the https://developers.google.com/. Here, access the Google
Developers Console page (in the Developer Consoles category
near the bottom) and register as Google developer if not yet.

	Create your project first, then go to it.

	In the Gallery icon –> API Manager part –> Overview, make sure
Google+ API is enabled.

	In the Credentials part, click Add credentials and select Oauth
2.0 client ID.

[image: image11]

	Select Web application. In the Authorized redirect URIs field,
input http://server.local.network.com:8080/portal/googleAuth.

[image: image12]

	Click Create and view information of Client ID, Client Secret and
Redirect URIs.

[image: image13]

Setting up eXo Platform

It is assumed that your eXo Platform instance will be executed on the host:
server.local.network.com (remember to set
up your host, for example, by adding it to /etc/hosts on Linux), so
you will need to:

	Change the property exo.base.url to the value of your host. See
Server base URL for details.

OAuth
exo.base.url=http://server.local.network.com:8080

	Make configurations for the social networks that you want in
exo.properties.

Facebook
exo.oauth.facebook.enabled=true
exo.oauth.facebook.clientId=Facebook_App_Id
exo.oauth.facebook.clientSecret=Facebook_App_Secret

Twitter
exo.oauth.twitter.enabled=true
exo.oauth.twitter.clientId=Twitter_Consumer_Key
exo.oauth.twitter.clientSecret=Twitter_Consumer_Secret

LinkedIn
exo.oauth.linkedin.enabled=true
exo.oauth.linkedin.apiKey=LinkedIn_Client_Id
exo.oauth.linkedin.apiSecret=LinkedIn_Client_Secret

Google Plus
exo.oauth.google.enabled=true
exo.oauth.google.clientId=GooglePlus_Client_Id
exo.oauth.google.clientSecret=GooglePlus_Client_Secret

In which:

	exo.oauth.{OAuth_Provider}.enabled - Enables the integration
with the social network. Users will now be able to log in and
register with their social network accounts.

	exo.oauth.{OAuth_Provider}.clientId - Client ID of your
application.

	exo.oauth.{OAuth_Provider}.clientSecret - Client Secret of your
application.

	Restart eXo Platform server. Your users should be able to register
or log in with their social network accounts.

On-the-fly registration

The on-the-fly registration mode is option that allows administrator to
skip the Registration form for the new social accounts that log into eXo
for the first time. If the option is not turned on, users will have to
edit their social information for the first login into eXo Platform.

[image: image14]

Configuring the on-the-fly registration

By default, the Registration form is skipped for the three networks
following:

exo.oauth.registraterOnFly=FACEBOOK,GOOGLE,LINKEDIN

The on-the-fly registration option is not turned on for Twitter by
default. In case of the on-the-fly registration, a random password will
be generated for the new user. So the only way for the user to know his
password is via the Forget password function
(which will require email address). The Twitter site does not allow
third-party application to get user email, so it is recommended you not
enable this option for Twitter.

Backup and Restore

Backup is necessary for safety. Data loss may happen in such cases
as broken devices, software failures, attacks of viruses and
hackers. By saving copies of your working data to a separated and
dedicated storage, you can restore your data and recover eXo
Platform in such cases.

The eXo Platform data consists of File System Data and SQL Data. The
backup does not require any specific tools. You will use any OS
backup utilities and any DBMS backup tools.

The following topics are covered in this chapter:

	Planning your backup
Necessary information about planning your backup.

	Backup and Restore
Instructions on how to back up and restore eXo Platform.

	Backup MongoDB database for eXo chat
Instructions on how to back up eXo chat Database.

Planning your backup

The eXo Platform data consists of 2 parts:

	data directories that can be backed up and restored using the OS
utilities.

	JCR, IDM and JPA datasources that can be backed up and restored using
the DBMS tools.

Warning

These two parts need to be backed up and restored consistently.
Inconsistency may lead to failures and exceptions at the eXo Platform runtime.
During the backup, you should stop eXo Platform to make sure no write-process is performing.

You may back up periodically or on-demand, before an upgrade or a patch
for instance. If you are planning to back up periodically, consider the
following things:

	How often the backup is performed? Remember that there is downtime
during the backup.

	How much disk space is used for backup storage? Less space, less
archive.

	Prepare for the tools that involve: copy (local and network),
compress and decompress tools, SQL backup tools and automation.

If your backup takes long time and occupies a big memory space, here are
some tips:

Tip

	The downtime will be much shorter if you have File System data and SQL data located on different hard drives, and back up them in parallel.

	Try optimizing your database server to restore faster.

	You do not need full-backup all the time. There are 2 backup options: incremental and differential that may lower the space.
The backup approaches are explained here [http://en.wikipedia.org/wiki/Backup].
Linux rsync [http://rsync.samba.org/] and Windows backup utilities can perform incremental/differential backup.
Any SQL Database server should support incremental backup.

	Think of automation which can be used for your backup.

Backup and Restore

If you do not customize and configure eXo Platform, the whole data is located
in one directory. So you just need to backup and restore the folder:

	$PLATFORM_TOMCAT_HOME/gatein/data (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/data/gatein (in JBoss).

Note

The above locations are the default ones, you may have different path to the data folder which is shared and accessible by your sever node(s).

However it is not the case in production. As introduced in Planning your backup,
the eXo Platform data consists of JCR File System data and JCR/IDM/JPA
SQL datasources. The backup/restore does not require any specific tools.
You just need to know the data location and use OS utilities to backup/
restore file system data and DBMS tools to backup/restore SQL databases.

The data folder contains these directories:

	exoplatform-es: it contains data indexed by Elasticsearch when it
is in embedded mode.

	files: it contains file storage
data.

	jcr: it contains jcr data i.e. indexes, values and swap (swap
folder is not not mandatory to backup/restore).

	jta: it contains transaction data and it is not mandatory to
backup/restore.

Note

JCR Directory and JCR database must be consistent. Then you
should stop eXo Platform, backup both before restarting. All
nodes should be stopped if you are running the cluster mode.

File System Data

You can check the data location in the customized configuration file:

	In Tomcat, the file is $PLATFORM_TOMCAT_HOME/bin/setenv-customize
(.sh for Linux and .bat for Windows).

	In JBoss, it is $PLATFORM_JBOSS_HOME/bin/standalone-customize
(.conf for Linux and .conf.bat for Windows).

Open the file and find EXO_DATA_DIR. This variable indicates the
folder you need to backup or restore. As explained above,
EXO_DATA_DIR takes by default the values cited in the top page but
you can customize it.

You may disregard the background storage system (device and protocol)
and let the OS take care of it. However, to make it efficiently, the
background storage should be considered. There are working storage (that
eXo Platform uses) and backup storage. Each of two can be on local drives, or
a mount point of a network shared device. Each can be a
SAN [http://en.wikipedia.org/wiki/Storage_area_network] or a
NAS [http://en.wikipedia.org/wiki/Network-attached_storage] storage.
You should use different hard drives for working storage and backup
storage, for safety, and conditionally for speed.

JCR Data

As said above, the whole JCR file system data is located in one root
directory (EXO_DATA_DIR). However, there is a possibility that an
element (a workspace for instance) is configured to be different. To
handle such cases, look inside the file system data. There may be:

	Index directory, which will be checked at the eXo Platform startup, and
re-created if missing.

In the cluster mode, the eXo Platform instances may share an index
directory, or use their own directories.

	Value directory (if existing) that is used to store the BLOB data.

The BLOB data can be optionally stored in database and file system
storage, and is defaulted to “true”. You can override this in
exo.properties file.

exo.jcr.storage.enabled=true

	Swap directory, which is used as temporary memory space at runtime.
This is not mandatory in backup and restore.

By default, all are located under EXO_DATA_DIR and each workspace
has its index, value and swap directories. Also, the portal default
configurations may be changed or overwritten, however it is not
recommended to do this. To see how it can happen, see JCR Configuration.

SQL Databases

Check your database configurations to see which databases are being
used. The database configurations are described in Configuring eXo Platform
of the Database configuration section.

There should be three datasources: JCR,
IDM and JPA.

You should backup and restore the whole database. If you want to backup
and restore tables separately, make sure your backup parts are
consistent.

Planning your backup for MongoDB

You can use mongodump command to back up your database, assume its
name is exochat:

	Against a non-authentication MongoDB server:

mongodump --db exochat --out /path/to/store/the/backup

	Against a secured MongoDB server:

mongodump --host {host} --port {port} --username {username} --password {password} --db {dbName} --out "{backup_folder}"

Security

This chapter introduces you to the security configuration in
eXo Platform:

	JAAS Realm configuration
Instructions on how to configure JAAS Realm.

	Gadget proxy configuration
How to configure the ProxyFilterService, and how the proxy
service works.

	Enabling HTTPS
To enable security access, you can either run eXo Platform itself
in HTTPS, or more commonly, use a reverse proxy like Apache.

	Password encryption key of RememberMe
Information about the file location and steps to update the
“Remember My Login” password encryption key.

	XSS protection
To activate XSS protection mechanisms.

	Securing the MongoDB Database
How to secure eXo chat database.

	Rest Api exposure
List of REST API exposed by eXo Platform.

JAAS Realm configuration

eXo Platform relies on JAAS for propagating the user identity and roles to
the different applications deployed on the server. The JAAS realm is
used by all eXo Platform applications and even propagated to the JCR for
Access Control.
Therefore, if you need to change the JAAS configuration, consider that
your change impacts a lot and it may require you to unpackage and modify
some .war files.

This section explains:

	What is JAAS Realm?

	Declaring JAAS Realm in eXo Platform

	List of applications using Realm

What is JAAS Realm?

The JAAS configuration requires a login.config file [https://docs.oracle.com/javase/1.5.0/docs/guide/security/jaas/tutorials/LoginConfigFile.html].
This file contains one (or more) entry which is called a “Realm”. Each
entry declares a Realm name and at least one login module. Each login
module consists of a Java class and some parameters which are specified
by the class.

Below is the default Realm in the Tomcat bundle. In JBoss, it looks
different but basically, the explanation is right for both.

gatein-domain {
 org.gatein.sso.integration.SSODelegateLoginModule required
 enabled="#{gatein.sso.login.module.enabled}"
 delegateClassName="#{gatein.sso.login.module.class}"
 portalContainerName=portal
 realmName=gatein-domain
 password-stacking=useFirstPass;
 org.exoplatform.services.security.j2ee.TomcatLoginModule required
 portalContainerName=portal
 realmName=gatein-domain;
};

In which:

	gatein-domain is the Realm name which will be refered by
applications. If you change this default name, you need to
re-configure all the applications that use the Realm (listed later).

	Two required login modules are:
org.gatein.sso.integration.SSODelegateLoginModule and
org.exoplatform.services.security.j2ee.TomcatLoginModule. The
first, if authentication succeeds, will create an Identity object
and save it into a shared state map, then the object can be used by
the second.

These are some login modules available in eXo Platform. Refer to
Existing login modules to understand
how they match the login scenarios.

Declaring JAAS Realm in eXo Platform

In the Tomcat bundle

	The default Realm is declared in the
$PLATFORM_TOMCAT_HOME/conf/jaas.conf file. Its content is exactly
the above example.

	A “security domain” property in
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties (about this
file, see Configuration overview)
needs to be set equal to the Realm name:

exo.security.domain=gatein-domain

In the JBoss package

	The default Realm is declared in the
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml
file, at the following lines:

<security-domain name="gatein-domain" cache-type="default">
 <authentication>
 <!--
 <login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="${gatein.sso.login.module.enabled}"/>
 <module-option name="delegateClassName" value="${gatein.sso.login.module.class}"/>
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>
 -->
 <login-module code="org.exoplatform.services.security.j2ee.JBossAS7LoginModule" flag="required">
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 </login-module>
 </authentication>
</security-domain>

	A “security domain” property in
$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
(about this file, see Configuration overview)
needs to be set equal to the Realm name:

exo.security.domain=gatein-domain

List of applications using Realm

If an application (.war) uses the Realm for authentication and
authorization, it will refer to the Realm name with either of the
following lines.

	In WEB-INF/jboss-web.xml:

<security-domain>java:/jaas/gatein-domain</security-domain>

	In WEB-INF/web.xml:

<realm-name>gatein-domain</realm-name>

	In META-INF/context.xml:

appName='gatein-domain'

As mentioned above, if you change “gatein-domain”, you need to
re-configure all the applications that use the Realm to refer to the new
Realm. Here is the list of webapps and the files you need to
re-configure:

In the Tomcat bundle:

	portal.war: /WEB-INF/jboss-web.xml, /WEB-INF/web.xml,
/META-INF/context.xml.

	rest.war: /WEB-INF/jboss-web.xml, /WEB-INF/web.xml.

	ecm-wcm-extension.war: /WEB-INF/jboss-web.xml.

	calendar-extension.war: /WEB-INF/jboss-web.xml.

	forum-extension.war: /WEB-INF/jboss-web.xml.

	wiki-extension.war: /WEB-INF/jboss-web.xml.

	ecm-wcm-core.war: /WEB-INF/jboss-web.xml.

Note

The .war files are located under the $PLATFORM_TOMCAT_HOME/webapps folder.

In the JBoss package:

	exo.portal.web.portal.war: /WEB-INF/jboss-web.xml,
/WEB-INF/web.xml, /META-INF/context.xml.

	exo.portal.web.rest.war: /WEB-INF/jboss-web.xml,
/WEB-INF/web.xml.

	calendar-extension-webapp.war: /WEB-INF/jboss-web.xml.

	forum-extension-webapp.war: /WEB-INF/jboss-web.xml.

	wiki-extension-webapp.war: /WEB-INF/jboss-web.xml.

	ecms-core-webapp.war: /WEB-INF/jboss-web.xml.

	ecms-packaging-wcm-webapp.war: /WEB-INF/jboss-web.xml.

Note

The .war files are located under the $PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear folder.

Gadget proxy configuration

In eXo Platform, you could allow gadgets to load remote resources.
However, this could be a potential security risk, as it will make the
Gadget deployed as an open web proxy. So, you can set up the anonymous
proxy to accept or deny certain hosts by configuring the
ProxyFilterService.

Configuring the ProxyFilterService

By default, the proxy denies any host except the domain on which the
gadget server is installed.

To specify domains that you want to allow or deny, modify the file:

	$PLATFORM_TOMCAT_HOME/webapps/portal.war/WEB-INF/conf/common/common-configuration.xml
(in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/exo.portal.web.portal.war/WEB-INF/conf/common/common-configuration.xml
(in JBoss).

The default configuration is:

<component>
 <key>org.exoplatform.web.security.proxy.ProxyFilterService</key>
 <type>org.exoplatform.web.security.proxy.ProxyFilterService</type>
 <init-params>
 <values-param>
 <!-- The white list -->
 <name>white-list</name>
 <!-- We accept anything not black listed -->
 <value>*</value>
 </values-param>
 <values-param>
 <name>black-list</name>
 <value>*.evil.org</value>
 </values-param>
 </init-params>
</component>

How does it work?

	Any domain name in black list is denied.

	Any domain name NOT in white list is denied.

	Only domain names in white list and NOT in black list are allowed.

Multiple values can be added (by adding more value tags) and
wildcards can be used, as in the following example:

<component>
 <key>org.exoplatform.web.security.proxy.ProxyFilterService</key>
 <type>org.exoplatform.web.security.proxy.ProxyFilterService</type>
 <init-params>
 <values-param>
 <name>white-list</name>
 <value>*.example.com</value>
 <value>www.example.net</value>
 </values-param>

 <values-param>
 <name>black-list</name>
 <value>evil.example.com</value>
 </values-param>
 </init-params>
</component>

Enabling HTTPS

In order to enable HTTPS, you can either:

	Use a reverse proxy,
such as Apache HTTPd or Nginx, to set up an HTTPS virtual host that
runs in front of eXo Platform. Or:

	Run eXo Platform itself over HTTPS.

In both cases, you must have a valid SSL certificate. For testing
purpose, you can generate a self-signed SSL certificate
should be used.

Generating a self-signed certificate

Generating a self-signed certificate can be done with
OpenSSL [https://www.openssl.org/]. Once again, a self-signed
certificate must be used only for testing purpose, never in production.
Use the following command to generate the certificate:

openssl req -x509 -nodes -newkey rsa:2048 -keyout cert-key.pem -out cert.pem -subj '/O=MYORG/OU=MYUNIT/C=MY/ST=MYSTATE/L=MYCITY/CN=proxy1.com' -days 730

You will use cert-key.pem to certificate the Apache/Nginx server
proxy1.com, so the part “CN=proxy1.com” is important.

Note

When using a self-signed certificate, users will need to point their
browser to https://proxy1.com and accept the security exception.

Importing an SSL certificate in the JVM’s trust store

For gadgets to work, the SSL certificate must be imported in the JVM
trust store:

	Because Java keytool does not accept PEM file format, you will need to
convert cert-key.pem into DER format.

openssl x509 -outform der -in cert-key.pem -out cert-key.der

	Import your certificate to the JVM trust store using the following command:

keytool -import -trustcacerts -file cert-key.der -keystore $JAVA_HOME/jre/lib/security/cacerts -alias proxy1.com

Note

The default password of the JVM’s trust store is “changeit”.

Using a reverse proxy for HTTPS in front of eXo Platform

Apache or Nginx can both be used as a reverse proxy in front of eXo Platform.
The role of the reverse proxy server is to catch HTTPS requests coming
from the http clients (e.g web browsers) and to relay them to eXo Platform
either via AJP or via HTTP protocol. The following diagram depicts the
case described in this section:

[image: image0]

Note

At this stage, we assume you already have an SSL certificate,
either issued by an official certification authority or self-signed
(for testing).

The examples below will let you setup a basic installation with ssl
enabled. You should fine tune your installation before opening it on
the web. Mozilla provide a great site [https://mozilla.github.io/server-side-tls/ssl-config-generator/]
to help you to find a configuration adapted to your needs.

Configuring Apache

Before you start, note that for clarity, not all details of the Apache
server configuration are described here. The configuration may vary
depending on Apache version and your OS, so consult Apache
documentation [http://httpd.apache.org/docs/] if you need.

Note

The supported version of Apache is 2.4 which should be used in a
supported version of OS. You can learn more about supported
environments
here [https://www.exoplatform.com/terms-conditions/supported-environments.pdf].

Required modules

You need mod_ssl, mod_proxy. They are all standard Apache2 modules, so
no installation is required. You just need to enable them with the
following command:

sudo a2enmod ssl proxy proxy_http headers

Configuring a virtual host for the SSL port

Add this to site configuration (you can override the default ssl site
/etc/apache2/sites-enabled/default-ssl.conf or create your own
site):

<VirtualHost *:80>
 ServerName proxy1.com
 Redirect / https://proxy1.com/
</VirtualHost>

<VirtualHost *:443>
 ServerName proxy1.com
 ProxyPass / http://exo1.com:8080/
 ProxyPassReverse / http://exo1.com:8080/
 ProxyRequests Off
 ProxyPreserveHost On
 RequestHeader set "X-Forwarded-Proto" expr=%{REQUEST_SCHEME}

 ProxyPass /cometd ws://exo1.com:8080/cometd max=200 acquire=5000 retry=5 disablereuse=on flushpackets=on

 SSLEngine On
 SSLCertificateFile /path/to/folder/from/certificate/cert.pem
 SSLCertificateKeyFile /path/to/folder/from/certificate/cert-key.pem
</VirtualHost>

Configuring Nginx

Instructions for installing Nginx can be found
here [http://wiki.nginx.org/Install]. On Debian and Ubuntu you can
install Nginx with the following command: apt-get install nginx.

Configure the server proxy1.com at port 443 like this (you can put
the configuration in a file like
/etc/nginx/sites-enabled/proxy1.com):

server {
 listen 80;
 server_name proxy1.com;

 # Redirect all HTTP requests to HTTPS with a 301 Moved Permanently response.
 return 301 https://$host$request_uri;
}

server {
 listen 443;
 server_name proxy1.com;
 ssl on;
 ssl_certificate /path/to/file/mycert.pem;
 ssl_certificate_key /path/to/file/mykey.pem;

 location / {
 proxy_pass http://exo1.com:8080;
 }
 location /cometd/cometd {
 proxy_pass http://exo1.com:8080;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }

}

The configuration here is a simple one and it works. For a more advanced
configuration, you may want to read this blog
post [http://blog.exoplatform.com/en/2014/04/17/apache-2-nginx-highly-secure-pfs-ssl-encrypting-reverse-proxy-exo-platform-4-0-web-application].

Configuring the HTTP connector

In both eXo Platform Tomcat and JBoss distributions, there is a default HTTP
(8080) connector.

In any case, you should configure that connector so that eXo Platform is
aware of the proxy in front of it.

	In Tomcat

Set the following property in
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties file:

exo.base.url=https://proxy1.com

The connector is configured in
$PLATFORM_TOMCAT_HOME/conf/server.xml. Add proxy parameters like
this:

<Connector address="0.0.0.0" port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
 enableLookups="false" redirectPort="8443"
 connectionTimeout="20000" disableUploadTimeout="true"
 URIEncoding="UTF-8"
 compression="off" compressionMinSize="2048"
 noCompressionUserAgents=".*MSIE 6.*" compressableMimeType="text/html,text/xml,text/plain,text/css,text/javascript"
 proxyName="proxy1.com" proxyPort="443" scheme="https" />

	In JBoss

	Set the following property in
$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
file:

exo.base.url=https://proxy1.com

	In $PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml,
add the property proxy-address-forwarding=”true” in the configuration of
http-listener:

<http-listener name="default" redirect-socket="https"
 socket-binding="http" max-post-size="209715200"
 proxy-address-forwarding="true"/>

After restarting the proxy and eXo Platform, you can test
https://proxy1.com. If you are testing with dummy server names, make
sure you created the hosts “proxy1.com” and “exo1.com” in the file
/etc/hosts.

Running eXo Platform itself under HTTPS

In the previous section you learnt to configure a reverse proxy in front
of eXo Platform, and it is the proxy which encrypts the requests and
responses. Alternatively you can configure eXo Platform to allow HTTPS access
directly, so no proxy between browsers and eXo Platform. See the following
diagram :

[image: image1]

Configuring eXo Platform’s Tomcat

	Set the following property in
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties file:

exo.base.url=https://exo1.com:8443

	Edit the $PLATFORM_TOMCAT_HOME/conf/server.xml file by commenting
the following lines:

<Connector address="0.0.0.0" port="8080" protocol="org.apache.coyote.http11.Http11NioProtocol"
enableLookups="false" redirectPort="8443"
connectionTimeout="20000" disableUploadTimeout="true"
URIEncoding="UTF-8"
compression="off" compressionMinSize="2048"
noCompressionUserAgents=".*MSIE 6.*" compressableMimeType="text/html,text/xml,text/plain,text/css,text/javascript" />

	Uncomment the following lines and edit with your keystoreFile and
keystorePass values:

<Connector port="8443" protocol="org.apache.coyote.http11.Http11Protocol" SSLEnabled="true"
maxThreads="150" scheme="https" secure="true"
clientAuth="false" sslProtocol="TLS"
keystoreFile="/path/to/file/serverkey.jks"
keystorePass="123456"/>

After starting eXo Platform, you can connect to
https://exo1.com:8443/portal. If you are testing with dummy server
names, make sure you created the host “exo1.com” in the file
/etc/hosts.

Configuring eXo Platform’s JBoss

To configure JBoss to run under HTTPS, you just need to set the
following property in
$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
file:

exo.base.url=https://exo1.com:8443

After starting JBoss, you can connect to eXo Platform at
https://exo1.com:8443/portal. If you are testing with dummy server
names, make sure you created the host “exo1.com” in the file
/etc/hosts.

Password encryption key of RememberMe

eXo Platform supports the “Remember My Login” feature. This guideline
explains how the feature works, and how to update the password
encryption key in server side for security purpose.

How the feature works?

If users select “Remember My Login” when they log in, their login
information will be saved in both client and server sides:

	A token is saved in the server side. The user password is encrypted
and saved along with the token.

	The token ID is sent back to the browser and saved in the
“rememberme” cookie.

When the users visit the website for next time from the same browser on
the same machine, they do not need to type their username and password.
The browser sends the cookies, and the server validates it using the
token. By that way, the login step is automatically completed.

Symmetric encryption of passwords

The user password is encrypted and stored along with the token.

The password encryption is built against JCA (Java Cryptography
Architecture) and by default uses the
AES [http://en.wikipedia.org/wiki/Advanced_Encryption_Standard]
algorithm. If you do not make your own configuration, a keystore is
generated with defaulted attributes (such as file name, keypass,
keysize). Thus, the feature works without any effort to configure
anything. However, eXo Platform allows you to configure and use your own
keystore to conform to your security policy.

How to customize the password

As you can see, the customization involves properties in
exo.properties, jca-symmetric-codec.properties and a keystore.
The goal of customization is to use your own keystore instead of the
default one.

	Generate your own keystore file using keytool:

	::

	keytool -genseckey -alias “customAlias” -keypass “customKeyPass” -keyalg “customAlgo” -keystore “customStore” -storepass “customStorePass” -storetype “customStoreType”

The file name will be the parameter keystore (“customStore” in the
example). The valid value of algorithms and other parameters can be
found
here [http://docs.oracle.com/javase/6/docs/technotes/guides/security/StandardNames.html#SecretKeyFactor].

Then, place the generated file under gatein/conf/codec (in Tomcat)
or standalone/configuration/gatein/codec (in JBoss).

	Update the jca-symmetric-codec.properties file with the
parameters used in your keytool command:

gatein.codec.jca.symmetric.alias=customAlias
gatein.codec.jca.symmetric.keypass=customKeyPass
gatein.codec.jca.symmetric.keyalg=customAlgo
gatein.codec.jca.symmetric.keystore=customStore
gatein.codec.jca.symmetric.storepass=customStorePass
gatein.codec.jca.symmetric.storetype=customStoreType

Again, in case of eXo Platform package, you need to create the
jca-symmetric-codec.properties file by yourself. You also need to
put these two properties in exo.properties.

Updating password encryption key

The password encryption uses a keystore file. By default, the file is:

	$PLATFORM_TOMCAT_HOME/gatein/conf/codec/codeckey.txt (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/codec/codeckey.txt
(in JBoss).

To update the password encryption key, just remove the file, then
restart the server. The keystore file will be re-created at the startup
time.

Note

Updating the password encryption key causes the invalidation of existing tokens, so the users must re-login.

XSS Protection

Even if the XSS protection is handled in the PRODUCT development, some
protections can be added on the server side to protect against external
threats. They are essentially based on HTTP headers added to the
responses to ask the modern browsers to avoid such attacks.

Additional configuration options can be found on the
Content-security-Policy header definition [https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy].

Add XSS protection headers on Apache

To manipulate the response headers, the Apache module
mod_headers [https://httpd.apache.org/docs/2.4/mod/mod_headers.html]
must be activated and the following lines added on your configuration :

<VirtualHost *:80>
 ...
 # XSS Protection
 Header always append X-Frame-Options SAMEORIGIN
 Header always append X-XSS-Protection 1
 Header always append Content-Security-Policy "frame-ancestors 'self'"
 ...
 </VirtualHost>

Add XSS protection headers on Nginx

Add the following line in the http or server part of your Nginx
configuration :

...
XSS Protection
add_header X-Frame-Options SAMEORIGIN;
add_header X-XSS-Protection 1;
add_header Content-Security-Policy "frame-ancestors 'self'"
...

Secured MongoDB

For a quick setup, the add-on by default uses a local and
none-authorization connection. However, in production it is likely you
will secure your MongoDB, so authorization is required. Below are steps
to do this.

Note

Read MongoDB documentation [http://docs.mongodb.org] for MongoDB security. This setup procedure is applied for MongoDB 3.2 [https://docs.mongodb.com/v3.2/].

	Start MongoDB and connect to the shell to create a database named
admin. Add a user with role userAdminAnyDatabase.

$ mongo
>use admin
>db.createUser({user: "admin", pwd: "admin", roles: [{role: "userAdminAnyDatabase", db: "admin"}]})
>exit

	Edit MongoDB configuration to turn on authentication, then restart
the server.

mongodb.conf
Your MongoDB host.
bind_ip = 192.168.1.81

The default MongoDB port
port = 27017

Turn on authentication
auth=true

	Create a user having readWrite role in the database chat (you can
name the database as your desire).

$ mongo -port 27017 -host 192.168.1.81 -u admin -p admin -authenticationDatabase admin
>use chat
>db.createUser({user: "exo", pwd: "exo", roles: [{role: "readWrite", db: "chat"}]})
>exit

	Verify the authentication/authorization of the new user:

$ mongo -port 27017 -host 192.168.1.81 -u exo -p exo -authenticationDatabase chat
>use chat
>db.placeholder.insert({description: "test"})
>db.placeholder.find()

	Create a configuration file
containing these below parameters.

dbName=chat
dbServerHost=192.168.1.81
dbServerPort=27017
dbAuthentication=true
dbUser=exo
dbPassword=exo

Note

The parameters above correspond with the values used during creating authorization for MongoDB.

Rest Api exposure

eXo Platform exposes a list of Rest API methods. They are used internally by
the deployed components but can also be used by your users.

Depending on your use cases, it could be (highly) recommanded to block
the public access to some of them.

	/rest/loginhistory/loginhistory/AllUsers : to avoid information
disclosure and for performance issue.

	/rest/private/loginhistory/loginhistory/AllUsers/* : to avoid
information disclosure and for performance issue.

	/rest/jcr/repository/collaboration/Trash : to avoid information
disclosure.

	/rest/ : Avoid rest services discovery.

	/portal/rest : Avoid rest services discovery.

The following configuraton examples will allow you to block the
previously listed Rest URLs with Apache or Nginx.

Block sensitive Rest urls with Apache

...

 # Block login history for performance and security reasons
 RewriteRule "/rest/loginhistory/loginhistory/AllUsers" - [L,NC,R=403]
 RewriteRule "/rest/private/loginhistory/loginhistory/AllUsers/*" - [L,NC,R=403]

 # Block access to trash folder
 RewriteRule "/rest/jcr/repository/collaboration/Trash" - [L,NC,R=403]

 # Don't expose REST APIs listing
 RewriteRule "^/rest/?$" - [NC,F,L]
 RewriteRule "^/portal/rest/?$" - [NC,F,L]
 ...

Block sensitive Rest urls with Nginx

You can create redirection rules in several ways with nginx, this is one
of the possibles :

...

 # Block login history for performance and security reasons
 location /rest/loginhistory/loginhistory/AllUsers { return 403; }
 location /rest/private/loginhistory/loginhistory/AllUsers { return 403; }

 # Block access to trash folder
 location /rest/jcr/repository/collaboration/Trash { return 403; }

 # Don't expose REST APIs listing
 location ~ ^/rest/?$ { return 403; }
 location ~ ^/portal/rest/?$ { return 403; }

 ...

Elasticsearch

Elasticsearch is a highly scalable open-source full-text search and
analytics engine. It allows you to store, search, and analyze big
volumes of data quickly.

eXo Platform supports two deployment modes of Elastic search:

	Embedded mode: One node of Elasticsearch embedded in each eXo
Platform instance.

	External mode: eXo Platform (deployed in standalone or
cluster mode) is connected to an external Elasticsearch (deployed
in standalone or cluster mode).

[image: image0]

Note

With eXo Platform 4.4, the embedded mode is bundled by default with the platform as an add-on.

This chapter covers the following topics:

	Elasticsearch configuration for embedded mode
Configuration for Elasticsearch embedded mode.

	Elasticsearch Configuration for external mode
Configuration for Elasticsearch external mode.

	Elasticsearch Indexing architecture
Indexing Architecture

Elasticsearch embedded mode

An Elasticsearch node is embedded in the eXo Platform server (and is hosted
in the same JVM).

The Elasticsearch node is declared as:

	Master: To manage the cluster with only one node.

	Data: To index and store documents.

	Client: To serve and coordinate requests from the platform.

By default:

	The parameter es.cluster.name of the Elasticsearch cluster is
exoplatform-es.

	The parameter es.network.host is set to 127.0.0.1. This prevents
accesses from IP other than localhost and prevents other nodes to
join the ES cluster.

	The parameter `` es.http.port`` is set by default to the port 9200:
Elasticseach is bound to port 9200 for HTTP connections.

Note

Elasticsearch Embedded mode properties are configurable through exo.properties file.
More details could be found here.
It is also possible to override Elasticsearch embedded mode configuration by using this property in the server startup:

-Dexo.es.embedded.configuration.file=/absolute/path/to/file

Where /absolute/path/to/file is the absolute path the the yml configuration file.

Elasticsearch external mode

With the external mode, Elasticsearch nodes are not embedded in eXo
Platform server, eXo Platform connects to the external Elasticsearch
node or cluster.

To use the external mode, you need to uninstall the embedded mode using
this command:

./addon uninstall exo-es-embedded

or simply disable it in exo.properties
by setting to false the property exo.es.embedded.enabled:

exo.es.embedded.enabled=false

The following plugins must be installed on Elasticsearch instance:

	Mapper Attachments plugin (5.6) [https://www.elastic.co/guide/en/elasticsearch/plugins/5.6/mapper-attachments.html]

	Ingest Attachement Processor plugin (5.6) [https://www.elastic.co/guide/en/elasticsearch/plugins/5.6/ingest-attachment.html]

Note

We highly recommend to use Elasticsearch 5.6 version.

As for embedded mode, some parameters should be configured for the
external mode through
exo.properties file:

	exo.es.search.server.url: The URL of the node used for searching.

	exo.es.search.server.username: The username used for BASIC
authentication on the Elasticseach node used for searching.

	exo.es.search.server.password: The password used for BASIC
authentication on the Elasticseach node used for searching.

	exo.es.index.server.url: The URL of the node used for indexing.

	exo.es.index.server.username: The username used for the BASIC
authentication on the Elasticsearch node used for indexing.

	exo.es.index.server.password: The password used for the BASIC
authentication on the Elasticsearch node used for indexing.

You can find more details about the above parameters, default values and
description in Properties reference table.

Elasticsearch Indexing architecture

Indexes

An index in Elasticsearch is like a table in a relational database. It
has a mapping which defines the fields in the index, which are grouped
by multiple type. An index is a logical namespace which maps to one or
more primary shards and can have zero or more replica shards.

Learn more about indexing in Elasticsearch
here [https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html#_index].

With eXo Platform and Elasticsearch, an index is dedicated to each
application (Wiki, Calendar, Documents…). All the application data
(for example wiki application data: wiki, wiki page, wiki attachment)
will be indexed in the same index.

Sharding

A shard is a single Lucene instance. It is a low-level worker unit which
is managed automatically by Elasticsearch.

Learn more about Sharding in Elasticsearch
here [https://www.elastic.co/guide/en/elasticsearch/reference/current/_basic_concepts.html#_shards_amp_replicas].

In eXo Platform with Elasticsearch:

	Sharding will only be used for horizontal scalability.

	eXo Platform does not use routing policies to route documents or
documents type to a specific shard.

	The default number of shards is 5: the default value of
Elasticsearch.

	This value is configurable per index by setting the parameter
shard.number in the constructor parameters of the connectors.

Replicas

	Each index can be replicated over the Elasticsearch cluster.

	The default number of replicas is 1 (the default value of
Elasticsearch) which means one replica for each primary shard.

	This value is configurable per index by setting the parameter
replica.number in the constructor parameters of the connectors.

Indexing

Managing a large data set using JCR in a production environment
sometimes requires special operations with indexes stored in a file
System. One such maintenance operation, called “re-indexing”
consists of recreating an index by re-scanning the data. You usually
need to re-index when you observe odd behaviours or many errors in
the logs. There can be various reasons to re-index. For example,
hardware faults, hard restarts, data corruption, migrations, or
simply after an upgrade to enable new features. A re-index is
usually requested on server startup or in runtime.

In eXo Platform, there are two kinds of indexes: Elasticsearch and JCR.
They have different re-indexing procedures which will be the purpose
of the next sections.

Match what’s below in this chapter:

	Elasticsearch re-indexing
How to perform Elasticsearch re-indexing.

	JCR Asynchronous re-indexing
How to perform JCR re-indexing.

Elasticsearch re-indexing

With eXo Platform, you can re-index using the interface. To do this
follow these steps:
1. Connect as an administrator.
2. In the top bar, select Administration –> Search indexing.

[image: image5]

	The interface of the Indexing Service Management Application
will appear. This allows to re-index by profile. (You can read more
about this interface below).

[image: image6]

	Select the connector you want to re-index and click on the
corresponding Reindex button.

Details about the interface of the application Indexing Service
Management:

	[image: image0]: Number of registered Elasticsearch indexing connectors.

	[image: image1]: Number of indexing operations in progress. Possibilities
are:

	REINDEX_ALL: to re-index all the indexes.

	DELETE_ALL: to delete all indexes.

	CREATE: to create the indexes.

	[image: image2]: Number of errors found .

	[image: image3]: List of registered Elasticsearch indexing connectors:
wiki-attachement, profile, wiki-page and space with the possible
actions on them.

	[image: image4]: List of the indexing operations in progress.

JCR asynchronous re-indexing

Indexing on start-up

The easiest way to trigger a JCR re-indexing at start-up is to stop the
server and manually remove the indexes that need to be recreated. When
the server starts, the missing indexes will be detected and the
necessary re-indexing operations will begin.

JCR supports direct RDBMS re-indexing. This is usually faster than
ordinary re-indexing and can be configured via the rdbms-reindexing
QueryHandler parameter set to “true” (Refer to the Query-handler configuration overview
for more information).

The start-up is usually blocked until the indexing process finishes.
Block time depends on the amount of persisted data in the repositories.
You can resolve this issue by using an asynchronous approach to start-up
indexation which involves on performing all operations on indexes in the
background without blocking the repository. This approach is controlled
by the value of the async-reindexing parameter in QueryHandler configuration.
Setting async-reindexing to “true” activates asynchronous indexation
and makes JCR start without active indexes. But you can still execute
queries on JCR without exceptions and check the index status via
QueryManagerImpl:

boolean online =
 ((QueryManagerImpl)Workspace.getQueryManager()).getQueryHandeler().isOnline();

An “OFFLINE” state means that the index is currently recreating. When
the state has been changed, the corresponding log event is printed. From
the start of the background task, the index is switched to “OFFLINE”
with the following log event:

[INFO] Setting index OFFLINE (repository/production[system]).

When the process has been finished, two events are logged:

[INFO] Created initial index for 143018 nodes (repository/production[system]).
 [INFO] Setting index ONLINE (repository/production[system]).

These two log lines indicate the end of process for the workspace given
in brackets. Calling isOnline() as mentioned above will also return
true.

Hot asynchronous workspace re-indexing via JMX

Note

First of all, you can not launch hot re-indexing via JMX if
the index is already in offline mode. This means that the
index is currently invoked in some operations, like
re-indexing at start-up, copying in cluster to another node
or something else. It is also important to note that hot
asynchronous re-indexing via JMX and “on start-up” re-indexing
are completely different features. You can not perform
start-up re-indexing using the getHotReindexingState
command in the JMX interface. However there are some common
JMX operations:

	getIOMode: return the current index IO mode (READ_ONLY / READ_WRITE), belongs to clustered configuration states.

	getState: return the current state (ONLINE / OFFLINE).

Some hard system faults, errors during upgrades, migration issues and
some other factors may corrupt the index. End customers would most
likely want the production systems to fix index issues during runtime
without delays and restarts. The current version of JCR supports the
“Hot Asynchronous Workspace Reindexing” feature. It allows
administrators to launch the process in background without stopping or
blocking the whole application by using any JMX-compatible console.(See
the “JConsole in action” screenshot below).

[image: image7]

The server can still work as expected while the index is being
recreated. This depends on the flag “allow queries”, which is passed via
the JMX interface to invoke the re-indexing operation. If the flag is
set to “true”, the application is still working. However, there is one
critical limitation that you must be aware of. If the index is frozen
while the background task is running, queries are performed on the index
present at the moment of task start-up and data written into the
repository after start-up will not be available through the search until
the process finishes. Data added during re-indexation is also indexed,
but will be available only when the task is done. To resume, JCR takes
the “snapshot” of indexes on the asynchronous task start-up and uses it
for searches. When the operation finishes, the stale indexes are
replaced with the new ones, including the newly added data. If the
allow queries” flag is set to “false”, all queries will throw out an
exception while the task is running. The current state can be acquired
using the following JMX operation:

	getHotReindexingState(): return information about latest invocation:
start time, if in progress or finish time if done.

Getting Started

Before jumping directly into the development tasks, you need to
learn about the basic knowledge via the following sections:

	Glossary
Technical terms which are used throughout the documentation.

	Architecture
Introduction to the schema of eXo Platform Architecture and principles
of container/service.

	Customization Capabilities with eXo Platform
Introduction to customization capabilities with eXo Platform that
can be done by creating extensions or new applications.

	Setting up development environment
How to set up your development environment (SCM, IDE and building
tools).

	Running eXo Platform in debug and dev modes
Useful information for debugging Java, JavaScript, CSS and
others.

Glossary

This section gives you explanations of some technical terms which are
used throughout the documentation.

Container templates

Templates which are used to contain the UI components in a specific
layout and display them on the site’s page.

ConversationState

An object which stores all information about the state of the current
user. This object also stores acquired attributes of an Identity which
is a set of principals to identify a user.

Data container

An object which implements the physical data storage. It enables
different types of backend (such as RDB, FS files) to be used as a
storage for the JCR data. With the main Data Container, other storages
for persisted Property Values can be configured and used. The eXo JCR
persistent data container can work in two configuration modes.

	Multi-database: A database for each workspace (used in the
standalone eXo JCR service mode).

	Single-database: All workspaces persisted in one database (used
in the embedded eXo JCR service mode; for example in eXo portal). The
data container uses the JDBC driver to communicate with the actual
database software. For example, any JDBC-enabled data storage can be
used with the eXo JCR implementation.

Database Creator (DBCreator)

A service that is responsible for executing the DDL (Data Definition
Language) script in runtime. A DDL script may contain templates for
database name, username, and password which will be replaced by real
values at execution time.

Drives

Customized workspaces which include:

	a configured path where the user will start when browsing the drive.

	a set of views with limitations to available actions, such as editing
or creating contents while being in the drive.

	a set of permissions to limit the access (and view) of the drive to a
restricted number of people.

	a set of options to describe the behavior of the drive when users
browse it.

eXo Cache

One which all applications on the top of eXo JCR need. This can rely on
an org.exoplatform.services.cache.ExoCache instance managed by
org.exoplatform.services.cache.CacheService.

eXoContainer

An object which behaves like a class loader that is responsible for
loading services/components. The eXoContainer class is inherited by all
the containers, including RootContainer, PortalContainer, and
StandaloneContainer. It itself inherits from a PicoContainer framework
which allows eXo to apply the IoC Inversion of Control principles.

External Plugin

One which allows adding configuration for services and components
easily.

Folksonomy

A system of classification which is derived from the practice and a
method of collaboratively creating and managing tags to annotate and
categorize content. This practice is also known as collaborative tagging
social classification social indexing and social tagging. See
Wikipedia [http://en.wikipedia.org] for more details.

Gadgets

Web-based software components which are based on HTML, CSS, and
JavaScript. They allow developers to easily write useful web
applications that work anywhere on the web without modification. See
OpenSocial [http://opensocial.org] for more details.

Groovy template

A template which is widely used in eXo UI framework. It leverages the
usage of Groovy language, a scripting language for Java. The template
file consists of HTML code and Groovy code blocks.

JCR WebDAV

A service that allows accessing a JCR repository via WebDAV.

JobSchedulerService

One which defines a job to execute a given number of times during a
given period. It is a service that is in charge of unattended background
executions commonly known for historical reasons as batch processing.

JodConverter (Java OpenDocument Converter)

A tool which converts documents into different office formats and vice
versa.

JCR Item

One which may be a node or a property.

ListenerService

An event mechanism which allows triggering and listening to events under
specific conditions inside eXo Platform. This mechanism is used in
several places in PRODUCT, such as login/logout time, creating/updating
users and groups.

LockManager

One that stores lock objects, so it can give a lock object or can
release it. Also, LockManager is responsible for removing locks that
live too long.

Namespace

The name of a node or property which may have a prefix delimited by a
single ‘:’ colon character. This name indicates the namespace of the
item (Source:
JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html])
and is used to avoid the naming conflict.

Navigation node

A node that looks like a label of the link to page on the Navigation
bar. By clicking a node, the page content is displayed. A node maps a
URI and a site page for the site’s navigation system.

Navigation

One that looks like a menu which is to help users visualize the site
structure and to provide hyperlinks to other parts on a site. Thus, a
bar which contains navigations is called the Navigation bar.

Node type

One which defines child nodes and properties which a node may (or must)
have. Every node type has attributes, such as name, supertypes, mixin
status, orderable child nodes status, property definitions, child node
definitions and primary item name (Source:
JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html]).

Node

An element in the tree structure that makes up a repository. Each node
may have zero or more child nodes and zero or more child properties.
There is a single root node per workspace which has no parent. All other
nodes have only one parent.

Organization listener

One that provides a mechanism to receive notifications via an
organization listener, including UserEventListener, GroupEventListener
and MembershipEventListener.

	UserEventListener is called when a user is created, deleted or
modified.

	GroupEventListener is called when a group is created, deleted or
modified.

	MembershipEventListener is called when a membership is created or
removed.

Organization management

A portlet that manages users, groups and memberships. This portlet is
often managed by administrators to set up permission for users and
groups.

OrganizationService

A service that allows accessing the Organization model. This model is
composed of users, groups, and memberships. It is the basis of eXo’s
personalization and authorizations and is used for all over the
platform.

Path constraint

One which restricts the result node to a scope specified by a path
expression. The following path constraints must be supported exact child
nodes descendants and descendants or self (Source:
JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html]).

Permission

A control of which actions that users can or cannot perform within the
site and are set by the portal administrators. Permission types specify
what a user can do within the site.

Site Page

A page that consists of one or more various portlets. Their layouts are
defined by container templates. To display a site page, this page must
be mapped to a navigation node.

Portal skins

Graphic styles that display an attractive user interface. Each skin has
its own characteristics with different backgrounds, icons, color, and
more.

PortalContainer

A type of container that is created at the startup of the portal web
application in the init method of the PortalController servlet.

Portlet

A web-based application that provides a specific piece of content to be
included as part of a portal page. In other words, portlets are
pluggable user interface components that provide a presentation layer to
information systems. There are two following types of portlet:

	Functional Portlets support all functions within the portal. They
are integrated into the portal that can be accessed through toolbar
links.

	Interface Portlets constitute the interface of a portal. eXo
Portal consists of some Interface Portlets, such as Banner Portlet,
Footer Portlet, Homepage Portlet, Console Portlet, Breadcrumb Portlet
and more.

Property constraint

One that a query may specify on the result nodes by way of property
constraints (Source:
JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html]).

Property

An element in the tree structure that makes up a repository. Each
property has only one parent node and has no child node.

Repository

One that holds references to one or more workspaces.

eXo REST framework

One that is used to make eXo services (for example, the components
deployed inside eXo Container) simply and transparently accessible via
HTTP in a RESTful manner. In other words, those services should be
viewed as a set of REST Resources-endpoints of the HTTP request-response
chain. Those services are calledResourceContainers.

RootContainer

A base container which plays an important role during the startup.
However, it is recommended that it should not be used directly.

RTL Framework (Right To Left Framework)

A framework which handles the text orientation depending on the current
locale settings. It consists of four components, including Groovy
template, Stylesheet, Images, and Client java.

StandaloneContainer

One which is a context independent eXo Container. It is also used for
unit tests.

Taxonomy

One which is used to sort documents to ease searches when browsing
documents online.

Tree structure

One structure which is defined as a hierarchical structure with a set of
linked nodes and properties.

Type constraint

One which specifies the common primary node type of the returned nodes
plus possibly additional mixin types that they also must have. Type
constraints are inheritance-sensitive in which specifying a constraint
of node type x will include all nodes explicitly declared to be type x
and all nodes of subtypes of x (Source:
JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html]).

Web Content

A textual, visual or aural content that is encountered as part of the
user experiences on a website. It may include other things, such as
texts images, sounds, videos, and animations.

Workspace

A container of single rooted tree which includes items.

Architecture

The architecture of eXo Platform is summarized in the following schema:

[image: image0]

Service Container

A container is always required to access a service, because the eXo
Kernel relies on the dependency injection. This means that the lifecycle
of a service (for example, instantiating, opening and closing streams,
disposing) is handled by a dependency provider, such as the eXo
Container, rather than the consumer. The consumer only needs a reference
to an implementation of the requested service. The implementation is
configured in an .xml configuration file that comes with every
service.

Note

See Container, Kernel Reference for details.

Service

Containers are used to gain access to services. The followings are
important characteristics of services:

	The interface and implementation for a service are usually separate
because of the Dependency Injection concept.

	Each service has to be implemented as a singleton, which means it is
created only once per portal container in a single instance.

	A component equals a service. A service must not be a large
application. A service can be a little component that reads or
transforms a document where the term “component” is often used
instead of service.

Note

See service configuration for beginners and in details for further references.

Java Content Repository

All data of eXo Platform are stored in a Java Content Repository (JCR). JCR
is the Java specification
(JSR-170 [http://jcp.org/aboutJava/communityprocess/final/jsr170/index.html])
for a type of Object Database tailored to the storage, searching, and
retrieval of hierarchical data. It is useful for the content management
systems, which require storage of objects associated with metadata. The
JCR also provides versioning, transactions, observations of changes in
data, and import or export of data in XML. The data in JCR are stored
hierarchically in a tree of nodes with associated properties.

Also, the JCR is primarily used as an internal storage engine.
Accordingly, eXo Platform lets you manipulate JCR data directly in several
places.

In Java Content Repository, there are 2 main parts:

	Repositories and workspaces: A content repository consists of one
or more workspaces. Each workspace contains a tree of items.

	Tree structure - nodes and properties: Every node can only have
one primary node type. The primary node type defines names, types and
other characteristics of the properties, and the number of its
allowed child nodes. Every node has a special property called
jcr:primaryType that records the name of its primary node type. A
node may also have one or more mixin types. These are node type
definitions that can mandate extra characteristics (for example, more
child nodes, properties and their respective names and types).

	Data are stored in properties, which may hold simple values, such
as numbers, strings or binary data of arbitrary length.

	The JCR API provides methods to define node types and node
properties, create or delete nodes, and add or delete properties
from an existing node. You can refer to the 6.2.3 Node Read
Methods [http://www.day.com/specs/jcr/1.0/6.2.3_Node_Read_Methods.html]
in the JCR Specification document.

Note

See JCR Reference Guide for the full knowledge of JCR.

Customization Capabilities with eXo Platform

eXo Platform can be easily customized and extended by:

	Creating extensions that allows you to customize all resources of
eXo Platform, including templates, skin, default configuration, and more.

	Creating new applications (portlets or gadgets) that you can add to
your portal’s pages.

Extensions

Almost everything in eXo Platform can be customized through extensions. The
main concept behind extensions is that resources of your extensions will
override resources of eXo Platform. See eXo Platform Extensions
for more details.

Here are some examples of what can be done with extensions:

	Creating a site with some pages and navigations.

	Customizing internationalized labels.

	Changing the default connector for users/groups/roles.

	Creating and customizing a new site. See Creating a new site
for details.

	Adding or removing languages. See Adding/Removing a language
for details.

	Creating a new skin for your site
and portlet.

	Creating and customizing templates for content. See Developing Content
for more details.

	Creating a Groovy REST script in your extension that will be loaded
at startup by the REST engine. See Using Groovy REST service
for more details.

Applications

Applications are blocks that compose a portal page. eXo Platform comes with a
lot of out-of-the-box applications which allow you to display a
navigation menu, display a content or a list of content, manage
bookmarks, display your next calendar events, and more. Also, you can
create your own applications.

From a technical point of view, an application can be either a portlet
or a gadget. Therefore, it is important to understand distinctions
between gadgets and portlets. While portlets are user interface
components that provide fragments of markup code from the server side,
gadgets generate dynamic web content on the client side. With gadgets,
small applications can be built quickly, and mashed up on the client
side using lightweight Web-Oriented Architecture (WOA) technologies,
like REST or RSS.

Developing portlets and gadgets complies with different rules and
components that are detailed in:

	Developing a portlet

	Developing a gadget

Setting up development environment

This guideline helps developers to set up their development environment
(SCM, IDE and building tools).

To set up development environment, see the followings:

	JDK 8+ is required.

	Maven (3.0.4 or later) and
GIT are required to
developers who want to contribute to eXo projects (mainly the
company’s developers).

	Any Java IDE tool can be used, such as
Eclipse [https://www.eclipse.org],
NetBean [https://netbeans.org].

	Developers who write extensions are free to choose their favorite
tools. Maven and GIT are recommended to get the best support from eXo
Company and Community.

Setting eXo Repository in Maven

To set up Maven, you can follow instructions in Apache’s Maven in 5
minutes [http://maven.apache.org/guides/getting-started/maven-in-five-minutes.html]
for quick start or see The Apache Maven definitive guide by
Sonatype [http://books.sonatype.com/mvnref-book/reference/index.html]
for a complete reference. Since eXo Platform 4, no specific Maven settings
are required to build eXo projects [http://developer.exoplatform.org].

To use eXo APIs in your own projects, you have to add the eXo Platform Maven
repository to your Maven settings.xml file.

	Open the settings.xml file in $M2_HOME/conf/ or
${user.home}/.m2/, depending on your Maven installation. Refer to
Maven settings guideline [http://maven.apache.org/settings.html]
for more details.

	Add a repository to this file, as stated in Maven’s Guide to using
Multiple
Repositories [http://maven.apache.org/guides/mini/guide-multiple-repositories.html].

	Replace the repository URL in your settings with
http://repository.exoplatform.org/public.

	An example of settings.xml:

<settings>
...
<profiles>
...
 <profile>
 <id>myprofile</id>
 <repositories>
 <repository>
 <id>eXo-pub-repo</id>
 <name>eXoPlatform public repo</name>
 <url>http://repository.exoplatform.org/public</url>
 </repository>
 </repositories>
 </profile>
...
</profiles>

<activeProfiles>
 <activeProfile>myprofile</activeProfile>
</activeProfiles>
...
</settings>

Importing eXo dependencies

You can, of course, add any eXo artifact as a dependency of your
project. To avoid losing time looking for the good version of the
artifacts you want to add as dependencies, eXo Platform provides an
import
dependency [https://repository.exoplatform.org/content/groups/public/org/exoplatform/platform/platform/]
which defines all of the versions for you. You just need to give the
version of eXo Platform you are using, without concerning about proper
versions of all artifacts. To import the right eXo dependencies, you can
choose between the 2 ways below.

Inheriting dependency version from eXo Platform

You can refer to Dependency Management [http://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Management]
for more details.

	Here is an example of the pom.xml file using implicit variables
to indicate the artifact version:

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <name>My project</name>
 <properties>
 <exoplatform.version>4.2.0</exoplatform.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <!-- Import versions from platform project -->
 <dependency>
 <groupId>org.exoplatform.platform</groupId>
 <artifactId>platform</artifactId>
 <version>${exoplatform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 </project>

In this file, the property exoplatform.version was declared under
properties tag, indicating a specific platform version used for
the project. After that, each dependency (under
dependencyManagement tag) can reuse this parameter as an implicit
variable ${exoplatform.version} without specifying its artifact
version.

Declaring exact versions

In case you want to control the versions of artifact, you can add them
manually. For each dependency, do as below:

	Select the version of eXo Platform you are using at
here [https://repository.exoplatform.org/content/groups/public/org/exoplatform/platform/platform/].

	Select the targeted .pom file and open it to see its
configurations.

	Find the artifactId you need to include in your project, for
instance platform-ui. You will see its version which was declared
in the implicit variable as
${org.exoplatform.platform-ui.version}.

	Search for this variable under properties tag to get the exact
version of the artifact and include it in your pom.xml file, for
example:

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.mycompany</groupId>
 <artifactId>my-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>war</packaging>
 <name>My project</name>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.platform-ui</groupId>
 <artifactId>platform-ui</artifactId>
 <version>4.2</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

Note

In the sample projects of this book, notice that you need to check the artifact versions of each dependency (using this link [https://repository.exoplatform.org/content/groups/public/org/exoplatform/platform/platform/])
to be sure whether they are suitable with your platform package or not.

GIT and github.com

eXo projects use GIT and github.com [https://github.com] for
managing source code. Thus, to contribute to the projects, you need to
install GIT and register a github.com [https://github.com] account.
See http://git-scm.com/docs to learn to use GIT.

Many eXo projects are public at the eXo Platform
repository [https://github.com/exoplatform/], so all GIT users have
the Read access. To contribute to a project, you need to have the Write
access.

For usage example, after installing GIT and Maven, you can build eXo Platform
in some steps:

	Check out the project:

git clone git@github.com:exoplatform/platform-public-distributions

	Go to the platform-public-distributions directory and build the
project:

mvn install

You will see the eXo Platform package in the
plf-community-tomcat-standalone/target/ folder.

Note

To write your own extension, see this sample project [https://github.com/exo-samples/docs-samples/tree/master/custom-extension].

Running eXo Platform in Debug and Dev modes

Dev and Debug modes are turned off by default and are not recommended in
production because of performance impact. They should be turned on only
for debugging in development environment.

If you are debugging against eXo Platform Tomcat, use the following start
command:

./start_eXo.sh --dev --debug

This section will introduce more details about Debug
and Dev modes and their
effects.

Debug mode

The Debug mode in eXo Platform is generally like other Java applications
using
JDWP [http://docs.oracle.com/javase/7/docs/technotes/guides/jpda/jdwp-spec.html]
that enables debugging by Eclipse.

In Tomcat

In eXo Platform Tomcat, the Debug mode is turned on by appending --debug
to the startup command:

./start_eXo.sh --debug

This parameter adds the following JVM option:

-agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

If you want to change the port (address=8000), you have to
customize environment variables
and edit the following variable: EXO_DEBUG_PORT="8000".

In JBoss

In eXo Platform JBoss, you should provide a port in the startup command:

./bin/standalone.sh --debug 8787

Dev mode

The Dev mode is useful for debugging container configuration, CSS and
JavaScript.

In Tomcat

In eXo Platform Tomcat, the Dev mode is turned on by appending --dev
to the startup command:

./start_eXo.sh --dev

This parameter will add the following system properties:

	-Dorg.exoplatform.container.configuration.debug

	-Dexo.product.developing=true

In JBoss

In eXo Platform JBoss, the --dev parameter is not supported. You need to
customize environment variables
to have the following variable: EXO_DEV=true.

Effects of Dev mode

Hereafter are effects of the Dev mode:

	Magic locale - A language option called magic locale - with the
code ma - is added. It is useful for debugging localization
resource. In this language, all labels are displayed as the resource
name instead of the translated values:

[image: image1]

	JavaScript and CSS debug - For optimizing performance, eXo Platform
merges, minifies and compresses all CSS/Stylesheet resources into one
at the startup. This reduces requests to the server, so performance
will be improved, but this causes developers to restart the server
for any CSS resource modification to take effect (similar to
JavaScript). So in the Dev mode, the feature (JavaScript/CSS
compressor) will be disabled for easy debugging.

	Container configuration debug - The Dev mode turns on logging
information of the configuration retrieval process. At the startup,
you will see logs as below:

INFO | Add configuration jar:file:/D/platform-4.2/lib/exo.kernel.component.common-2.4.8-GA.jar!/conf/portal/generic-configuration.xml [e.k.container.ConfigurationManagerImpl<Catalina-startStop-1>]
INFO | Add configuration jndi:/localhost/portal/WEB-INF/conf/configuration.xml [e.k.container.ConfigurationManagerImpl<Catalina-startStop-1>]
INFO | import jndi:/localhost/portal/WEB-INF/conf/common/common-configuration.xml [e.k.container.ConfigurationManagerImpl<Catalina-startStop-1>]
INFO | import jndi:/localhost/portal/WEB-INF/conf/common/resource-compressor-configuration.xml [e.k.container.ConfigurationManagerImpl<Catalina-startStop-1>]

Moreover, the Dev mode allows the hot re-loading of configuration.
You can modify container configuration without restarting the server.
The hot re-loading can be done via JMX clients, such as JConsole, as
follows:

	Connect JConsole to the eXo Platform process.

	Find an MBean with object name: exo:container=root.

	Run the reload() operation.

[image: image2]

Tip

See more details in eXo Kernel reference.

	Unpacking .war files (Tomcat) - Particularly to eXo Platform Tomcat in
the Dev mode, the startup scripts also set
EXO_TOMCAT_UNPACK_WARS=true that results in decompressing .war
archives in webapps folder.

eXo Add-ons

In this guide, the term “eXo add-on” denotes anything that enhances
the eXo extensibility - is developed and distributed by eXo or any
third-parties or any individual developers. An add-on may comprise a
set of extensions, customizations, xml configurations, applications,
templates or any new services.

In eXo Platform, you can perform various extensibilities, for example,
portal extension to extend portal, UIComponent plugin to add another
UI component (Wiki actions, Activity types), or search connector.
In-depth tutorials for those extensions come in the later chapters
and sections. This chapter only focuses on the basic techniques of
developing an add-on, including:

	Portal extension
Introduction to the portal extension mechanism and details to
create a portal extension - the most commonly used technique that
allows extending the portal container configuration.

	Packaging
How an add-on should be archived so that you can use the Add-ons
Manager to install or uninstall it.

	Deployment
Ways to deploy an add-on into the eXo Platform server and detailed
steps to perform a local deployment with the Add-ons Manager.

	Publishing
How to register an add-on in the catalog and information declared
for one catalog entry.

	JavaScript Safety
It is very important that your application’s JavaScript is safe
from other applications’ code and does not pollute global
variables.

	eXo Web Conferencing connector
a How-to develop your own Web Conferencing connector.

Portal extension

A portal extension is a webapp that basically registers service
configuration and resources to the portal container to add new
services/resources or overrides existing ones.

When you develop an add-on, you usually call services via the portal
container. Your code will not take care of the creation of service
instances because the portal container does it.

The services are configurable and plugable. The portal container allows
you to register which services loaded and which parameter values used
during a service initialization. This is done by portal extension.

Also the portal extension is used to include resources to portal. Portal
unifies the resources in a way that allows the extensions to override
built-in resources.

The portal extension will be used very often in later chapters so this
section is a reference to:

	Portal extension mechanism

	Creating a portal extension

Portal extension mechanism

Technically, the eXo Kernel provides an extensibility mechanism that
extends the portal container configurations. This extensibility
mechanism allows more services and resources to be loaded at start-up.
In other words, thanks to the extensibility mechanism, you can extend
the portal resources in an almost plug-and-play fashion - simply by
dropping in a .war archive with the resources, and configuring its
position on the portal’s classpath.

Note

	With this way, customization of the portal does not involve unpacking and repacking the original portal’s .war archives.

Instead, you can override a portal resource by including it in your extension in the same path as that of portal.war.

	In case many extensions include a same resource, they override each other too. So, take care that only the last loaded one will take effect.

See the following diagram for how the portal extensions work:

[image: image0]

Tip

	In many add-ons, the configuration file configuration.xml is packaged in a jar archive, because the jar often contains service

	classes and other resources. You can totally remove the jar file if it is supposed to contain only the configuration.xml file and

include it in the war instead to make the package simpler, as in the diagram above. See details below.

eXo Platform comes with a pre-configured PortalContainer named “portal”. The
configuration of this portal container ties the core and the extended
services stack. The default portal container is started from
portal.war and naturally maps to the /portal URL.

The webapp portal.war is the base that can be overridden by other
extensions.

The extensibility is achieved via 2 advanced features of the
PortalContainer:

	A unified ClassLoader: Any classpath resource, such as property
files, will be accessible as if it was inside portal.war.

Note

This is valid only for resources but not for Java classes.

	A unified ServletContext: Any web resources contained in your
custom-extension.war will be accessible from /portal/ uri.

When you are extending an existing portal container, the name of the
portal in the extension’s configuration should be the same as that of
the existing portal container. By using this approach, the configuration
(and many other aspects) of an existing portal container can be
customized, for example, Groovy templates of portlets, porlet skins, CSS
and Images, navigations and pages or localizations.

Servlets and Servlet Filters in a portal extension

If you ship servlets or servlet filters as part of your portal
extension, and these servlets/filters need to access specific resources
of a portal during the process of the servlets or filters request, make
sure that these servlets/filters are associated with the current portal
container.

The proper way to do that is making your servlet extend the
org.exoplatform.container.web.AbstractHttpServlet class.

This will not only properly initialize the current PortalContainer for
you, but also set the current thread’s context ClassLoader to servlets
or servlet filters which look for resources in associated web
applications in the order specified by dependencies configuration.

Similarly, make sure that your filter class extends
org.exoplatform.container.web.AbstractFilter.

Both AbstractHttpServlet and AbstractFilter have the method named
getContainer(), which returns the current PortalContainer.

New extension mechanism as of Platform 4.3

Before Platform 4.3, you have to place configuration.xml (that
declares your extension) in a jar archive, at:

	your.jar!/conf/configuration.xml

As of Platform 4.3 (eXo Kernel 2.5), you have one more option to place
that file in the .war itself, at:

	your.war!/META-INF/exo-conf/configuration.xml

The benefit is you can remove the jar if it does only one thing: to
configure the extension.

References

To deeply understand the extension mechanism, you should read the Kernel
reference about services, containers and configuration:

	Service configuration for beginners

	Configuration retrieval

	Service configuration in detail

	Container configuration

Creating a portal extension

In this tutorial, you will learn how to create a portal extension. The
project consists of a webapp (war) module. The sample code can be found
at eXo Samples repository [https://github.com/exo-samples/docs-samples/tree/master/custom-extension].

	Create a Maven project custom-extension having the structure as below:

[image: image1]

	Edit pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.exoplatform.samples</groupId>
 <artifactId>custom-extension</artifactId>
 <version>5.0.x</version>
 <packaging>war</packaging>
 <name>custom-extension-pom</name>
 <description>The sample extension</description>

 <properties>
 <project.version>5.0.x</project.version>
 <exoplatform.version>5.0.0</exoplatform.version>
 </properties>

 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.platform</groupId>
 <artifactId>platform</artifactId>
 <version>${exoplatform.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
</project>

Note that in this file you define the file name of the webapp. It
will be custom-extension.war. You can change it here but you will
have to change other configuration accordingly.

	Edit WEB-INF/web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <display-name>custom-extension</display-name>
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>
</web-app>

	Edit WEB-INF/conf/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
</configuration>

This file is supposed to be a service configuration file, but you do not
configure anything so far. In the examples
that follow and in some later tutorials of the Developer guide, you will
write more configuration when necessary.

	Edit META-INF/exo-conf/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Change PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <value-param>
 <name>apply.default</name>
 <value>true</value>
 </value-param>
 <object-param>
 <name>change</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>custom-extension</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

	priority: Should be set to a value upper than 100 to override
the extension platform-extension.war.

	dependencies: a collection of portal extensions. Here it is
only custom-extension.

	custom-extension: it is thee file name of the .war and the
display-name you configure in web.xml should match each
other.

	Build the project with mvn clean install command. You will have a
war named custom-extension.warin /target/ folder.

Deployment

To deploy this simple portal extension in case you do not use Add-ons
Manager:

For Tomcat:

	Copy custom-extension.war to the $PLATFORM_TOMCAT_HOME/webapps/
directory.

	Restart the server.

For JBoss:

	Add new WEB-INF/jboss-deployment-structure.xml file to
custom-extension.war with the following content:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <dependencies>
 <module name="deployment.platform.ear" export="true"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

	Add custom-extension.war to
$PLATFORM_JBOSS_HOME/standalone/deployments/ platform.ear
directory.

	Restart the server.

Add-ons Manager compliance

In case you want to make your portal extension a standard add-on so that
users can install it using eXo Add-ons Manager, the packaging will be
different. The section Packaging
shows you how.

The Add-ons Manager deploys the extension in the same way for Tomcat.
For JBoss, it uses another method to deploy the .war. Here are the
details:

	The file jboss-deployment-structure.xml is not required.

	The .war is deployed into
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear.

	The Add-ons Manager will edit the
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/META-INF/application.xml
to add a module as follows:

<application>
 ...
 <!-- Your custom-extension should be added before starter module. -->
 <module>
 <web>
 <web-uri>custom-extension.war</web-uri>
 <context-root>custom-extension</context-root>
 </web>
 </module>
 ...
 <module>
 <web>
 <web-uri>exo.portal.starter.war.war</web-uri>
 <context-root>starter</context-root>
 </web>
 </module>
</application>

Portal extension by examples

Registering your service to portal container

A service (also called component) can be any Java class. At minimum you
write an empty interface, and an implementation with a constructor.

public interface MyService {
 ...
}

public class MyServiceImpl implements MyService {
 ...
 public MyServiceImpl() throws Exception {
 ...
 }
}

In your custom-extension.war!/WEB-INF/conf/portal/configuration.xml:

<configuration>
 <component>
 <key>acme.com.services.MyService</key>
 <type>acme.com.services.MyServiceImpl</type>
 </component>
</configuration>

Then to access the service:

MyService service = (MyService) PortalContainer.getInstance().getComponentInstanceOfType(MyService.class)

You should learn more about service, initial parameter and plugin and
all about service configuration in Service configuration for beginners
and Service configuration in details.

Adding a supported language

The service org.exoplatform.services.resources.LocaleConfigService is
responsible for adding supported languages. The service is configured to
read a list of locales from a file:

<component>
 <key>org.exoplatform.services.resources.LocaleConfigService</key>
 <type>org.exoplatform.services.resources.impl.LocaleConfigServiceImpl</type>
 <init-params>
 <value-param>
 <name>locale.config.file</name>
 <value>war:/conf/common/locales-config.xml</value>
 </value-param>
 </init-params>
</component>

So by default it is portal.war!/conf/common/locales-config.xml.

To add a locale you want, include a modified copy of this file in your
extension: custom-extension.war!/conf/common/locales-config.xml.

Of course the language support involves translating lots of resources.
For now you just add a locale like ve (for Venda), so a user can
choose it in the list of language options, but no resource would be
found for Venda, then the default language will be used.

<locales-config>
 ...
 <locale-config>
 <locale>ve</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Venda</description>
 </locale-config>
 ...
</locales-config>

Overriding the Login page

The LoginServlet dispatches the login request to login.jsp:

getServletContext().getRequestDispatcher("/login/jsp/login.jsp").include(req, resp);

This login page is firstly defined in portal webapp but then is
overridden by platform-extension. In other words, you can find the login
page at:

	portal.war!/login/jsp/login.jsp

[image: image2]

	platform-extension.war!/login/jsp/login.jsp

[image: image3]

You can override it once again in your portal extension, for example
custom-extension.war!/login/jsp/login.jsp.

Overriding shared layout

The shared layout is applied for all pages of a portal. You can override
this resource by including it in your extension
custom-extension.war!/WEB-INF/conf/portal/portal/sharedlayout.xml.

Some of customizations you can do with shared layout:

	Remove a built-in portlet from the top navigation bar (for example,
the “Help” link).

	Adding your portlet here so that all your pages will have that
portlet.

See Customizing a shared layout
for more instructions.

Packaging

The Add-ons Manager defines a standard approach of packaging,
installing/uninstalling and updating add-ons. To comply with it, you
need to compress JARs, WARs and other files into a zip archive:

foo-addon-X.Y.Z.zip/
|__ foo-addon.jar
|__ somelib.jar
|__ foo-portlets.war
|__ foo-extension.war
|__ foo
 |__ foo.conf
|__ README

When installing an add-on, the Add-ons Manager copies files from the
add-on archive into PRODUCT, as follows:

	JARs: $PLATFORM_TOMCAT_HOME/lib/ (Tomcat), or
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/lib/
(JBoss).

	WARs: $PLATFORM_TOMCAT_HOME/webapps/ (Tomcat), or
$PLATFORM_JBOSS/HOME/standalone/deployments/platform.ear/
(JBoss).

	Other files and folders located at the root of the zip archive will
be copied to the home directory of the PRODUCT server.

	An ASCII file named README may be placed at the root of the
archive. This file is never installed. Instead, it is displayed in
the console after a successful installation.

Packaging sample

You can use Maven assembly plugin [http://maven.apache.org/plugins/maven-assembly-plugin/]
to package your add-on project.

See the sample at eXo Samples Repository [https://github.com/exo-samples/docs-samples/tree/4.3.x/addon-packaging-template].
Notice two files:

In packaging/pom.xml:

<build>
 <finalName>${project.artifactId}-${project.version}</finalName>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-assembly-plugin</artifactId>
 <executions>
 <execution>
 <id>package-extension</id>
 <phase>package</phase>
 <goals>
 <goal>single</goal>
 </goals>
 <configuration>
 <finalName>${project.artifactId}-${project.version}</finalName>
 <appendAssemblyId>false</appendAssemblyId>
 <descriptors>
 <descriptor>src/main/assemblies/packaging.xml</descriptor>
 </descriptors>
 </configuration>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

In packaging/src/main/assemblies/packaging.xml:

<assembly xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-plugin/assembly/1.1.2 http://maven.apache.org/xsd/assembly-1.1.2.xsd">
 <id>addon-packaging-template</id>
 <formats>
 <format>zip</format>
 </formats>
 <includeBaseDirectory>false</includeBaseDirectory>
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>
 <outputDirectory>/</outputDirectory>
 <outputFileNameMapping>${artifact.artifactId}${dashClassifier?}.${artifact.extension}</outputFileNameMapping>
 <includes>
 <include>org.exoplatform.samples:addon-template-webapp</include>
 <include>org.exoplatform.samples:addon-template-lib</include>
 </includes>
 </dependencySet>
 </dependencySets>
</assembly>

Deployment

There are 2 ways to deploy an add-on:

	Manually install WARs and JARs and other files into the webapps,
lib folders and the corresponding directories of eXo Platform.

	Use the Add-ons Manager - the standard way to install, uninstall, and
update add-ons in eXo Platform. In this way, you will avoid the manual
registration that might cause errors. The Add-on Manager allows you
to simplify your add-ons management in both Tomcat and JBoss EAP by
copying all JARs and WARs in one step and uninstalling them without
searching in the lib directory (more than 400 jars) and in the
webapps directory (more than 50 wars).

When using the Add-ons Manager,you can:

	Deploy an add-on from the eXo Add-ons repository, as detailed in
Administrator Guide - Installing/Uninstalling add-ons.
However, to follow in this way, the add-on should be first registered
and validated by eXo administrators.

	Deploying a local add-on, as below.

Deploying a local add-on

Let’s say you want to deploy your add-on archived as
my-addon-1.0.x-SNAPSHOT.zip, do as follows:

	Create a local catalog named local.json under $PLATFORM_HOME/addons/
with the minimal content. This local catalog will be merged with the
central one at runtime.

[
 {
 "id": "exo-my-addon",
 "version": "1.0.x-SNAPSHOT",
 "name": "My Add-on",
 "description": "Example of my add-on",
 "downloadUrl": "file://D:/java/exo-working/PLATFORM_versions/my-addon-1.0.x-SNAPSHOT.zip",
 "vendor": "eXo platform",
 "license": "LGPLv3",
 "supportedDistributions": ["community","enterprise"],
 "supportedApplicationServers": ["tomcat","jboss"]
 }
]

	Install your own add-on with the script:

addon(.bat) --install exo-my-addon:1.0.x-SNAPSHOT

[image: image4]

Now you will see your own add-on zip file in
$PLATFORM_HOME/addons/archives.

Publishing

Registering an add-on in the centralized catalog

If you wish to share your add-on publicly, simply click
here [http://community.exoplatform.com/portal/intranet/create-addon]
to tell eXo team about your add-on (you must sign in to access the
page). The team will review it and possibly add it into our eXo
centralized catalog [http://www.exoplatform.com/addons/catalog], so
that it can be accessed by any eXo instance.

[image: image5]

Using your customized catalog

The Add-ons Manager relies on catalogs containing metadata of the
add-ons. By default, a remote catalog is downloaded from
http://www.exoplatform.com/addons/catalog. You can use your own catalog
by adding the --catalog=$URL option (where $URL is the alternative
location for the catalog) to the addon commands.

The remote catalog is cached locally and each catalog URL has a separate
cache. When you create a local catalog
($PLATFORM_HOME/addons/local.json) that defines the catalog entries
for your own add-ons, it will be merged with the remote catalog at
runtime. If you add the --offline option when installing the add-on,
only the local and cached remote catalogs (if any) are used.

Note

	If a version of an add-on is duplicated between the remote and local catalogs, the remote one is used.

	If there are some duplicated versions in the same catalog, the first one is used.

To write your own (local or remote) catalog, you can learn the default
catalog (linked above) that is a
JSON [http://www.w3schools.com/json/json_syntax.asp] file.

Each catalog entry is a version of an add-on. Here is an entry sample:

{
 "id": "exo-video-calls",
 "version": "1.1.0",
 "unstable": false,
 "name": "eXo Video Calls",
 "description": "Add video call capabilities to your eXo Platform intranet",
 "releaseDate": "2015-05-13T22:00:00.000Z",
 "sourceUrl": "https://github.com/exo-addons/weemo-extension",
 "downloadUrl": "http://storage.exoplatform.org/public/Addons/exo-video-calls/weemo-extension-pkg-1.1.0.zip",
 "vendor": "eXo",
 "license": "LGPLv3",
 "licenseUrl": "https://www.gnu.org/licenses/lgpl-3.0.txt",
 "mustAcceptLicense": false,
 "supportedDistributions": "community,enterprise",
 "supportedApplicationServers": "tomcat,jboss",
 "compatibility": "[4.2.0,)"
},

The following table explains the json keys (* means mandatory):

	id (*)

	Id and version is used to identify an add-on
(use id:version pattern in commands).
Duplicated entries are treated as said above.

	version (*)

	Version string of the add-on.

	unstable

	This is “false” by default. Set it to “true”
to warn of an unstable version (unstable
versions are not listed unless --unstable
is used).

	name (*)

	The display name of the add-on.

	description

	The brief description of the add-on.

	releaseDate

	The release date of the add-on (Date format:
YYYY-MM-DD).

	sourceUrl

	The URL where to find the source of the
add-on.

	downloadUrl (*)

	Where to download the package. Use http://
for a remote add-on or file:// for a local
add-on.

	vendor (*)

	The vendor name of the add-on (for example,
PRODUCT).

	license (*)

	The license of the add-on (for example,
LGPLv3).

	licenseUrl

	The URL containing an ASCII version of the
license to be displayed by the CLI.

	mustAcceptLicense

	“True” means it requires the user to
explicitly accept the license terms before
installation. This is set to “false” by
default.

	``supportedDistributions`
`
(*)

	The eXo Platform distributions that support
the add-on (for example, Community, Enterprise
- should be lowercase, comma-separated).

	supportedApplicationSer
vers
(*)

	The application servers that support the
add-on (for example, Tomcat, JBoss - should be
lowercase, comma-separated).

	compatibility

	The version range (in Maven version range
format) that the add-on is compatible. No
compatibility check is performed if this is
absent.

	screenshotUrl

	The HTTP URL pointing to a screenshot of the
add-on.

	thumbnailUrl

	The HTTP URL pointing to a thumbnail of the
add-on.

	documentationUrl

	The HTTP URL pointing to a documentation of
the add-on.

	author

	The author of the add-on.

	authorEmail

	The email address of the author.

JavaScript Safety

As your application - typically a portlet - is deployed in pages that
contain other applications, it is very important that your JavaScript
code is safe from other code, and vice versa, does not harm global
variables.

Here are some tips to write your JavaScript code safely:

	Follow GMD module patterns as much as possible.

	Avoid to write inline scripts if possible. Avoid to include libraries
externally (in script tag) if possible.

	When using JQuery, use the built-in shared module “jquery” if
possible. Use GMD adapter configuration if you need other JQuery
versions and extensions.

It is strongly recommended you follow these tutorials:

	Adding JavaScript to a portlet
- a quick tutorial with code sample.

	Developing JavaScript - the complete
guideline to module pattern and GMD.

eXo Web Conferencing connector

eXo Web Conferencing add-on enables you to plug-in and manage any Web
Conferencing solution in eXo Platform. You can use eXo Web Conferencing core
to develop your own connector which will implement the call provider you
need to embed in eXo Platform.

In this section, we will introduce the architecture of eXo Web
Conferencing add-on and how to develop a custom connector allowing you
to embed a call provider in eXo Platform.

Architecture

The following diagram shows the different parts involved to perform a
Web Conferencing call.

[image: image6]

eXo Web Conferencing core

The eXo Web Conferencing core component is responsible for:

	Declaring the provider connector.

	Adding call buttons in eXo Platform different pages.

	Exchanging call data and notifying call parties about the status.

	Saving the call state and linking between group calls.

	Administrating eXo Web Conferencing: enable/disable a provider,
managing the settings via the UI.

The provider connector component is responsible for:

	Building a call button UI.

	Running a call from the UI interface.

	Establishing the connection flow in a call and updating the call
state.

	Handling incoming calls.

	Administrating settings via UI.

Develop your own call connector

eXo Web Conferencing add-on is a portal extension installed by default
in eXo Platform. A call connector is also a portal extension which uses
the eXo Web Conferencing core.

The connector should provide an implementation of its call button which
is added by the Web Conferencing core in users profiles, spaces and chat
rooms.

The connector implementation consists of a server code and a client
application with user interface to run calls.

To implement your own connector follow this procedure:

	Create the connector project respecting the developement
environment described here.

We recommend you to clone our template project [https://github.com/exo-addons/web-conferencing/tree/develop/template]
as it contains maven modules with eXo Web Conferencing dependencies
and packaging. You should make your customizations on it: rename
package, classes and variables and if needed include third-party
libraries that your connector may use.

	Implement Java Service Provider Interface (SPI): It is the java
class of your call provider which should extend the CallProvider
class.

Here is a java code snippet which represents the skeleton of the Java
SPI class:

 package org.exoplatform.webconferencing.myconnector;

/**
 * My Connector provider implementation.
 */
public class MyConnectorProvider extends CallProvider {

 /**
 * Instantiates a new My Call provider.
 *
 * @param params the params (from configuration.xml)
 * @throws ConfigurationException the configuration exception
 */
 public MyConnectorProvider(InitParams params) throws ConfigurationException {
 super(params);
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public String getType() {
 return TYPE;
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public String[] getSupportedTypes() {
 return new String[] { getType() };
 }

 /**
 * {@inheritDoc}
 */
 @Override
 public String getTitle() {
 return TITLE;
 }
}

	Create a portlet
which will be responsible of loading and intializing your call
provider in the eXo Platform UI.

public class MyConnectorPortlet extends GenericPortlet {
 /**
 * {@inheritDoc}
 */
 @Override
 public void init() throws PortletException {
 // Get eXo container and Web Conferencing service once per portlet initialization
 ExoContainer container = ExoContainerContext.getCurrentContainer();
 this.webConferencing = container.getComponentInstanceOfType(WebConferencingService.class);
 try {
 this.provider = (MyConnectorProvider) webConferencing.getProvider(MyConnectorProvider.TYPE);
 } catch (ClassCastException e) {
 LOG.error("Provider " + MyConnectorProvider.TYPE + " isn't an instance of " + MyConnectorProvider.class.getName(), e);
 }
 }

 /**
 * {@inheritDoc}
 */
 @Override
 protected void doView(final RenderRequest request, final RenderResponse response) throws PortletException, IOException {
 if (this.provider != null) {
 try {
 JavascriptManager js = ((WebuiRequestContext) WebuiRequestContext.getCurrentInstance()).getJavascriptManager();
 // first load Web Conferencing itself,
 js.require("SHARED/webConferencing", "webConferencing")
 // load our connector module to myProvider variable
 .require("SHARED/webConferencing_myconnector", "myProvider")
 // check if the variable contains an object to ensure the provider was loaded successfully
 .addScripts("if (myProvider) { "
 // then add an instance of the provider to the Web Conferencing client
 + "webConferencing.addProvider(myProvider); "
 // and force Web Conferencing client update (to update call buttons and related stuff)
 + "webConferencing.update(); " + "}");
 } catch (Exception e) {
 LOG.error("Error processing My Connector calls portlet for user " + request.getRemoteUser(), e);
 }
 }
 }
}

	Configure your connector extension, your provider plugin and your
portlet in META-INF/exo-conf/configuration.xml file.

Extension connector configuration:

<external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Change PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <init-params>
 <value-param>
 <name>apply.default</name>
 <value>true</value>
 </value-param>
 <object-param>
 <name>change</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependenciesAfter">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>myconnector</string>
 </value>
 </collection>
 </field>
 <field name="target">
 <string>webconferencing</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

Provider configuration:

<!-- Portal extension configuration for YOUR PROVIDER NAME -->
 <external-component-plugins>
 <target-component>org.exoplatform.webconferencing.WebConferencingService</target-component>
 <component-plugin>
 <name>add.callprovider</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.webconferencing.myconnector.MyConnectorProvider</type>
 <description>Call provider description here.</description>
 <init-params>
 <properties-param>
 <name>provider-configuration</name>
 <property name="my-apiKey" value="${webconferencing.myconnector.apiKey:myApiKey}" />
 <property name="my-clientId" value="${webconferencing.myconnector.clientId:myClientId}" />
 <property name="active" value="${webconferencing.myconnector.active:true}" />
 </properties-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

The above configuration is also configurable through
exo.properties file as the
following:

 ######### My Connector ###########
webconferencing.myconnector.apiKey=myApiKey
webconferencing.myconnector.clientId=myClientId
webconferencing.myconnector.serviceUrl=https://mycall.acme.com/myconnector

Provider portlet configuration:

<!-- Add My Connector portlet to portal pages with a toolbar -->
 <external-component-plugins>
 <target-component>org.exoplatform.commons.addons.AddOnService</target-component>
 <component-plugin>
 <name>addPlugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.commons.addons.AddOnPluginImpl</type>
 <description>add application Config</description>
 <init-params>
 <value-param>
 <name>priority</name>
 <value>10</value>
 </value-param>
 <value-param>
 <name>containerName</name>
 <value>middle-topNavigation-container</value>
 </value-param>
 <object-param>
 <name>MyConnectorPortlet</name>
 <description>My Connector portlet</description>
 <object type="org.exoplatform.portal.config.serialize.PortletApplication">
 <field name="state">
 <object type="org.exoplatform.portal.config.model.TransientApplicationState">
 <field name="contentId">
 <string>myconnector/MyConnectorPortlet</string>
 </field>
 </object>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

Customizing Your Site

When working with eXo Platform, it is important not to modify the source
code. This will ensure compatibility with future upgrades, and
support will be simplified. To customize your site, you need to
create an extension project by providing your own artifacts as a set
of wars/jars/ears.

This chapter will show you how to customize your site using the
extension mechanism
provided by eXo Platform.

	Defining structure of a site
Required knowledge of a site’s structure, including
portal.xml, pages.xml and navigation.xml.

	Creating a new site
Steps to create a new site, how to define a site as default and
to create custom templates for it.

	Managing features of a new site
How to manage various features of a new site, including
enabling/disabling the drive creation, adding JavaScript,
localizing with resources, adding/removing a language, declaring
a servlet/filter, and creating a custom look and feel. All these
features are managed through your extension project.

	Managing eXo Platform look and feel
All aspects and detailed steps to create a custom look and feel
for a site.

	Upload Component
How to confugure the upload service.

Defining structure of a site

The structure of a site is mainly defined into 3 files: portal.xml,
pages.xml and navigation.xml. You can create multiple pages
within a single site.

Understanding the “Intranet” site of eXo Platform is a good approach to the
site structure. The configuration of the “Intranet” site can be found in
the $PLATFORM_TOMCAT_HOME/webapps/acme-intranet.war directory.

portal.xml

The portal.xml file describes the layout and portlets that will be
shown on all pages:

	Properties which define site name, default locale, access and edit
permissions, and some basic configurations (session alive, show
portlet information) of the “Intranet” site.

<portal-name>intranet</portal-name>
<locale>en</locale>
<access-permissions>*:/platform/users</access-permissions>
<edit-permission>*:/platform/administrators</edit-permission>
<properties>
<entry key="sessionAlive">onDemand</entry>
<entry key="showPortletInfo">0</entry>
</properties>

	Layout which defines layout container, banner, footer, menu and
breadcrumbs portlets displayed in all pages. Also, <page-body> is
a flag which specifies the position of pages’ portlets.

<portal-layout>
 <move-apps-permissions>*:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>*:/platform/administrators</move-containers-permissions>
 <container id="NavigationBody" template="system:/groovy/portal/webui/container/UITableColumnContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <container id="LeftNavigation" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <container id="LeftBreadCrumbNavigationPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UIBreadCrumbsNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 <container id="LeftNavigationPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UICompanyNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 <container id="GroupsNavigationPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UIGroupsNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 <container id="SpaceNavigationPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UISpaceNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 </container>
 <container id="RightBody" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <page-body> </page-body>
 </container>
 </container>
</portal-layout>

Note

The move-apps-permissions and move-containers-permissions
tags define which users have permissions to move applications and
containers on this layout. If these permissions are not set
explicitly, they would default to Everyone.

navigation.xml

The navigation.xml file defines all navigation nodes of a site. The
syntax is simply using the nested node tags. Each node refers to a page
defined in the pages.xml file that will be explained later.

	Node that defines URI, name, label and page reference of the
“Intranet” homepage.

<node>
 <uri>home</uri>
 <name>home</name>
 <label>#{portal.intranet.home}</label>
 <page-reference>portal::intranet::homepage</page-reference>
</node>

	A node navigation might contain sub-nodes.

<node>
 <uri>connections</uri>
 <name>connections</name>
 <label>#{portal.intranet.connections}</label>
 <visibility>SYSTEM</visibility>
 <node>
 <uri>connections/all-people</uri>
 <name>all-people</name>
 <label>#{portal.intranet.yours}</label>
 <page-reference>portal::intranet::all-people</page-reference>
 </node>
 <node>
 <uri>connections/network</uri>
 <name>network</name>
 <label>#{portal.intranet.yours}</label>
 <page-reference>portal::intranet::network</page-reference>
 </node>
 ...
</node>

Note

	For the top nodes, the URI and the navigation node name must have the same value.

	For sub-nodes, the URI is composed like <uri>connexions/all-people</uri> where ‘connections’ is the name of the parent node, and ‘all-people’ is the name of node (<name>all-people</name>).

	When you configure the navigation.xml file, sometimes you need to
set the node visibility. To configure the node visibility, simply put
<visibility>type_of_visibility</visibility> as a child of the
<node> tag.

eXo Platform supports 4 types of node visibility, including:

	DISPLAYED: The node will be displayed.

	HIDDEN: The node is not visible in the navigation but can be
accessed directly with its URL.

	SYSTEM: It is a system node which is visible to superusers. In
particular, only superusers can change or delete this system node.

	TEMPORAL: The node is displayed in related time range. When
the visibility of TEMPORAL node is configured, the start and end
dates can be specified by using <startpublicationdate> and
<endpublicationdate>.

pages.xml

The pages.xml defines the layout and portlets of specific pages. A
page defined in pages.xml will declare name, title, access and edit
permissions, move applications and containers (optional). Also, the
<portlet-application> is used to declare portlets in a page.

<page>
 <name>activities</name>
 <title>Activities</title>
 <access-permissions>*:/platform/users</access-permissions>
 <edit-permission>manager:/platform/administrators</edit-permission>
 <move-apps-permissions>manager:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>manager:/platform/administrators</move-containers-permissions>
 <container id="UIUserNavigationPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <move-apps-permissions>manager:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>manager:/platform/administrators</move-containers-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UIUserNavigationPortlet</portlet-ref>
 </portlet>
 <title>User Navigation Portlet</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>true</show-application-state>
 </portlet-application>
 </container>
 <container id="ProfileActivity" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>*:/platform/users</access-permissions>
 <move-apps-permissions>manager:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>manager:/platform/administrators</move-containers-permissions>
 <portlet-application>
 <portlet>
 <application-ref>social-portlet</application-ref>
 <portlet-ref>UserActivityStreamPortlet</portlet-ref>
 </portlet>
 <title>User Activity Stream</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>true</show-application-state>
 </portlet-application>
 </container>
</page>

Creating a new site

In this tutorial you create your own site using a
custom-extension.

The custom extension requires a jar and a war, so make sure you
follow the link above to create and deploy the jar. Below are steps to
create the war. Notice the webapp name is site-extension to
configure it properly in the jar.

	Create the webapp site-extension.war:

[image: image0]

	The portal folder name indicates that the site is of portal
type.

	The site1 folder name will attend in the URL of the created
site. If you change it here, you need to change it everywhere in
the later configuration.

	Edit web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" metadata-complete="true"
 xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <display-name>site-extension</display-name>
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>
</web-app>

	Edit configuration.xml to import site definition configuration:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <import>war:/conf/sites-definition.xml</import>
</configuration>

	Edit sites-definition.xml to declare your site(s) to the portal:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.portal.config.UserPortalConfigService</target-component>
 <component-plugin>
 <name>new.portal.config.user.listener</name>
 <set-method>initListener</set-method>
 <type>org.exoplatform.portal.config.NewPortalConfigListener</type>
 <description></description>
 <init-params>
 <value-param>
 <name>override</name>
 <description></description>
 <value>true</value>
 </value-param>
 <object-param>
 <name>portal.configuration</name>
 <description></description>
 <object type="org.exoplatform.portal.config.NewPortalConfig">
 <field name="predefinedOwner">
 <collection type="java.util.HashSet">
 <!-- You can declare many sites here -->
 <value><string>site1</string></value>
 <!--<value><string>site2</string></value>-->
 </collection>
 </field>
 <field name="ownerType">
 <string>portal</string>
 </field>
 <field name="templateLocation">
 <string>war:/conf/sites</string>
 </field>
 <field name="importMode">
 <string>merge</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Edit site1/portal.xml:

 <portal-config>
 <portal-name>site1</portal-name>
 <locale>en</locale>
 <access-permissions>*:/platform/users</access-permissions>
 <edit-permission>*:/platform/administrators</edit-permission>
 <properties>
 <entry key="sessionAlive">never</entry>
 <entry key="showPortletInfo">1</entry>
 </properties>
 <portal-layout>
 <move-apps-permissions>manager:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>manager:/platform/administrators</move-containers-permissions>
 <page-body> </page-body>
 </portal-layout>
 </portal-config>

- ``<locale>``: Defines the default language of your site.

- ``<access-permissions>``: Specifies which membership(s) can access
 your site. Use comma to separate values.

- ``<edit-permission>``: Specifies which membership can edit your site.
 Single value only.

- ``<move-apps-permissions>``: Specifies which membership(s) can move
 applications on your site. Use comma to separate values.

- ``<move-containers-permissions>``: Specifies which membership(s) can
 move containers on your site. Use comma to separate values.

- ``<properties>``: See `Keep session alive <#KeepSessionAlive>`__ and
 `Show info bar by default <#ShowInfoBarByDefault>`__ for details.

- ``<portal-layout>``: This is the simplest layout that contains only
 the <page-body>. You will write more complete layout later.

	Edit site1/navigation.xml. In this example, only the homepage is
defined:

 <node-navigation xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://www.gatein.org/xml/ns/gatein_objects_1_2"
 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">
 <priority>1</priority>
 <page-nodes>
 <node>
 <uri>home</uri>
 <name>home</name>
 <label>Home Page</label>
 <page-reference>portal::site1::homepage</page-reference>
 </node>
 </page-nodes>
 </node-navigation>

- ``<page-reference>``: Assigns the node to a page. The format is
 {site-type}::{site-name}::{page-name}.

	Edit site1/pages.xml. In this example, only one page (homepage)
is created. The page contains GettingStartedPortlet that is a
built-in portlet.

<page-set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://www.gatein.org/xml/ns/gatein_objects_1_2"
 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">
 <page>
 <name>homepage</name>
 <title>Home Page</title>
 <access-permissions>*:/platform/users</access-permissions>
 <edit-permission>*:/platform/administrators</edit-permission>
 <move-apps-permissions>manager:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>manager:/platform/administrators</move-containers-permissions>
 <portlet-application>
 <portlet>
 <application-ref>homepage-portlets</application-ref>
 <portlet-ref>GettingStartedPortlet</portlet-ref>
 </portlet>
 <title>Getting Started</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>
 </page>
</page-set>

	Deploy your extension, then test your site at http://mycompany.com:8080/portal/site1/ [http://mycompany.com:8080/portal/mysite/].

Note

Note that the override value-param should be set to true. This
will be explained in the next section.

Redeploying your site extension

The sites are created during portal initialization, that is, when the
server starts for the first time. So if you deploy your extension after
that, your extension should trigger a re-initialization process, by
setting the override value-param to true as said before:

<value-param>
 <name>override</name>
 <description></description>
 <value>true</value>
</value-param>

If this parameter is omitted, it is defaulted to false.

After your site is created, its preferences persists in database. When
you modify your extension and redeploy it, you need to set
importMode to either merge or overwrite to make your extension
update/override the persistent data; otherwise, the modification will
not take effect.

The valid
options [https://github.com/exoplatform/gatein-portal/blob/stable/5.0.x/component/portal/src/main/java/org/exoplatform/portal/mop/importer/ImportMode.java]
of importMode:

	importMode

	Description

	conserve

	Imports data when it does not exist, otherwise do
nothing.

	insert

	Imports data when it does not exist, otherwise
performs a strategy that adds new data only.

	merge

	Imports data when it does not exist, and updates data
when it exists.

	overwrite

	Overwrites whatever data.

Setting your site as default site

When entering this URL in your browser:
http://mycompany.com:8080/portal, you will be directed to a default
site.

To configure your site as default, add the following content to
sites-definition.xml, inside <init-params>:

<value-param>
 <name>default.portal</name>
 <description></description>
 <value>mysite</value>
</value-param>

Note

Note that the <value-param> tags should be added right after the <init-params> opening tag.

Enabling/Disabling a drive creation

During the site creation, a drive with the same name as the site is also
automatically created. However, you can decide if such a drive is
automatically created or not by using two parameters named
autoCreatedDrive, and targetDrives in the external component
plugin named CreateLivePortalEventListener.

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>org.exoplatform.portal.config.DataStorage.portalConfigCreated</name>
 <set-method>addListener</set-method>
 <type>org.exoplatform.services.wcm.portal.listener.CreateLivePortalEventListener</type>
 <description>this listener creates a new live portal content storage.</description>
 <init-params>
 <value-param>
 <name>autoCreatedDrive</name>
 <description>A drive will be automatically created during the portal creation.</description>
 <value>false</value>
 </value-param>
 <values-param>
 <name>targetDrives</name>
 <description>The list of drives which are automatically created during the portal creation with
 "autoCreatedDrive=false".
 </description>
 <value>acme</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

	If autoCreatedDrive=true, a drive will be automatically created
during the portal creation regardless of targetDrives. In case
autoCreatedDrive is not specified, then its default value is
true.

	If autoCreatedDrive=false, only drives listed in targetDrives
are created. In case targetDrives is not specified, no drives are
created.

Creating page container template

Page container templates are Groovy ones that are used for (but not
limited to) page decoration. You can re-use the built-in templates or
write your own templates and package them in the site-extension.

By declaring a template in pages.xml, you decorate the individual
pages. By declaring a template in portal.xml, you make the site layout
that impacts all the pages of the site.

You can learn some templates in
portal.war!/groovy/portal/webui/container/. In this tutorial the
templates are not much more than this code:

<%uicomponent.renderChildren();%>

	Add the templates to your site extension so that it contains:

[image: image1]

	Edit portal.xml to make the site layout:

<portal-layout>
 <container id="MySiteLayoutContainer" template="war:/groovy/container/MySiteLayoutContainer.gtmpl">
 <page-body> </page-body>
 </container>
</portal-layout>

	Edit pages.xml to place the Getting Started portlet into a
container:

<page>
 ...
 <container id="MyPageContainer" template="war:/groovy/container/MyPageContainer.gtmpl">
 <move-apps-permissions>*:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>*:/platform/administrators</move-containers-permissions>
 <portlet-application>
 <portlet>
 <application-ref>homepage-portlets</application-ref>
 <portlet-ref>GettingStartedPortlet</portlet-ref>
 </portlet>
 <title>Getting Started</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>
 </container>
 ...
</page>

	Edit MySiteLayoutContainer.gtmpl:

<div style="background-color: navy; font-size: 18px; padding: 15px; color: white">
 ACME Intranet
</div>
<div>
 <%uicomponent.renderChildren();%>
</div>
<div style="text-align: center; background-color: wheat; border-bottom-left-radius: 7px; border-bottom-right-radius: 7px">
 Powered by eXo Platform
</div>

	Edit MyPageContainer.gtmpl:

<div style="border: 3px solid deepskyblue">
 <%uicomponent.renderChildren();%>
</div>

After redeploying the site extension, test the decoration of the page
(navy and wheat blocks for site layout, and the blue border for the page
container):

[image: image2]

Managing features of a new site

After creating a new site, you need to manage some common features,
including:

	Adding JavaScript to your site
How to add JavaScript to your site, details about JavaScript modules
and specific usecases.

	Localizing with resources
How to localize with resources in your custom extension.

	Adding/Removing a language
How to add or remove a language through the locale configuration
file.

	Declaring servlet/filter
How to declare the servlet/filter extension to get the current
portal.

	Creating a custom search connector
How to create a custom search connector to get data from an external
resource, for example Wikipedia.

	Creating a page layout template
How to create a page layout template that is used in Page Creation
Wizard.

Adding JavaScript to your site

eXo Platform comes with some very powerful JavaScript management
capabilities. You can easily control how your own JavaScript files are
included in your site’s pages and manage their dependencies.

Most of these capabilities can be done with some declarations in the
gatein-resources.xml file of your extension.

Adding JavaScript to all pages of a site

This usecase is used when you want to add JavaScript to all pages of a
site named “my-site”:

<portal>
 <name>my-site</name>
 <module>
 <script>
 <path>/bar.js</path>
 </script>
 </module>
</portal>

Adding JavaScript to a page when its portlet is displayed

This usecase is used when you want to add JavaScript to a portlet named
“my-portlet”.

<portlet>
 <name>my-portlet</name>
 <module>
 <script>
 <path>/bar.js</path>
 </script>
 </module>
</portlet>

JavaScript modules

The eXo Platform JavaScript improvements are built on top of the notion of
JavaScript module. JavaScript does not provide a natural way for
namespacing and the notion of module was designed to solve this problem.
Namespacing can be perceived as a natural lack, however this lack should
be seen as an advantage as modules provide more and more namespacing.
Indeed, the module pattern allows creating and resolving dependencies
between modules at runtime on demand and loading JavaScript resources in
parallel.

The notion of module can be viewed as:

	An identifier or name.

	A list of dependencies on the modules required to work properly.

	The code packaged is usually expressed as a self-executing function.
The product, which is an object produced by the module, is usually
consumed by other modules.

At runtime, the dependency system defines a graph of function to execute
that makes the product of each module be injected in the other modules.
It can be seen as a simple dependency injection system which can load
modules in an asynchronous and parallel fashion providing parallel
loading, namespacing and dependency management.

Note

See JavaScript Development for further information about JavaScript.

When adding JavaScript to your site, you need to consider the following
specific usecases:

	Declaring an eXo Platform module

	Declaring an AMD module

	Using eXo Platform jQuery module

	Using a custom jQuery version

	Configuring jQuery plugins

	Exposing version of jQuery globally

	Implementing a global jQuery plugin

	Using CommonJS modules

	Using Mustache.js module

	Using Text.js module

	Overriding the dependency of a native AMD module

	Accessing a module from a script

	Disabling minification

Declaring an eXo Platform module

This part takes the
Highlight.js [http://softwaremaniacs.org/soft/highlight/en/] library
as an example to show you how to declare an eXo Platform module. This library
is actually a jQuery plugin which follows the self-invoking pattern
that consumes the jquery dependency as $. Here is an overview of the
Highlight.js source:

(function($) {
 ...
}(jQuery)

Assume that you have added it to the javascript folder in your
extension, and now declare this module using the XML declaration in
/WEB-INF/gatein-resources.xml as follows:

<module>
 <name>highlight</name>
 <script>
 <path>/javascript/highlight/highlight.js</path>
 </script>
 <depends>
 <module>jquery</module>
 <as>jQuery</as>
 </depends>
</module>

The module is named highlight and uses the
/javascript/highlight/highlight.js source code bundled in the
war file.

The depends tag creates a dependency on the jquery module. The
dependency is aliased as jQuery using the as tag to match the $
argument of the Highlight.js self-executing function. Refer
here
to check which jQuery versions are provided in eXo Platform.

Declaring an AMD module

eXo Platform is capable of integrating native AMD (Asynchronous Module
Definition) modules, and eXo Platform modules are currently translated into
AMD modules. To further understand the AMD declaration, see the
RequireJS [http://requirejs.org/docs/api.html#define] documentation.

AMD modules follow the pattern as below:

define("module", ["dependency1",...,"dependencyN"],
 function(dep1,...,depN) {
});

eXo Platform can use such a module out of the box, however some parts will be
overridden by the declaration in gatein-resources.xml:

	The “module” name will be ignored and replaced with the
declared module name.

The module dependencies from “dependency1” to
“dependencyN” have to be declared with the same name in
gatein-resources.xml.

	Assuming that the dependencies from dependency1 to
dependencyN have been declared in XML, such module definition can
be declared with the following XML:

<module>
 <name>MyModule</name>
 ...
 <depends>
 <module>dependency1</module>
 </depends>
 ...
 <depends>
 <module>dependencyN</module>
 </depends>
</module>

Using eXo Platform jQuery module

eXo Platform provides the jQuery library 3.2.1 as a jquery module, the
configuration of this module can be found in the eXoResources.war
file. To reuse this jQuery version, just declare a dependency over it:

<portlet>
 <name>RequireJSPortlet</name>
 <module>
 <depends>
 <module>jquery</module>
 </depends>
</portlet>

The default jquery module alias is $, so if you are using it, it
should be named $ in the self-executing function:

If your library uses a different name, such as jQuery, the XML as
tag should be used:

<portlet>
 <name>RequireJSPortlet</name>
 <module>
 <depends>
 <module>jquery</module>
 <as>jQuery</as>
 </depends>
</portlet>

With the following self-executing function:

(function($) {
 ...
}(jQuery)

Using a custom jQuery version

If you are not satisfied with the jQuery version provided by eXo Platform,
you can integrate your desired version. It is common that products built
over eXo Platform depend on the third party JavaScript frameworks depending
on other versions of jQuery libraries, so deploying other jQuery
libraries is unavoidable at some points. Multiple jQuery instances
within a web page conflict with global variables, however the module
system allows you to use such a library with no hassles.

The following example is about a jQueryPortlet using jQuery version
1.6.4, which is configured properly:

<module>
 <name>jquery-1.6.4</name>
 <script>
 <adapter>
(function() {
 <include>/javascript/jquery-1.6.4.js</include>
 return jQuery.noConflict(true);
})();
 </adapter>
 </script>
</module>
<portlet>
 <name>jQueryPortlet</name>
 <module>
 <script>
 <path>/javascript/MyJSFile.js</path>
 ...
 </script>
 <depends>
 <module>jquery-1.6.4</module>
 <as>$</as>
 </depends>
 </module>
</portlet>

Note

Return to the beginning part of the Adding JavaScript to your site section to learn about use of JavaScript in eXo Platform.

Configuring jQuery plugins

This section shows you how to configure a jQuery plugin and how to use
it in the jQueryPluginPortlet portlet.

	Use the jQuery plugin as a minimal one:

(function($) {
 $.fn.doesPluginWork = function() {
 alert('YES, it works!');
 };
})(jQuery);

	Declare it as a module:

<module>
 <name>jquery-plugin</name>
 <as>jqPlugin</as>
 <script>
 <path>/jqueryPlugin/jquery-plugin.js</path>
 </script>
 <depends>
 <module>jquery</module>
 <as>jQuery</as>
 </depends>
</module>

	Use this plugin in your portlet:

<portlet>
 <name>jQueryPluginPortlet</name>
 <module>
 <script>
 <path>/jqueryPlugin/jqueryPluginPortlet.js</path>
 </script>
 <depends>
 <module>jquery</module>
 <as>$</as>
 </depends>
 <depends>
 <module>jquery-plugin</module>
 </depends>
 </module>
</portlet>

Note

Your portlet module should depend on the jquery and you need to declare:

	The dependency on jquery that allows using the jQuery object.

	The dependency on jquery-plugin that ensures the plugin to be loaded in the jquery dependency before it is injected in the portlet module.

Exposing version of jQuery globally

The built-in jQuery is currently declared as an AMD module. By default,
jQuery will not be available in the window object of the browser. This
section shows how to make jQuery available so you can write a code like
in a plain script.

The following script will make jQuery available by mounting the jQuery
object in the window object:

require(["SHARED/jquery"], function($) {
 // the '$' in window.$ is alias, you can make the other for yourself.
 window.$ = $;
});

This script must be integrated as a shared script:

<scripts>
 <name>imediatejs</name>
 <script>
 <path>/myfolder/imediateJScript.js</path>
 </script>
</scripts>

A portlet can then provide its own script on which it depends:

<portlet>
 <name>foo</name>
 <script>
 <name>portletjs</name>
 <path>/myfolder/portlet.js</path>
 </script>
 <depends>
 <scripts>imediatejs</scripts>
 </depends>
</scripts>

With the following JavaScript:

$("#foo").html("<h1>hello global jQuery</h1>");

Implementing a global jQuery plugin

There are a few ways to implement the usage of a global jQuery plugin.
However, make sure that the global jQuery is available before the global
jQuery plugin is loaded.

As you have seen before how you can scope a module to a portlet, the
module will be loaded when the portlet is on a page using the
PORTLET scope. Accordingly, use the PORTAL scrope instead of
PORTLET. The main difference is that the loading of your plugin will
be triggered on a specific site instead of a specific portlet.

	Create the jQuery plugin as a script named myPlugin.js and
integrate it to your plugin:

require(["SHARED/jquery"], function($) {
 $.fn.myPluginFunction = function() {
 // Your work here;
 };
});

	Bind the script in the site and reuse the immediatejs script seen
before:

<portal>
 <name>classic</name>
 <scripts>
 <script>
 <name>myPlugin</name>
 <path>/myfolder/myPlugin.js</path>
 </script>
 <script>
 <name>imediatejs</name>
 <path>/myfolder/imediateJScript.js</path>
 </script>
 </scripts>
</portal>

Now, your plugin is globally available and you can use it:

<script type="text/javascript">
$('#foo').myPluginFunction();
</script>

Using CommonJS modules

CommonJS defines its own module
format [http://wiki.commonjs.org/wiki/Modules/1.1], although it is
not supported by eXo Platform. The adapter format can be used to adapt
CommonJS modules to work well in eXo Platform.

Here are two simple CommonJS modules:

	math.js

exports.add = function() {
 var sum = 0, i = 0, args = arguments, l = args.length;
 while (i < l) {
 sum += args[i++];
 }
 return sum;
};

	increment.js

var add = require('math').add;
exports.inc = function(val) {
 return add(val, 1);
};

CommonJS modules use their required function which conflicts with the
RequireJS same function. So, to make it work in the AMD enabled
environment, these modules need to be wrapped and injected predefined
modules: require, exports and module provided by Requirejs
(See the details here [http://requirejs.org/docs/commonjs.html]).
eXo Platform will wrap the code basing on the configuration using the adapter
format:

<module>
 <name>math</name>
 <script>
 <adapter>
 define(["require", "exports"], function(require, exports) {
 <include>/commonjs/math.js</include>
 });
 </adapter>
 </script>
 <depends>
 <module>require</module>
 </depends>
 <depends>
 <module>exports</module>
 </depends>
</module>
<module>
 <name>increment</name>
 <script>
 <adapter>
 define(["require", "exports", "math"], function(require, exports) {
 <include>/commonjs/increment.js</include>
 });
 </adapter>
 </script>
 <depends>
 <module>require</module>
 </depends>
 <depends>
 <module>exports</module>
 </depends>
 <depends>
 <module>math</module>
 </depends>
</module>

Using Mustache.js module

Mustache.js [https://github.com/janl/mustache.js] is a popular
JavaScript template engine. Mustache is written to be executed in
several kinds of environment as a global object, a CommonJS module, or
as a native AMD module. If the “module”, “exports”
dependencies are available, Mustache will register it as a CommonJS
module. It can be adapted to eXo Platform thanks to the adapter format:

<module>
 <name>mustache</name>
 <script>
 <adapter>
define(["require", "exports", "module"], function(require, exports, module) {
 <include>/requirejs/js/plugins/mustache.js</include>
});
 </adapter>
 </script>
 <depends>
 <module>require</module>
 </depends>
 <depends>
 <module>exports</module>
 </depends>
 <depends>
 <module>module</module>
 </depends>
</module>

Use the adapter tag here and declare the require, exports
and module dependencies of the CommonJS module. Now any module
can have Mustache instance injected just by declaring it in its
dependencies list:

<module>
 <name>foo</name>
 ...
 <depends>
 <module>mustache</module>
 </depends>
</module>

(function(mustache){
//code that use Mustache
mustache.render(template);
})(mustache);

Using Text.js module

RequireJS supports the loader plugin which enables a module to be a
plugin and uses the AMD system to load web resources in an efficient
manner.

When there are many templates or the template has a large size,
embedding template in the page is not a good choice for front-end
performance reason. It would be better to use Text.js to load the
separate template files and inject them as dependencies.

Text.js which is a native AMD module also depends on the module
dependency predefined by the AMD loader. Thanks to the native AMD
support of eXo Platform, it is straightforward to declare and use Text.js
in eXo Platform:

<module>
 <name>text</name>
 <script>
 <path>/requirejs/js/plugins/text.js</path>
 </script>
 <depends>
 <module>module</module>
 </depends>
</module>

Now you can use the mustache and text modules to load templates and
render them in your own module:

<portlet>
 <name>foo</name>
 <module>
 ...
 <depends>
 <module>mustache</module>
 </depends>
 <depends>
 <module>text</module>
 <as>tmpl</as>
 <resource>/path/to/template.html</resource>
 </depends>
 </module>
</portlet>

You have the text module in the dependency list with a <resource>
tag, Text.js will load that resource template and inject it with the
tmpl name. Here is the JavaScript of the portlet:

function(mustache, tmpl) {
 var html = mustache.render(tmpl);
 //append rendered html to DOM
})(mustache, tmpl);

Overriding the dependency of a native AMD module

While declaring a native AMD module, the module dependency names must
match with the AMD dependencies declared in the define function
arguments. When there is a mismatch between a module declared in the
native module and the module system of eXo Platform, the as tag can be
used to rename the dependencies.

There is a foo.js file defining an AMD module named foo with two
dependencies ["dep1", "dep2"] as follows:

define("foo", ["dep1", "dep2"], function(a1, a2) {
// The module
});

Supposing that the dependencies are declared as module1 and
module2 in eXo Platform and the names do not match. To override them, use
the as tag to rename the dependencies:

<module>
 <name>foo</name>
 <script>
 <path>/path/to/foo.js</path>
 </script>
 <depends>
 <module>module1</module>
 <as>dep1</as>
 </depends>
 <depends>
 <module>module2</module>
 <as>dep2</as>
 </depends>
</module>

Accessing a module from a script

Sometimes it is required to access a module from a script, RequireJS
provides such capability by using the require function to execute a
function in the managed context:

require(["SHARED/ModuleA"], function(a) {
 // Codes of interacting with module A
 a.doSomething();
});

In such a situation, you need to use the AMD module name of the module
on which you need to depend, this case uses PORTLET/ModuleA. The
prefix in uppercase is the module scope among SHARED, PORTLET
and PORTAL.

Disabling minification

In eXo Platform, Javascript scripts declared as modules are minified by
default in order to reduce their size and therefore the data volume when
downloaded in web page.

This minification may lead to conflicts and errors when the script is
incompatible with eXo Platform minifier (Google Closure Compiler).

Starting from eXo Platform 5.0, this minification can be disabled with the
new module attribute ‘minify’ :

<minify>false</minify>

This option could be set in gatein-resources.xml in script tag:

<module>
 <name>myModule</name>
 <script>
 <path>/javascript/myScript.js</path>
 <minify>false</minify>
 </script>
</module>

Note

We highly recommend to always enable scripts minification. If you
have conflicts, take care to not deactivate minification in the
whole platform.

To use this new option, the new XSD 1.4
should be used.

Localizing with resources

In your custom-extension.war, if you want to add your own resource
files to support localization, you can do as follows:

	Add some folders and files to your custom extension
to have:

WEB-INF
|__ classes
| |__ locale
| |__ portal
| |__ sample_en.properties
| |__ sample_fr.properties
|__ conf
| |__ configuration.xml
| |__ locale-configuration.xml
|__ web.xml

In this example there are 2 resources for English (_en) and French
(_fr). The resource files can be .properties or .xml.

It is necessary that the resources are located in WEB-INF/classes.

	Edit locale-configuration.xml to configure ResourceBundleService:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>Sample ResourceBundle Plugin</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>init.resources</name>
 <value>locale.portal.sample</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <value>locale.portal.sample</value>
 </values-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Pay attention to the value locale.portal.sample. It is like a
translation of the path of your resources (locale/portal/sample -
with the language code and file extension name is eliminated).

	Edit configuration.xml to import the locale-configuration.xml:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <import>war:/conf/locale-configuration.xml</import>

</configuration>

Adding/Removing a language

Developers can define new or remove a defined language through the
locale configuration file. The resource is managed by
org.exoplatform.services.resources.LocaleConfigService as follows:

<component>
 <key>org.exoplatform.services.resources.LocaleConfigService</key>
 <type>org.exoplatform.services.resources.impl.LocaleConfigServiceImpl</type>
 <init-params>
 <value-param>
 <name>locale.config.file</name>
 <value>war:/conf/common/locales-config.xml</value>
 </value-param>
 </init-params>
 </component>

All languages defined in the locale-config.xml file are listed in
the Interface Language Settings
window. The resource bundle is managed by
org.exoplatform.services.resources.ResourceBundleService as follows:

<external-component-plugins>
 <!-- The full qualified name of the ResourceBundleService -->
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>Sample ResourceBundle Plugin</name>
 <!-- The name of the method to call on the ResourceBundleService in order to register the ResourceBundles -->
 <set-method>addResourceBundle</set-method>
 <!-- The full qualified name of the BaseResourceBundlePlugin -->
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <!--values-param>
 <name>classpath.resources</name>
 <description>The resources that start with the following package name should be load from file system</description>
 <value>locale.portlet</value>
 </values-param-->
 <values-param>
 <name>init.resources</name>
 <description>Store the following resources into the db for the first launch</description>
 <value>locale.portal.sample</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <description>The properties files of the portal , those files will be merged
 into one ResourceBundle properties
 </description>
 <value>locale.portal.sample</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Adding a new language

To add a new language, you need to copy the default
locale-config.xml file from
platform-extension/WEB-INF/conf/common/locales-config.xml to your
custom-extension.war (with the same path) and add the corresponding
language entry.

For example, to add Italian, do as follows:

	Add the following code to the locale-config.xml file under your
extension project.

<locale-config>
 <locale>it</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Default configuration for Italian locale</description>
</locale-config>

	Create a new resource bundle as sample_it.properties in the
custom-extension.war!/WEB-INF/classes/locale/portal folder or in
the src/main/resources/locale/portal folder of the source code if
you are using Maven.

Note

This step is necessary because the Resource Bundle Service of the portal will find keys and values in the resource bundle of each corresponding language.

	Restart the server.

To check if the added language takes effect, click your username on the
top navigation bar and click Change Language. In the Interface
Language Settings window that appears, you will see the Italian is
listed as below:

[image: image9]

Removing a language

To remove an existing language, you need to delete the relevant language
code in the locale-config.xml file and all files containing the
suffix name as the key of language.

For example, to remove French, do as follows:

	Find and remove the following code from the locale-config.xml
file under your extension project.

<locale-config>
 <locale>fr</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Default configuration for france locale</description>
</locale-config>

	Continue removing all resource bundle files containing the suffix
name as fr in all folders.

Note

It is recommended this step be done to delete unnecessary data in the application.

	Restart the server.

To check if French is removed, hover your cursor over your username on
the top navigation bar, then click Change Language.

In the Interface Language Settings window that appears, French is no
longer listed.

[image: image10]

Declaring servlet/filter

If you ship servlets or filters as part of your portal extension, and
these servlets/filters need to access specific resources of a portal
during the process of the servlets or filters request, make sure that
these servlets/filters are associated with the current portal container.
The proper way to do that is making your servlet or filter extend the
org.exoplatform.container.web.AbstractHttpServlet or
org.exoplatform.container.web.AbstractFilter class respectively.
Both AbstractHttpServlet and AbstractFilter have the method
named getContainer(), which returns the current PortalContainer.

Declaring servlet/filter extension to get the current portal

	Add the dependency to pom.xml of your extension project.

<dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.container</artifactId>
 <scope>provided</scope>
</dependency>

	Implement the servlet/filter.

	Servlet

package org.sample.servlet;
...
public class SampleServlet extends AbstractHttpServlet {

 @Override
 protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
 System.out.println("[SampleServlet]: Current portal " + getContainer());
 }

 @Override
 protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
 doGet(req, resp);
 }
}

	Filter

package org.sample.filter;
...
public class SampleFilter extends AbstractFilter {

 @Override
 public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain) throws IOException,
 ServletException {
 System.out.println("[SampleFilter]: Current portal " + getContainer());
 chain.doFilter(request, response);
 }

 @Override
 public void destroy() {
 }
}

	Register the servlet/filter to web.xml of your extension.

	Servlet

<servlet>
 <servlet-name>SampleServlet</servlet-name>
 <servlet-class>org.sample.servlet.SampleServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>SampleServlet</servlet-name>
 <url-pattern>/</url-pattern>
</servlet-mapping>

Note

	The servlet will not only properly initialize the current

	PortalContainer, but also set the current thread’s context
ClassLoader to servlets or filters. The ClassLoader looks
for resources in associated web applications in the order
specified by the dependencies configuration.

	Filter

<filter>
 <filter-name>SampleFilter</filter-name>
 <filter-class>org.sample.filter.SampleFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>SampleFilter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Creating a custom search connector

Unified Search has been introduced in
eXo Platform 4 that greatly improves search capabilities. All resources
of the whole site (content, files, wiki pages, and more) can now be
easily found from a single and centralized location. Besides these
out-of-the-box capabilities, a new API allows creating custom search
connectors to extend the search scope and enrich results.

This section explains how to implement and configure the search
connector to fetch data from an external resource, for example
Wikipedia. This search connector will retrieve data indexed by
ElasticSearch - highly powerful and easy to use the search engine. You
can decide what your search connector returns (data indexed by another
search engine, data from a database and other custom data stored in eXo,
and more).

	Download ElasticSearch [http://www.elasticsearch.org/download/],
then extract and start ElasticSearch with the command below:

	Linux: bin/elasticsearch -f

	Windows: bin/elasticsearch or bin/elasticsearch.bat

	Index data in ElasticSearch.

ElasticSearch has no indexed data, so you need to feed it. For this
purpose, you will use the Wikipedia River plugin [https://github.com/elasticsearch/elasticsearch-river-wikipedia].
(River is an ElasticSearch component which feeds ElasticSearch with
data to index). The Wikipedia River plugin simply feeds ElasticSearch
with Wikipedia pages.

	i. Stop the ElasticSearch server, then install the Wikipedia
River plugin with:

	Linux:

``bin/plugin -install elasticsearch/elasticsearch-river-wikipedia/1.3.0``

	Windows:

``bin/plugin --install elasticsearch/elasticsearch-river-wikipedia/1.3.0``

	ii. Restart the ElasticSearch server. You should see logs
similar to the following:

[2013-11-27 11:55:48,716][INFO][node] [It, the Living Colossus] version[0.90.7], pid[14776], build[36897d0/2013-11-13T12:06:54Z]
[2013-11-27 11:55:48,716][INFO][node] [It, the Living Colossus] initializing ...
[2013-11-27 11:55:48,725][INFO][plugins] [It, the Living Colossus] loaded [river-wikipedia], sites []
[2013-11-27 11:55:50,632][INFO][node] [It, the Living Colossus] initialized
[2013-11-27 11:55:50,632][INFO][node] [It, the Living Colossus] starting ...
[2013-11-27 11:55:50,718][INFO][transport] [It, the Living Colossus] bound_address {inet[/0:0:0:0:0:0:0:0:9300]}, publish_address {inet[/192.168.0.5:9300]}

This ensures that the Wikipedia River plugin is correctly
installed: loaded [river-wikipedia].

	iii. Start indexing Wikipedia pages in ElasticSearch by
creating the river with a REST call (curl is used here but you
are free to select your favorite tool):

 curl -XPUT localhost:9200/_river/my_river/_meta -d '
 {
 "type" : "wikipedia"
 }
'

Note

	Fetching data from Wikipedia takes a while, depending on your connection, so don’t be panic.

	A lot of data is now being indexed by ElasticSearch. You can check this by executing a search with curl -XGET 'http://localhost:9200/_search?q=test'.

	The Wikipedia River will index a lot of data. For testing, you should stop the river after a few minutes to avoid filling your entire disk space. This can be done by deleting the river with curl -XDELETE localhost:9200/_river/my_river.

	Implement ElasticSearchConnector.

	Search connector is a simple class that extends
org.exoplatform.commons.api.search.SearchServiceConnector and
implements the search method:

package org.exoplatform.search.elasticsearch;

import ...

public class ElasticSearchConnector extends SearchServiceConnector {

 public ElasticSearchConnector(InitParams initParams) {
 super(initParams);
 }

 @Override
 public Collection<SearchResult> search(SearchContext context, String query, Collection<String> sites, int offset, int limit, String sort, String order) {
 // Fetch data
 }
}

	It needs to be declared in the eXo configuration, either in your
extension or
directly in the jar which will contain the connector class. Here,
the jar method will be used for example:

	Add the class in your jar.

	Add a file named configuration.xml to conf/portal in
your jar with the following content (the “type” tag contains
the FQN of the connector class):

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.commons.api.search.SearchService</target-component>
 <component-plugin>
 <name>ElasticSearchConnector</name>
 <set-method>addConnector</set-method>
 <type>org.exoplatform.search.elasticsearch.ElasticSearchConnector</type>
 <description>ElasticSearch Connector</description>
 <init-params>
 <properties-param>
 <name>constructor.params</name>
 <property name="enable" value="true"/>
 <property name="searchType" value="wikipedia"/>
 <property name="displayName" value="Wikipedia"/>
 </properties-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

You now have the skeleton of the search connector. In which, the
properties include:

	enable: turns on/off the search connector by default. If it is
false, the Wikipedia contents will be excluded from the search
scope when
testing.
In case the property is not explicitly set, the search connector
will be turned on automatically.

	searchType: defines a name for categorizing the search
information.

	displayName: defines a name for displaying the search result
category.

	Fetch results from ElasticSearch.

You need to call ElasticSearch to fetch Wikipedia pages based on the
input parameters of the search (query text, offset, limit, sort field,
sort order). ElasticSearch provides a Java Client API (TransportClient).
This depends on the Lucene artifacts. Since eXo Platform already
embeds the Lucene artifacts that are not necessary in the same
version as the ones needed by ElasticSearch, conflicts may happen.
Instead eXo will directly use the REST API:

package org.exoplatform.search.elasticsearch;

import org.apache.commons.io.IOUtils;
import org.apache.http.HttpResponse;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpPost;
import org.apache.http.entity.StringEntity;
import org.apache.http.impl.client.DefaultHttpClient;
import org.exoplatform.commons.api.search.SearchServiceConnector;
import org.exoplatform.commons.api.search.data.SearchContext;
import org.exoplatform.commons.api.search.data.SearchResult;
import org.exoplatform.container.xml.InitParams;
import org.json.simple.JSONArray;
import org.json.simple.JSONObject;
import org.json.simple.parser.JSONParser;

import java.io.StringWriter;
import java.util.*;

public class ElasticSearchConnector extends SearchServiceConnector {

 private Map<String, String> sortMapping = new HashMap<String, String>();

 public ElasticSearchConnector(InitParams initParams) {
 super(initParams);

 sortMapping.put("date", "title"); // no date field on wikipedia results
 sortMapping.put("relevancy", "_score");
 sortMapping.put("title", "title");
 }

 @Override
 public Collection<SearchResult> search(SearchContext context, String query, Collection<String> sites, int offset, int limit, String sort, String order) {
 Collection<SearchResult> results = new ArrayList<SearchResult>();

 String esQuery = "{\n" +
 " \"from\" : " + offset + ", \"size\" : " + limit + ",\n" +
 " \"sort\" : [\n" +
 " { \"" + sortMapping.get(sort) + "\" : {\"order\" : \"" + order + "\"}}\n" +
 "],\n" +
 " \"query\": {\n" +
 " \"filtered\" : {\n" +
 " \"query\" : {\n" +
 " \"query_string\" : {\n" +
 " \"query\" : \"" + query + "\"\n" +
 " }\n" +
 " }\n" +
 " }\n" +
 " },\n" +
 " \"highlight\" : {\n" +
 " \"fields\" : {\n" +
 " \"text\" : {\"fragment_size\" : 150, \"number_of_fragments\" : 3}\n" +
 " }\n" +
 " }\n" +
 "}";

 try {
 HttpClient client = new DefaultHttpClient();
 HttpPost request = new HttpPost("http://localhost:9200/_search");
 StringEntity input = new StringEntity(esQuery);
 request.setEntity(input);

 HttpResponse response = client.execute(request);
 StringWriter writer = new StringWriter();
 IOUtils.copy(response.getEntity().getContent(), writer, "UTF-8");
 String jsonResponse = writer.toString();

 JSONParser parser = new JSONParser();

 Map json = (Map)parser.parse(jsonResponse);
 JSONObject jsonResult = (JSONObject) json.get("hits");
 JSONArray jsonHits = (JSONArray) jsonResult.get("hits");
 for(Object jsonHit : jsonHits) {
 JSONObject hitSource = (JSONObject) ((JSONObject) jsonHit).get("_source");
 String title = (String) hitSource.get("title");
 JSONObject hitHighlights = (JSONObject) ((JSONObject) jsonHit).get("highlight");
 JSONArray hitHighlightsTexts = (JSONArray) hitHighlights.get("text");
 String text = "";
 for(Object hitHighlightsText : hitHighlightsTexts) {
 text += (String) hitHighlightsText + " ... ";
 }

 results.add(new SearchResult(
 "http://wikipedia.org",
 title,
 text,
 "",
 "http://upload.wikimedia.org/wikipedia/commons/thumb/7/77/Wikipedia_svg_logo.svg/45px-Wikipedia_svg_logo.svg.png",
 new Date().getTime(),
 1
));
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

 return results;
 }
}

Requests and responses are full JSON. You can find more details about
ElasticSearch query syntax
here [http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-query-string-query.html].
The important point about the search connector is that each result has
to be a SearchResult object returned in a collection.

	Deploy your jar (which contains the SearchConnector class and the XML
configuration file) in the libs of the application server (/lib of
Tomcat for example), then start eXo Platform.

	In the quick search from the Administration bar, the Wikipedia
content will be retrieved:

[image: image3]

	In the Search page, the Wikipedia filter will be listed with some
Wikipedia pages as search results:

[image: image4]

	If you want to exclude Wikipedia content from the search results,
simply uncheck the Wikipedia filter:

[image: image5]

Note

You can see the code sources here <https://github.com/thomasdelhomenie/exo-elasticsearch-sample-connector>, as a Maven project.

Creating a page layout template

In eXo Platform, page is a set of portlets and gadgets. The portlets and
gadgets can be arranged in columns, rows and tabs. A page layout
template is a layout sample that is used in Page Creation Wizard.

In this tutorial, you will:

	Create your own page layout template.

	Localize the label with your language resources.

	Customize the preview icon of your template.

The following picture points out the category, the preview icon and
labels:

[image: image6]

	Create your custom extension
as follows:

[image: image7]

	Edit the page template in page.xml:

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_3 http://www.gatein.org/xml/ns/gatein_objects_1_3"
xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_3">
 <name></name>
 <container template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 </container>
 <container template="system:/groovy/portal/webui/container/UITableColumnContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <container template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 </container>
 <container template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 </container>
 </container>
 <container template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 </container>
</page>

In which:

	UIContainer (built-in in portal.war) is the smallest
container that should not contain other containers. They will be
aligned in row if you do not put them in any parent container.

	To align them in column, put them in a UITableColumnContainer. To
add a tab to the page, use UITabContainer. See more samples in
portal.war!/WEB-INF/conf/portal/template/pages.

	Copy content of the
portal.war!/WEB-INF/conf/uiconf/portal/webui/page/PageConfigOptions.groovy
to your PageConfigOptions.groovy file. Add the following code:

SelectItemCategory customPageConfigs = new SelectItemCategory("customPageConfigs") ;
categories.add(customPageConfigs) ;
customPageConfigs.addSelectItemOption(new SelectItemOption("customPage.CustomLayout", "custom", "CustomLayout")) ;

This code adds a category named “customPageConfigs” and a template named
“CustomLayout”.

	Localize the labels as follows:

	i. Edit the locale-configuration.xml file:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>webui resources</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>init.resources</name>
 <value>locale.portal.webui</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <value>locale.portal.webui</value>
 </values-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

	ii. Edit the configuration.xml file to import
locale-configuration.xml:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <import>war:/conf/locale-configuration.xml</import>

</configuration>

	iii. Edit the webui_en.properties file to have:

UIDropDownPageTemp.item.customPageConfigs=Custom Page Configs
UIWizardPageSelectLayoutForm.label.customPage.CustomLayout=Custom Layout

Note

	The localization is explained in Localizing with resources.

	The locale.portal.webui resource name is configured in portal.war and you must not change its path.

Add the preview icon as follows:

	i. Edit your stylesheet in myStylesheet.css:

.CustomLayout {
 width: 270px;
 height: 170px;
 margin: auto;
 background: url('images/ItemSelector.gif') no-repeat left -680px;
}

	ii. For simplification, you can copy the image named
ItemSelector.gif from
eXoResources.war!/skin/DefaultSkin/webui/component/UISelector/UIItemSelector/background.

	iii. Edit the gatein-resources.xml file:

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">

 <portal-skin>
 <skin-name>Default</skin-name>
 <skin-module>myStylesheet</skin-module>
 <css-path>/skin/myStylesheet.css</css-path>
 </portal-skin>

</gatein-resources>

Tip

Read more about the portal skinning technique in GateIn Reference.

	Deploy your custom extension and test:

[image: image8]

Managing look and feel

This section will help you to learn how to customize the look and feel
of eXo Platform.

A skin is a set of CSS and images files. eXo Platform comes with a
default skin called Default, and another one, more modern, only
available in the Enterprise Edition, called Enterprise skin. If
these skins do not fit your needs, eXo Platform allows you to create
your own skin.

You may also want to only make some changes to an existing skin by
adding or overriding style for custom portlets, native portlets, or the
whole portal. This can be done without creating a new skin.

Tip

The main difference between creating a new skin and customizing an
existing one is that when creating a new skin, the Default skin (and
optionally other skins) is still available and can be used.
Therefore a site could use the new skin and another site could still
use the Default skin.

So if you need to provide the capability to select multiple skins,
go for creating a new skin, otherwise customizing an existing skin
should be sufficient.

In this section, we will treat these elements:

	Skin elements
Introduction to skin elements and concepts.

	Stylesheets loading priority
Description of the loading strategy of stylesheets in web pages.

	Customizing existing skins
How to customize existing skins.

	Creating a new skin
How to create a new skin, to select a default skin.

	Skin best practices
A list of best practices in skin development.

	Customizing layout
All details to customize layout of a site, a page and the shared
layout.

By following this section, you are able to customize the eXo Platform
look and feel effectively.

Skin elements

eXo Platform provides support for skinning the entire User Interface (UI) of
a site, including your own portlets. Skins are designed to help you pack
and reuse common graphic resources.

The complete skinning of eXo Platform can be decomposed into three main
parts: site skin, portlet windows and portlet skin.

Portal skin

The portal skin contains styles for the HTML tags (for example, div, th,
td) and the portal UI (including the toolbar). This should include all
UI components, except for window decorators and portlet specific styles.

Portlet skin

The portlet skins affect how portlets are rendered on the page. The
portlet skins can be affected in two main ways described in the
following sections.

Portlet Specification CSS Classes: The portlet
specification [http://jcp.org/en/jsr/detail?id=286] defines a set of
CSS classes that should be available to portlets. eXo Platform provides these
classes as a part of the portal skin. This enables each portal skin to
define its own look and feel for these default values.

eXo Platform provides a means for portlet CSS files to be loaded that is
based on the current portal skin. This enables a portlet to provide
different CSS styles to better match the current site’s look and feel.

Portlet windows

The CSS styles are associated with the portlet window decorators. The
window decorators contain control buttons and borders surrounding each
portlet. Individual portlets can have their own window decorators
selected, or be rendered without one.

Note

The window decorators and the default portlet specification CSS
classes should be considered as separate types of skinning

components, but they need to be included as a part of the overall
portal skin. The portal skin must include CSS classes of these
components or they will not be displayed correctly. A portlet skin
does not need to be included as a part of the portal skin and can be
included within the portlets web application. See Skins in page
markups
for more information.

Stylesheets loading priority

When a portal page is loaded, the CSS stylesheets are loaded in the
following order:

	Stylesheets of the Portal skin

	ECMS site stylesheets (see here
for more details)

	Stylesheets of the portlets contained in the page

	Stylesheets of the Portal skin elements with a module name starting
with customModule (see here
for more details)

A style of a stylesheet can override the style of all the stylesheets
loaded before. Therefore if a portlet body skin defines the following
CSS class:

my-portlet-style-class {
 background-color: green;
}

It can be customized by adding the following class in a custom module of
the portal skin:

my-portlet-style-class {
 background-color: red;
 font-size: 1.2em;
}

This new style definition changes the background color to red and
defines the font size to 1.2em.

Tip

Inside each category, stylesheets are loaded following an order
defined by the attribute css-priority for Portal and Portlet
skin elements and the field Priority for ECMS site stylesheets.
The stylesheets with lower priority value are loaded first.

Customizing existing skins

Existing skins can be customized by adding new CSS files
or by changing the favicon.

Adding custom style

eXo Platform allows to inject new CSS files by configuration, by
declaring them in a file WEB-INF/gatein-resources.xml in an
extension webapp.

Portal skin

New CSS files can be added to a portal skin, meaning they are loaded in
all the pages of the sites using this skin. For example, in order to add
a new CSS file to override some styles of the Default skin, the
following configuration must be defined in the file
WEB-INF/gatein-resources.xml:

<gatein-resources>
 <portal-skin>
 <skin-name>Default</skin-name>
 <css-path>/skin/my-style.css</css-path>
 <skin-module>MyStyle</skin-module>
 <css-priority>0</css-priority>
 <overwrite>false</overwrite>
 </portal-skin>
</gatein-resources>

In which:

	<portal-skin> is the root element that declares the portal skin
element, including:

	<skin-name> is the identifier of the skin.

	<skin-module> is the identifier of the skin element. It must
be an unique name.

	<css-path> is the path to the CSS file in the webapp which
defines the style of the site.

	<css-priority> is the loading priority amongst portal
stylesheets. Lower values are loaded first. This property is
optional.

	<overwrite> is the property that defines if the portlet skin
overwrites or not another skin which has the same name, if it
exists. This property is optional. Defaults to false.

Once deployed, the CSS file /skin/my-style.css will be loaded in all
the pages of the sites which use the Default skin. CSS files will be
loaded as link tags in the head section of the web page,
following a defined Loading strategy,
so before the portlets CSS files.

Tip

A sample Maven project is available here [https://github.com/exo-samples/docs-samples/tree/master/skinning/customizing-skin] as a working example to customize a skin.

Portal skin - Custom Module

Since the Portal skin stylesheets are loaded before the Portlets skin
stylesheets, portlets style overrides the portal style. While this is
very useful to control the style of a portlet no matter what the portal
style is, it can be a problem when a portal style must be applied on all
portlets no matter what the portlets style is. eXo Platform provides the
capability to define portal CSS files which can be loaded after portlet
CSS files. They must be declared in the file
WEB-INF/gatein-resources.xml like portal CSS files. The only
difference is that they must have a skin-module tag starting with
customModule:

<gatein-resources>
 <portal-skin>
 <skin-name>Default</skin-name>
 <css-path>/skin/my-custom-module-style.css</css-path>
 <skin-module>customModuleMyStyle</skin-module>
 <overwrite>false</overwrite>
 </portal-skin>
</gatein-resources>

Portlet skin

Portlets often require additional styles that may not be defined by the
portal skin. eXo Platform allows to define additional stylesheets for each
portlet and appends the corresponding link tags to the head. Here is an
example that can be added in the file WEB-INF/gatein-resources.xml
to define a new CSS file to be included whenever the portlet
WhoIsOnLinPortlet is available on a portal page:

<gatein-resources>
 <portlet-skin>
 <application-name>homepage-portlets</application-name>
 <portlet-name>WhoIsOnLinPortlet</portlet-name>
 <skin-name>Default</skin-name>
 <css-path>/skin/WhoIsOnLinPortlet/my-portlet-style.css</css-path>
 <css-priority>1</css-priority>
 <overwrite>false</overwrite>
 </portlet-skin>
</gatein-resources>

In which:

	<portlet-skin> is the root element that declares the portlet skin
element, including:

	<application-name> is the context name of web application that
contains the portlet declared in <portlet-name>.

	<portlet-name> is the identifier of the portlet.

	<skin-name> is the identifier of the skin. The portlet skin
element is only loaded when the given skin is selected for the
site.

	<css-path> is the path to the CSS file in the webapp which
defines the stylesheets of the portlet.

	<css-priority> is loading priority amongst portlets
stylesheets. Lower values are loaded first. This property is
optional.

	<overwrite> is the property that defines if the portlet skin
overwrites or not another skin which has the same name, if it
exists. This property is optional. Defaults to false.

This example tells eXo Platform to load the CSS file
/skin/WhoIsOnLinPortlet/my-portlet-style.css when the portlet
WhoIsOnLinPortlet of the webapp homepage-portlets is displayed
on the page. As for sites, CSS files will be loaded as link tags in
the head section of the web page. The ID attribute of <link> element
uses the pattern portletAppName_PortletName. In the above example,
the ID of the link is “homepage-portlets_WhoIsOnLinPortlet”.

The portlet can be any native eXo Platform portlet or any custom portlet.

Note

The full schema for gatein-resources.xml files can be found at https://www.exoplatform.com/xml/ns/gatein_resources_1_4.xsd.

Customizing the Enterprise Skin

The Enterprise Skin (available only in Enterprise Edition) has been done
as a new skin,
using the customStyle.less file. It means that its CSS style is loaded
as a portal skin custom module, so after all the others type of
stylesheets, as described in the CSS priority chapter.

In order to customizing styles defined in the Enterprise Skin, a portal
skin custom module must be used, with a higher priority.

Changing portlet icons

Each portlet can be represented by a unique icon that you can see in the
portlet registry or page editor. This icon can be changed by adding an
image to the directory of the portlet webapplication:
skin/DefaultSkin/portletIcons/.

To use the icon correctly, it must be named after the portlet. For
example, the icon for the Hello portlet named HelloPortlet is
located at: skin/DefaultSkin/portletIcons/HelloPortlet.png.

Note

You must use skin/DefaultSkin/portletIcons/ for the directory to store the portlet icon regardless of which skin is going to be used.

Changing the favicon

The eXo Platform Favicon [image: image11] is packaged in platform-extension
webapp: platform-extension.war!/favicon.ico.

You can override it by packaging it at the root of your extension,
for example custom-extension.war!/favicon.ico.

Note

Note that the icon should be 16x16 pixels to be well displayed.

For a quick test you can download an icon somewhere, like the Google
favicon [image: image12] available at http://google.co.uk/favicon.ico. Resize it
to 16x16 and pack it in the extension.

After deploying your extension, you should remove images cache in the
browser and refresh eXo Platform page. Here is the illustration with
Google favicon replacing eXo Platform favicon:

[image: image13]

Creating a new skin

This section covers the following topics:

	Creating a new skin

	List of available style variables

	Selecting a default skin

Creating a new skin

eXo Platform allows to create new skins. New skins are based on the
Default skin. The difference between creating a new skin compared to
customizing an existing skin is that the new skin is available besides
the Default skin, so a site can use the new skin while another site
still use the Default skin.

In order to create a new skin, process as follows:

	Create a Maven project from the available sample [https://github.com/exo-samples/docs-samples/tree/master/skinning/creating-new-skin].

This sample contains a Maven module for the skin extension webapp
(sample-skin-webapp) and a Maven module for packaging it as an addon
(packaging). It has the following structure:

[image: image14]

where the important files are:

	sample-skin-webapp/src/main/webapp/META-INF/exo-conf/configuration.xml,
the extension activation file. The extension name must be adapted.

	sample-skin-webapp/src/main/webapp/WEB-INF/web.xml. The extension
name (display-name) must be adapted.

	sample-skin-webapp/src/main/webapp/skin/less/customVariables.less,
the file to override style variables (see below).

	sample-skin-webapp/src/main/webapp/skin/less/customStyle.less,
the file to define new style (see below).

	sample-skin-webapp/pom.xml, the build file. The groupId,
artifactId, version, exo.skin.name and
exo.skin.display.name must be adapted.

	eXo Platform defines a set of style variables which allow to change
the default style globally. The complete list is available
here.
If you want to modify style variables, change the value of any
available variable in the file src/main/webapp/skin/less/customVariables.less.

For example:

@baseColor: #ffffff; // text color , border color, and other UI elements..
@baseBackground: #333333; // default background , background for content display....
@primaryColor: #0ab5f5; // primary button and link color...
@primaryBackground: #222222; // main background such as header popup background, tab items...
@colorIconDefault : #fff; // icon color
@images-path: "/{YOUR-SKIN-ADDON}/skin/images/themes/default";
@contentBackground: url("@{images-path}/ShareImages/Background/texture-gray.jpg") repeat left top;

	If you want to go further by defining new CSS classes or by
overriding default CSS classes, add them in the file
src/main/webapp/skin/less/customStyle.less. For example:

body {
 background-color: green;
}

This is a Less file, so you can use all the power of
Less [http://lesscss.org/] syntax.

Testing the new skin

	Deploy the addon locally.

	Apply the new skin to your site.

	i. Start eXo Platform package, and log in with the administrator
account.

	ii. Go to Administration Portal Sites, then click Edit Site
Configuration next to one site, for example, Intranet site.

	iii. In the Skin drop-down list, select the new skin and click
Save.

	Refresh the page and enjoy the new skin.

	The current homepage:

[image: image15]

	The homepage with your applied skin add-on:

[image: image16]

Style variables and icons/images

This section describes all the variables that can be changed in
src/main/webapp/skin/less/customVariables.less when creating a new
skin.

Basic variables

There are 4 main color variables. These are used to define color for
majority of component.

	Variable

	Value

	Description

	@baseColor

	#000000

	Color of text, border, and other UI elements.

	@baseBackground

	#ffffff

	Color of background displaying content.

	@primaryColor

	#2f5e92

	Color of primary buttons and links.

	@primaryBackground

	#f0f0f0

	Color of main background, for example, of
header popup and tab items.

The other colors are dependant on the 4 main colors above and can
automatically adapt to the value of the @baseColor variable (dark or
light). In particular:

	Variable

	Inheritance/Value
if base color
(@baseColor) is
dark
(lightness(@baseCo
lor)
< 50%)

	Inheritance/Value
if base color
(@baseColor) is
light
(lightness(@baseCo
lor)
>= 50%)

	Description

	@baseColorDark

	lighten(@baseColor
,
20%) (#333333)

	lighten(@baseColor
,
60%);

	Default color
of title, text,
text input, and
label.

	@baseColorMedium

	lighten(@baseColor
,
50%) (#808080)

	lighten(@baseColor
,
50%)

	Text color of
navigation
links when
being selected.

	@baseColorLight

	lighten(@baseColor
,
60%) (#999999)

	darken(@baseColor,
20%)

	Default color
of small text,
subtitle, and
text field
explanation.

	@borderColor

	lighten(@baseColor
,
80%) (#cccccc)

	darken(@baseColor,
20%)

	Default border
color of box,
container, and
text input.

	@primaryBackground
Hover

	darken(@primaryBac
kground,
4%)

	darken(@primaryBac
kground,
3%)

	Background
color of table
row, disabled
input field,
ready-only
form, gray tab
in a page when
being hovered.

	@primaryBackground
Light

	lighten(@primaryBa
ckground,
3%)

	lighten(@primaryBa
ckground,
4%)

	Background
color of
table
accent, hr
line,
well, and
active
pagination.

	@revealBackgroundH
over

	lighten(@baseColor
,
98%)

	darken(@baseColor,
98%)

	Background
color of reveal
component hover
status.

	@revealBackgroundS
elected

	lighten(spin(@prim
aryColor,
-10%), 52%)

	darken(spin(@prima
ryColor,
-10%), 52%)

	Background
color of reveal
component
selected
status.

	@primaryDarkColor

	darken(@primaryCol
or,
10.5%) (#224469)

	darken(@primaryCol
or,
18.5%) (#578dc9)

	Border color of
primary button,
and left
navigation.

	@primaryLightColor

	lighten(@primaryCo
lor,
18.5%) (#578dc9)

	lighten(@primaryCo
lor,
10.5%) (#224469)

	Background
color of
primary button,
and dropdown
when being
hovered.

	@btnBackground

	@baseBackground

	@primaryBackground

	Background
color of
default button.

	@btnBackgroundHigh
light

	@primaryBackground

	@baseBackground

	Background
color of
highlight
button.

	@dropdownArrowRigh
t

	darken(@baseBackgr
ound,
20%) (#aac5e3)

	lighten(@baseBackg
round,
90%)

	Background
color of arrow
on the right of
dropdown.

	@quotePrimaryBackg
round

	lighten(@quotePrim
aryBorder,
18%) (#aac5e3)

	darken(@primaryCol
or,
10%) (#aac5e3)

	Background
color of
primary quote.

Advanced variables

For each component, some own variables are defined. They may be new
values, or be inherited from base variables. To modify these components,
change value of these ones, or change the variables inherited (be
careful if it impacts the others).

	Icon Fonts

[image: image17]

	Variable

	Inheritance/Value

	Description

	@colorIconDefault

	#999999

	Default color of action
icons and action lists
having dark grey labels.

	@colorIconExtra

	#626262

	Default color of action
icons having light or
medium grey labels.

	@colorIconPrimary

	@primaryColor

	Color of icons for
hovered/pressed/selected
effect on light or dark
grey icons.

	@colorIconSecondary

	#ffffff

	Hover icon in dropdown
menu, icons in primary
button or black/grey
bar.

	@sizeIcon24x24

	22px

	Size of medium icons.

	@sizeIcon12x12

	10px

	Size of mini icons.

	@sizeIcon64x64

	60px

	Size of extra-large
icons.

	@sizeIcon32x32

	30px

	Size of large icons.

	@sizeIconDefault

	14px

	Size of default icons.

	@font-path

	“/eXoSkin/skin/fonts”

	Path to the icon fonts
folder.

	Left Navigation

[image: image18]

	Variable

	Inheritance/Value

	Description

	@plfNavigationTitleColor

	@primaryColor

	Color of left
navigation’s heading.

	@plfNavigationBgBorderLe
ft

	@primaryLightColor

	Color of left border of
the selected item in the
left navigation.

	@plfNavigationBorderLeft

	@primaryDarkColor

	Border color of left
border of the selected
item in the left
navigation.

	@plfNavigationColor

	@baseColorMedium

	Text color of items in
the left navigation.

	@plfNavigationBgSelected

	@baseBackground

	Background color of the
selected item of the
left navigation.

	@plfNavigationBorderSele
cted

	@borderColor

	Color of top and bottom
borders of the selected
item in the left
navigation.

	@plfNavigationColorSelec
ted

	@baseColorMedium

	Text color of the
selected item in the
left navigation.

	@plfNavigationColorHover

	@linkColorHover

	Text color of the
hovered item in the left
navigation.

	Breadcrumb

[image: image19]

	Variable

	Inheritance

	Description

	@breadcrumbColor

	@baseColorDark

	Color of breadcrumb
text.

	@breadcrumbHoverColor

	@primaryColor

	Color of breadcrumb text
when being hovered.

	@breadcrumbActiveColor

	@textLightColor

	Color of breadcrumb text
when being selected.

	Default button [image: image20]

	Variable

	Inheritance/Value

	Description

	@btnColor

	@baseColorDark

	Text color of default
button.

	Gradient
(@btnBackground,
@btnBackgroundHighligh
t)

	Gradient
(@baseBackground,@primaryBa
ckground)

	Background color of
default button
(gradient background).

	@btnBorder

	@borderColor

	Border color of
default button.

	Primary button [image: image21]

	Variable

	Inheritance/Value

	Description

	Gradient
(@btnPrimaryBackground,
@btnPrimaryBackgroundHigh
light)

	Gradient
(@primaryLightColor,
@primaryColor)

	Background color of
primary button
(gradient background).

	@btnBorder

	@btnPrimaryBorder

	Border color of primary
button.

	@btnColor

	@btnPrimaryColor

	Text color of primary
button.

	Calendar picker

[image: image22]

	Variable

	Inheritance

	Description

	@calComponentDayTodayBackgrou
nd

	@primaryBackgrou
nd

	Background color of today.

	@calComponentCurrentWeekBorde
r

	@borderColor

	Border color of current
week.

	@calComponentDaySelectedColor

	@baseBackground

	Text color of selected
day.

	@calComponentTimeInputBoxBack
ground

	@primaryBackgrou
nd

	Background color of input
value.

	@calComponentDaySelectedBackg
round

	@primaryColor

	Background color of
selected day.

	Dropdown

[image: image23]

	Variable

	Inheritance

	Description

	@dropdownBackground

	@baseBackground

	Background color of
dropdown.

	@dropdownLinkBackgroundHov
er

	@primaryLightColor

	Background color of
hovered item.

	@dropdownBorder

	@borderColor

	Border color of dropdown.

	Form: input field, textarea, select box

	Normal state

[image: image24]

	Variable

	Inheritance

	Description

	@inputBackground

	@baseBackground

	Background color of input
field, text area and select
box.

	@inputBorder

	@borderColor

	Border color of input
field, text area and select
box.

	@inputColor

	@baseColorDark

	Text color of input field
and text area.

	Focus state

[image: image25]

	Variable

	Inheritance/Value

	Description

	@inputFocusBorder

	lighten(@infoColor, 30%)

	Border color of hovered
item.

	@inputFocusColor

	@inputColor

	Text color of hovered item.

	Disable state

[image: image26]

	Variable

	Inheritance

	Description

	@inputDisabledBackgroun
d

	@primaryBackgroundHov
er

	Background color of
disabled item.

	@inputDisableColor

	@textLightColor

	Text color of disabled
item.

	Read-only state

[image: image27]

	Variable

	Inheritance

	Description

	@formReadOnyBackground

	@primaryBackgroundHov
er

	Background color of
read-only item.

	@formReadOnyColor

	@baseColorDark

	Text color of read-only
item.

	Notifications

[image: image28]

[image: image29]

[image: image30]

[image: image31]

	Variable

	Inheritance

	Description

	@warningBackground

@errorBackground

@successBackground

@infoBackground

	@warningColorLight

@errorColorLight

@successColorLight

@infoColorLight

	Background color of
notifications.

	@warningBorder

@errorBorder

@successBorder

@infoBorder

	@warningColor

@errorColor

@successColor

@infoColor

	Border color of
notifications.

	@warningText

@errorText

@successText

@infoText

	@textColor

@textColor

@textColor

@textColor

	Text color of
notifications.

	Pagination

[image: image32]

	Variable

	Inheritance

	Description

	@paginationBackground

	@baseBackground

	Background color of
paginator.

	@paginationBorder

	@borderColor

	Border color of paginator.

	@paginationActiveBackgr
ound

	@primaryBackgroundL
ight

	Background color of selected
item in the paginator.

	Popover

[image: image33]

	Variable

	Inheritance

	Description

	@popoverBackground

	@baseBackground

	Background color of popover.

	@popoverArrowColor

	@popoverBackground

	Background color of popover
arrow.

	Popup

[image: image34]

	Variable

	Inheritance/Value

	Description

	@uiPopupBackground

	@baseBackground

	Background color of popup.

	@uiPopupBorder

	@borderColor

	Border color of popup.

	@uiPopupHeaderBackground

	@primaryBackground

	Background color of popup
header.

	@header-popup-bg

	#484848

	Background header of popup.

	@header-popup-title

	#c1c1c1;

	Text color of header popup.

	Table

[image: image35]

	Variable

	Inheritance/Value

	Description

	@tableBackground

	transparent

	Background color of
table.

	@tableBorder

	@borderColor

	Border color of table.

	@tableBackgroundHover

	@primaryBackgroundHover

	Background color of
hovered row.

	@tableBackgroundAccent

	@primaryBackgroundLight

	Background of accent
table.

	Tab

[image: image36]

	Variable

	Inheritance

	Description

	@tabNormalLinkBackground

	@primaryBackground

	Background color of tab
item.

	@tabNormalActiveLinkBackg
round

	@baseBackground

	Background color of
selected tab item.

	@tabNormalLinkBorder

	@borderColor

	Border color of tab item.

	@tabNormalLinkColor

	@textColor

	Text color of tab item.

	@tabNormalContentBackgrou
nd

	@baseBackground

	Background color of tab
content.

	Label [image: image37]

	Variable

	Inheritance

	Description

	@labelBackground

	@baseColorLight

	Background color of label.

	@labelHoverBackground

	@primaryLightColor

	Background color of
selected label.

	@labelColor

	@baseBackground

	Text color of label.

	Badget [image: image38]

	Inheritance

	Description

	@primaryBackground

	Background color of default badget.

	@textColor

	Text color of default badget.

	@primaryColor

	Background color of primary badget.

	@baseBackground

	Text color of primary badget.

	@baseBackground

	Background color of white badget.

	@textColor

	Text color of white badget.

	Tooltip [image: image39]

	Variable

	Inheritance/Value

	Description

	@tooltipBackground

	lighten(@black, 29%)

	Background color of
tooltip.

	@tooltipArrowColor

	@tooltipBackground

	Background color of
tooltip background.

Icons/images

[image: image40]

	PSD folder contains all psd files. If user wants to customize
some icons (for example, color), he/she can change these files.

	system folder contains icons, backgrounds, and images that are
commonly used in all applications.

	themes folder contains some themes of PRODUCT. The default theme
is named “default”. The others are themes that you can customize
basing on the PSDs. You can also build your own theme by changing the
PSD files.

Selecting a default skin

You can select a new default skin for a site via two following ways:

	Directly inline, via the UI of eXo Platform. See the Editing configurations
section for more details.

	In your extension <PLFDevGuide.eXoAdd-ons.PortalExtension>, via
the XML configuration file as below.

The default skin can be set in the portal configuration files. The skin
configured as default is used by eXo Platform as the administrator
starts/restarts the server.

To change the default skin of a site, for example Intranet, simply add a
skin tag to the
custom-extension.war!/WEB-INF/myintranet-conf/portal/intranet/portal.xml
file.

<portal-config>
 <portal-name>intranet</portal-name>
 <locale>en</locale>
 <access-permissions>Everyone</access-permissions>
 <edit-permission>*:/platform/administrators</edit-permission>
 <skin>MySkin</skin>
 ...
</portal-config>

Best practices

How to develop a skin add-on that is compliant with eXo skin?

When developing a skin add-on, you may use some of your own components.
Using your style is good. However, when you apply the new skin add-on,
its theme would not be compatible with the eXo Platform one that is bad. See
the below example - dark theme of the new skin add-on is already applied
for all, but not applied for the Chat window of eXo Platform.

[image: image41]

What is the solution?

It is simple. Reuse the eXo Platform UX component instead of your own UX
add-on component. As a result, the theme of Chat add-on will be changed
to the new style of your skin add-on.

[image: image42]

To get the eXo Platform UX component, see
http://exoplatform.github.io/ux-guidelines/Components.html.

How to develop an add-on compliant with eXo skin (login page for
instance)?

	Never use hard-coded CSS link in JSP file. Instead, use SkinService
to get the CSS:

//Use SkinService to get the css
 SkinService skinService = (SkinService) PortalContainer.getCurrentInstance(session.getServletContext())
 .getComponentInstanceOfType(SkinService.class);
 String loginCssPath = skinService.getSkin("portal/login", "Default").getCSSPath();
//…
<link href="<%=loginCssPath%>" rel="stylesheet" type="text/css"/>

	The WEB-INF/gatein-resources.xml related:

<!-- Login Page skins -->
 <portlet-skin>
 <application-name>portal</application-name>
 <portlet-name>login</portlet-name>
 <skin-name>Default</skin-name>
 <css-path>/skin/css/platform/portlets/extensions/login.css</css-path>
 </portlet-skin>

How to develop a gadget compliant with eXo skin?

Simply get the parent CSS (CSS load in Portal):

$(document).ready(function(){

 //Check the parent container of the Iframe
 if(window.top && window.top.location.href != document.location.href) {

 // Get all parent's <link>s
 var linkrels = window.top.document.getElementsByTagName('link');
 // Get the Iframe head
 var iframeHead = document.getElementsByTagName('head').item(0);
 // Loop through parent's links
 for (var i = 0, max = linkrels.length; i < max; i++) {
 // Get parent stylesheets
 if (linkrels[i].rel && linkrels[i].rel == 'stylesheet') {
 // Create new link element and copy all attributes
 var thestyle = document.createElement('link');
 var attrib = linkrels[i].attributes;
 for (var j = 0, attribmax = attrib.length; j < attribmax; j++) {
 thestyle.setAttribute(attrib[j].nodeName, attrib[j].value);
 }

 // add the newly created link element to the head
 iframeHead.appendChild(thestyle);

 }
 }
 }
});

Which tools are recommended for converting .less to .css files?

For developers using Windows, WinLess is an ideal tool. This converts
LESS code into static CSS automatically as you save the file and shows
reports if any error in the code. Using WinLess, you do not need to
rebuild the whole Web UI component packages. You just need to choose
output for .css file one time, then modify the .less file and
save it. As the result, you will see your changes once refreshing your
browser.

	Download WinLess [http://winless.org/] and install it. To be
compatible with the Less version used in eXo Platform 4.2, the
WinLess version should be 1.8.0.

[image: image43]

	Go to File –> Settings, and make sure these options are checked:

	Automatically compile files when saved.

	Show message on successful compile.

[image: image44]

Note

Remember to untick the checkbox: Automatically check for less.js updates.

	Click Add folder and locate the directory where you put your
.less files. WinLess will scan and find all .less files and
show them on the list.

[image: image45]

	Uncheck all files using the top checkbox.

	Check the files you modify, or the file importing them. For example,
if you want to modify something in variables.less that is
imported in Core.less, you only need to check Core.less.

	Set the output in case you want to save it elsewhere.

[image: image46]

	Change the output directory. For the Core.less file, its output
directory is $PLATFORM_TOMCAT_HOME/webapps/eXoSkin/skin/css/core.css.

[image: image47]

	Open variables.less and make a few changes, then save it. The
WinLESS will notify you when the file has been successfully compiled
into .css or if any error in the code. By using this way, you can
check the .css output directly, without waiting for the code to
complete its compilation.

[image: image48]

	Refresh the web browsers to see your changes.

Note

If you are using MAC or Linux, you can use Koala [http://koala-app.com/].

Mapping between .less and .css files

Here is the list of .less files corresponding to the compiled .css files
in eXo Platform.

	Projects

	Input Path Less

	Output Path Css

	Platform UI

	platform-ui-skin/src/main/
webapp/skin/less/Core.less

	webapps/eXoSkin/skin/css/C
ore.css

	Calendar

	platform-ui-skin/src/main/
webapp/skin/less/calendar/ca
lendar.less

	webapps/eXoSkin/skin/css/c
alendar/calendar.css

	Commons

	platform-ui-skin/src/main/
webapp/skin/less/commons/ski
n/commons.less

	webapps/eXoSkin/skin/css/c
ommons/skin/commons.css

	ECMS

	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/administration/ecms-admin
istration.less

	webapps/eXoSkin/skin/css/e
cms/portlets/administration/
ecms-administration.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/explorer/ecms-explorer.le
ss

	webapps/eXoSkin/skin/css/e
cms/portlets/explorer/ecms-e
xplorer.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/fastcontentcreator/fast-c
ontent-creator.less

	``webapps/eXoSkin/skin/css/e
cms/portlets/fastcontentcrea
tor/fast-content-creator.css
``

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/presentation/ecms-present
ation-categorynavigationport
let.less

	webapps/eXoSkin/skin/css/e
cms/portlets/presentation/ec
ms-presentation-categorynavi
gationportlet.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/presentation/ecms-present
ation-contentlistviewerportl
et.less

	webapps/eXoSkin/skin/css/e
cms/portlets/presentation/ec
ms-presentation-contentlistv
iewerportlet.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/presentation/ecms-present
ation-singlecontentviewer.le
ss

	webapps/eXoSkin/skin/css/e
cms/portlets/presentation/ec
ms-presentation-singleconten
tviewer.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/portle
ts/search/ecms-search.less

	webapps/eXoSkin/skin/css/e
cms/portlets/search/ecms-sea
rch.css

	
	platform-ui-skin/src/main/
webapp/skin/less/ecms/skin/e
cms-resources-wcmskin.less

	webapps/eXoSkin/skin/css/e
cms/skin/ecms-resources-wcms
kin.css

	Forum

	platform-ui-skin/src/main/
webapp/skin/less/forum/portl
ets/answer/faq.less

	``webapps/eXoSkin/skin/css/f
orum/portlets/answer/faq.css
``

	
	platform-ui-skin/src/main/
webapp/skin/less/forum/portl
ets/forum/forum.less

	webapps/eXoSkin/skin/css/f
orum/portlets/forum/forum.cs
s

	
	platform-ui-skin/src/main/
webapp/skin/less/forum/portl
ets/poll/pollPortlet.less

	webapps/eXoSkin/skin/css/f
orum/portlets/poll/pollPortl
et.css

	
	platform-ui-skin/src/main/
webapp/skin/less/forum/skin/
forum-resources.less

	webapps/eXoSkin/skin/css/f
orum/skin/forum-resources.cs
s

	Integration

	platform-ui-skin/src/main/
webapp/skin/less/integration
/skin/quicksearchpage.less

	webapps/eXoSkin/skin/css/i
ntegration/skin/quicksearchp
age.css

	
	platform-ui-skin/src/main/
webapp/skin/less/integration
/skin/searchAdmin.less

	webapps/eXoSkin/skin/css/i
ntegration/skin/searchAdmin.
css

	
	platform-ui-skin/src/main/
webapp/skin/less/integration
/skin/searchpage.less

	webapps/eXoSkin/skin/css/i
ntegration/skin/searchpage.c
ss

	Platform

	platform-ui-skin/src/main/
webapp/skin/less/platform/sk
in/platform.less

	webapps/eXoSkin/skin/css/p
latform/skin/platform.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/branding/branding.les
s

	webapps/eXoSkin/skin/css/p
latform/portlets/branding/br
anding.css

	
	``platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/extensions/login.less
``

	webapps/eXoSkin/skin/css/p
latform/portlets/extensions/
login.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/extensions/welcome-sc
reens.less

	webapps/eXoSkin/skin/css/p
latform/portlets/extensions/
welcome-screens.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/homepage/calendar.les
s
(Calendar application at the
right navigation)

	webapps/eXoSkin/skin/css/p
latform/portlets/homepage/ca
lendar.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/homepage/gettingstart
ed.less
(Getting Started application
at the right navigation)

	webapps/eXoSkin/skin/css/p
latform/portlets/homepage/ge
ttingstarted.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/homepage/invitations.
less
(Invitations application at
the right navigation)

	webapps/eXoSkin/skin/css/p
latform/portlets/homepage/in
vitations.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/homepage/suggestions.
less
(Suggestions application at
the right navigation)

	webapps/eXoSkin/skin/css/p
latform/portlets/homepage/su
ggestions.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/homepage/whoisonline.
less
(Who’s Online application at
the right navigation)

	webapps/eXoSkin/skin/css/p
latform/portlets/homepage/wh
oisonline.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/notification/notifica
tionsAdmin.less

	webapps/eXoSkin/skin/css/p
latform/portlets/notificatio
n/notificationsAdmin.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
BreadCrumbsNavigationPortlet
/Style.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UIBreadCrumbsNavigat
ionPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
CompanyNavigationPortlet/Sty
le.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UICompanyNavigationP
ortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
GroupsNavigationPortlet/Styl
e.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UIGroupsNavigationPo
rtlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
HelpPlatformToolbarPortlet/S
tyle.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UIHelpPlatformToolba
rPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
SearchPlatformToolbarPortlet
/Style.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UISearchPlatformTool
barPortlet/Style.css

	
	platform-ui/platform-ui-sk
in/src/main/webapp/skin/less
/platform/portlets/platformN
avigation/UISpaceNavigationP
ortlet/Style.less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UISpaceNavigationPor
tlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/platformNavigation/UI
UserNavigationPortlet/Style.
less

	webapps/eXoSkin/skin/css/p
latform/portlets/platformNav
igation/UIUserNavigationPort
let/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/samples/acme-intranet
/SpaceSummaryInfoPortlet.les
s

	webapps/eXoSkin/skin/css/p
latform/portlets/samples/acm
e-intranet/SpaceSummaryInfoP
ortlet.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/samples/acme-website/
Style.less

	webapps/eXoSkin/skin/css/p
latform/portlets/samples/acm
e-website/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/platform/po
rtlets/welcome-screens/terms
andconditions.less

	``webapps/eXoSkin/skin/css/p
latform/portlets/welcome-scr
eens/termsandconditions.css`
`

	
	webapp/skin/less/platform/
portlets/welcome-screens/unl
ockTrial.less

	webapps/eXoSkin/skin/css/p
latform/portlets/welcome-scr
eens/unlockTrial.css

	Portlets

	platform-ui-skin/src/main/
webapp/skin/less/Portlets/Si
teNavigationPortlet/Style.le
ss

	webapps/eXoSkin/skin/css/P
ortlets/SiteNavigationPortle
t/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/Portlets/UI
AccountPortlet/Style.less
(Account portlet)

	webapps/eXoSkin/skin/css/P
ortlets/UIAccountPortlet/Sty
le.css

	
	platform-ui-skin/src/main/
webapp/skin/less/Portlets/UI
ApplicationRegistryPortlet/S
tyle.less
(Registry portlet)

	webapps/eXoSkin/skin/css/P
ortlets/UIApplicationRegistr
yPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/Portlets/UI
OrganizationPortlet/Style.le
ss
(Organization portlet)

	webapps/eXoSkin/skin/css/P
ortlets/UIOrganizationPortle
t/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/Portlets/UI
TabbedDashboardPortlet/Style
.less
(Dashboard portlet)

	webapps/eXoSkin/skin/css/P
ortlets/UITabbedDashboardPor
tlet/Style.css

	Social

	platform-ui-skin/src/main/
webapp/skin/less/social/juzu
-portlet/notification.less

	webapps/eXoSkin/skin/css/s
ocial/juzu-portlet/notificat
ion.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiAllPeoplePortlet/Styl
e.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiAllPeoplePo
rtlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiAllSpacesPortlet/Styl
e.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiAllSpacesPo
rtlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiBannerPortlet/Style.l
ess

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiBannerPortl
et/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiConnectionsNavigation
Portlet/Style.less

	``webapps/eXoSkin/skin/css/s
ocial/portlets/uiConnections
NavigationPortlet/Style.css`
`

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiConnectionsPortlet/St
yle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiConnections
Portlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiFooterPortlet/Style.l
ess

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiFooterPortl
et/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiInvitationSpacesPortl
et/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiInvitationS
pacesPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiInvitationsPortlet/St
yle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiInvitations
Portlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiMembersPortlet/Style.
less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiMembersPort
let/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiMyConnectionsNavigati
onPortlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiMyConnectio
nsNavigationPortlet/Style.cs
s

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiMySpacesPortlet/Style
.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiMySpacesPor
tlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiPendingSpacesPortlet/
Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiPendingSpac
esPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiPeoplePortlet/Style.l
ess

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiPeoplePortl
et/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiPeopleToolbarPortlet/
Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiPeopleToolb
arPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiProfileNavigatonPortl
et/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiProfileNavi
gatonPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiProfilePortlet/Style.
less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiProfilePort
let/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiPublicSpacesPortlet/S
tyle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiPublicSpace
sPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiRequestsPortlet/Style
.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiRequestsPor
tlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSocialDemoHomePagePor
tlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSocialDemoH
omePagePortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSocialDemoNavigationP
ortlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSocialDemoN
avigationPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSocialExtensionHomePa
gePortlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSocialExten
sionHomePagePortlet/Style.cs
s

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSocialExtensionLogoPo
rtlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSocialExten
sionLogoPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSocialNavigationPortl
et/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSocialNavig
ationPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceAccessPortlet/St
yle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceAccess
Portlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceActivityStreamPo
rtlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceActivi
tyStreamPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceMenuPortlet/Styl
e.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceMenuPo
rtlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceNavigationPortle
t/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceNaviga
tionPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceSettingPortlet/S
tyle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceSettin
gPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiSpaceToolbarPortlet/S
tyle.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiSpaceToolba
rPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiUserActivityStreamPor
tlet/Style.less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiUserActivit
yStreamPortlet/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/port
lets/uiWarningPortlet/Style.
less

	webapps/eXoSkin/skin/css/s
ocial/portlets/uiWarningPort
let/Style.css

	
	platform-ui-skin/src/main/
webapp/skin/less/social/skin
/social.less

	webapps/eXoSkin/skin/css/s
ocial/skin/social.css

	Wiki

	platform-ui-skin/src/main/
webapp/skin/less/wiki/wiki.l
ess

	webapps/eXoSkin/skin/css/w
iki/wiki.css

Customizing layout

This section covers the following topics:

	Customizing a site layout

	Customizing a page layout

	Customizing a shared layout

Customizing a site layout

Skins define the color scheme and other appearance aspects of the
layout, such as graphics, fonts, or font size. Thus, the way you
customize your site layout will require you to impact your skin’s CSS
code.

In this section, instructions are related to the configuration, for
example you can see a sample of Intranet site
here [https://github.com/exoplatform/platform/blob/master/samples/acme-intranet/webapp/src/main/webapp/WEB-INF/conf/office-extension/portal/portal/intranet/portal.xml].
You can leave all the portlet’s preferences as blank, that means the
default value will be taken and you do not need to care about it at this
time.

The Intranet site is decorated with the default layout as below:

[image: image49]

As an example, here are steps to alter the layout of Intranet site by
moving the MY SPACES portlet from left to the right corner.

	Register a NewPortalConfigListener into UserPortalConfigService
under the custom-extension.war!/WEB-INF/conf/myintranet-conf/my-portal-configuration.xml
file.

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <!-- The full qualified name of the UserPortalConfigService -->
 <target-component>org.exoplatform.portal.config.UserPortalConfigService</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>new.portal.config.user.listener</name>
 <!-- The name of the method to call on the UserPortalConfigService in order to register the NewPortalConfigs -->
 <set-method>initListener</set-method>
 <!-- The full qualified name of the NewPortalConfigListener -->
 <type>org.exoplatform.portal.config.NewPortalConfigListener</type>
 <description>this listener init the portal configuration</description>
 <init-params>
 <object-param>
 <name>portal.configuration</name>
 <description>description</description>
 <object type="org.exoplatform.portal.config.NewPortalConfig">
 <field name="predefinedOwner">
 <collection type="java.util.HashSet">
 <value>
 <string>intranet</string>
 </value>
 </collection>
 </field>
 <field name="ownerType">
 <string>portal</string>
 </field>
 <field name="templateLocation">
 <string>war:/conf/myintranet-conf</string>
 </field>
 <field name="importMode"><string>merge</string></field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Import my-portal-configuration.xml into
custom-extension.war!/WEB-INF/conf/configuration.xml.

<import>war:/conf/mysite-config/my-portal-configuration.xml</import>

	Create portal.xml to override configuration of the Intranet site
under custom-extension.war!/WEB-INF/myintranet-conf/portal/intranet.

<portal-config>
 <portal-name>intranet</portal-name>
 <locale>en</locale>
 <access-permissions>*:/platform/users</access-permissions>
 <edit-permission>*:/platform/administrators</edit-permission>
 <properties>
 <entry key="sessionAlive">onDemand</entry>
 <entry key="showPortletInfo">0</entry>
 </properties>

 <portal-layout>
 <move-apps-permissions>*:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>*:/platform/administrators</move-containers-permissions>
 <container template="system:/groovy/portal/webui/container/UITableColumnContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>

 <container id="Left" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UICompanyNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>

 <container id="Body" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <page-body> </page-body>
 </container>

 <container id="Right" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UISpaceNavigationPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 </container>
 </portal-layout>
</portal-config>

As you see in the portal.xml file above, every <container> tag
has an id attribute, for example “<container id = ‘Right’>”.
The UISpaceNavigationPortlet is registered in this container that
specifies the new position (right) of Space portlet. When you create a
CSS file, the property applied for this container should have the
following name manner:

${container_id}TDContainer

and the details of this container:

RightTDContainer

The reason is, when you have a look at the file system:
/groovy/portal/webui/container/UITableColumnContainer.gtmpl shown
above, you will see this code fragment:

<table class="UITableColumnContainer"
 style="table-layout: fixed; margin: 0px auto;">
 <tr class="TRContainer">
 <% for(uiChild in uicomponent.getChildren()) {%>
 <td class="${uiChild.id}TDContainer TDContainer"><%
 uicomponent.renderUIComponent(uiChild) %></td> <% } %>
 </tr>
</table>

So, in the table element (which represents the outer container),
there are many td elements, each of which has the class
attribute that equals to the id of the corresponding child component
plus the “TDContainer” string literal.

	Create a DefaultStylesheet.css file under
custom-extension.war!/templates/skin with the following content:

.RightTDContainer {
 width: 200px;
}

.BodyTDContainer {

}

.LeftTDContainer {
 width: 200px;
}

	Register the newly created CSS in the above step for the Default skin
which is currently used by the Intranet site under the
gatein-resources.xml.

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <portal-skin>
 <skin-name>Default</skin-name>
 <skin-module>myintranet-css</skin-module>
 <css-path>/templates/skin/DefaultStylesheet.css</css-path>
 </portal-skin>
</gatein-resources>

	Restart the server. The position of MY SPACE portlet is now
rearranged at the top right corner of Intranet site.

[image: image50]

Note

	For customizing the top navigation bar and branding, see Customizing a shared layout.

	For customizing the right body of a site, see Customizing a page layout.

Customizing a page layout

This section is related to the configuration. You can see a sample of
Intranet
here [https://github.com/exoplatform/platform/blob/master/samples/acme-intranet/webapp/src/main/webapp/WEB-INF/conf/office-extension/portal/portal/intranet/pages.xml].
You can leave all the portlet’s preferences as blank, this means the
default value will be taken and you do not need to care about it at this
time.

Like the site layout, you can easily define the layout for each page in
a site easily.

As an example, here are steps to alter the homepage layout of Intranet
by moving the Getting Started and Calendar portlets from right
to the left corner.

	Follow steps 1 and
2 which are similar when you
change the site layout.

	Create pages.xml to override configuration of the Intranet site
under custom-extension.war!/WEB-INF/myintranet-conf/portal/intranet.

<page-set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://www.gatein.org/xml/ns/gatein_objects_1_2"
 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">

 <page>
 <name>homepage</name>
 <title>Home Page</title>
 <access-permissions>Everyone</access-permissions>
 <move-apps-permissions>*:/platform/administrators</move-apps-permissions>
 <move-containers-permissions>*:/platform/administrators</move-containers-permissions>
 <container template="system:/groovy/portal/webui/container/UITableColumnContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <container id="Left" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>homepage-portlets</application-ref>
 <portlet-ref>GettingStartedPortlet</portlet-ref>
 </portlet>
 <title>Getting Started</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>

 <portlet-application>
 <portlet>
 <application-ref>homepage-portlets</application-ref>
 <portlet-ref>HomePageCalendarPortlet</portlet-ref>
 </portlet>
 <title>Calendar Portlet</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>
 </container>

 <container template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <access-permissions>Everyone</access-permissions>
 <portlet-application>
 <portlet>
 <application-ref>social-portlet</application-ref>
 <portlet-ref>UserActivityStreamPortlet</portlet-ref>
 </portlet>
 <title>User Activity Stream</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>
 </container>
 </container>
 </page>
</page-set>

As you see in the pages.xml file above, the
GettingStartedPortlet and HomePageCalendarPortlet are
registered in the container with id = “Left” that specifies the
new position (left) of Getting Started and Calendar portlets.

	Follow steps 5 and
6. The Getting Started
and Calendar portlets are now in the left that is different from
its default page layout:

[image: image51]

Customizing a shared layout

In eXo Platform, the top navigation bar is a special container which is
composed of portlets. All sites share the same top navigation bar that
is defined in
platform-extension.war!/WEB-INF/conf/portal/portal/sharedlayout.xml.
You can see its content
here [https://github.com/exoplatform/platform/blob/master/extension/webapp/src/main/webapp/WEB-INF/conf/portal/portal/sharedlayout.xml].
This sharedlayout.xml file configures portlets which are currently
displayed on the top navigation bar.

[image: image52]

To override the default shared layout, you first need to copy the
sharedlayout.xml file from
platform-extension.war!/WEB-INF/conf/portal/portal/ and paste into
custom-extension.war!/WEB-INF/conf/portal/portal/ directory.

Followings are 4 typical examples of the top navigation bar
configuration: removing a portlet, adding a new portlet, changing the
color scheme and modifying the configuration of a portlet.

Removing a portlet from the top navigation bar

Assume that you want to remove the Help portlet from the top
navigation bar, do as follows:

	Remove the following block from
custom-extension.war!/WEB-INF/conf/portal/portal/sharedlayout.xml.

...
<container id="UIHelpPlatformToolbarPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <portlet-application>
 <portlet>
 <application-ref>platformNavigation</application-ref>
 <portlet-ref>UIHelpPlatformToolbarPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
</container>
...

	Deploy your extension and restart the server. The Help portlet (
[image: image53]) is now removed from the top navigation bar.

[image: image54]

Adding a portlet to the top navigation bar

Assume that you want to add the SEO portlet to the top navigation
bar, do as follows:

	Add the following block to
custom-extension.war!/WEB-INF/conf/portal/portal/sharedlayout.xml.

...
<container id="SEOToolbarPortlet" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <portlet-application>
 <portlet>
 <application-ref>seo</application-ref>
 <portlet-ref>SEOToolbarPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/administrators; editor:/platform/web-contributors</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
</container>
...

	Deploy your extension and restart the server. The SEO portlet
will appear on the top navigation bar.

[image: image55]

Changing the style of top navigation bar

The default style of the top navigation bar is defined in the
webapps/eXoPlatformResources.war!/skin/css/platform.css file. In
particular:

	Style of background on the top navigation bar, such as color, image,
border bottom and height.

.UIToolbarContainerDark .NormalContainerBlock .ToolbarContainer {
 background-color: #535353;
 background-image: linear-gradient(to bottom, #5B5B5B, #474747);
 background-repeat: repeat-x;
 border-bottom: 1px solid #2C3440;
 height: 41px;
}

	Color of texts on the top navigation bar.

.UIToolbarContainerDark .uiDropdownWithIcon > a {
 color: #FFFFFF;
}

	Style of split lines.

.UIToolbarContainerDark .uiDropdownWithIcon {
 background: url("/eXoPlatformResources/skin/images/ToolbarContainer/line.png") no-repeat scroll left top transparent;
}

	Style of icons displayed on the top navigation bar, such as position,
background image, height, width.

.uiIconPLF24x24Edit {
 background-position: 0 0;
}
[class^="uiIconPLF24x24"] {
 background-image: url("/eXoPlatformResources/skin/images/icons/uiIconsPLF24x24White.png");
 background-repeat: no-repeat;
 display: inline-block;
 height: 24px;
 line-height: 24px;
 vertical-align: middle;
 width: 24px;
}

In eXo Platform, customizing the top navigation bar can be performed in the
custom-extension.war!/templates/skin/DefaultStylesheet.css file. As
an example, here are steps to change the style of the top navigation
bar, including the color of background (from dark to grey), of texts and
icons (from white to dark) and split lines (from dark grey to light
grey).

	Add the following stylesheets to the
custom-extension.war!/templates/skin/DefaultStylesheet.css file.

.UIToolbarContainerDark .uiDropdownWithIcon > a {
 color: #4C4C4C;
}

.UIToolbarContainerDark .NormalContainerBlock .ToolbarContainer {
 background-color: #E7E7E7;
 background-image: linear-gradient(to bottom, #F4F4F4, #D4D4D4);
 background-repeat: repeat-x;
 border-bottom: 1px solid #CCCCCC;
}

.UIToolbarContainerDark [class^="uiIconPLF24x24"], .UIToolbarContainerDark a:hover [class^="uiIconPLF24x24"], .UIToolbarContainerDark[class^="uiIconPLF24x24"]:hover {
 background-image: url("/eXoPlatformResources/skin/platformSkin/images/icons/uiIconsPLF24x24DarkGray.png");
}

.UIToolbarContainerDark .uiDropdownWithIcon > a:hover, .UIToolbarContainerDark .uiDropdownWithIcon .uiDropdownWithIcon.open > a {
 background: none repeat scroll 0 0 rgba(128, 128, 128, 0.3);
 color: #333333;
}

.UIToolbarContainerDark .uiDropdownWithIcon {
 background: url("/eXoPlatformResources/skin/platformSkin/images/ToolbarContainer/line.png") no-repeat scroll left bottom transparent;
}

.uiIconPLF24x24Edit {
 background-position: 0 0;
}

	Register your CSS file to Default skin, by adding
custom-extension.war!/WEB-INF/gatein-resources.xml:

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <portal-skin>
 <skin-name>Default</skin-name>
 <skin-module>myintranet-css</skin-module>
 <css-path>/templates/skin/DefaultStylesheet.css</css-path>
 </portal-skin>
</gatein-resources>

	Deploy your extension and restart the server. The new style of the top
navigation bar is displayed below that is different from its default
style.

[image: image56]

Note

You can also:

	Use the :ref:`Branding portlet <BrandingeXoPlatform>`to change the logo and color of the top navigation bar.

	Create a new CSS file in Sites Explorer by menu [image: image57] Content Sites Explorer Sites Management “shared” drive “css” folder. See

Creating a global stylesheet for details.

Changing configuration of the top navigation bar

Assume that you want to change the navigation link of the Help
portlet, you need to override this portlet’s configuration under
platform-component-uxpnavigation-*.jar!/conf/portal/configuration.xml
by your own extension. Below are steps to do this:

	Copy the configuration.xml file from
platform-component-uxpnavigation-*.jar!/conf/portal/ and paste
into custom-extension.war!/WEB-INF/classes/conf/portal/.

	Modify pairs of name and value attribute as your desire.
These pairs define which navigation link is corresponding to which
platform context. For example, name="Company Context Home" and
value="http://www.exoplatform.com/company/en/company/about-us"
mean that if users are staying at platform homepage, then clicking on
the Help link will redirect them to the address indicated by the
value attribute.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <component>
 <key>org.exoplatform.platform.navigation.component.help.HelpService</key>
 <type>org.exoplatform.platform.navigation.component.help.impl.HelpServiceImpl</type>

 <init-params>
 <properties-param>
 <name>help.pages</name>
 <description>Help Pages match definition</description>
 <property name="Company Context Home"
 value="http://www.exoplatform.com/company/en/company/about-us"/>
 <property name="Company Context Calendar"
 value="https://docs.exoplatform.org/PLF44/PLFUG/CALENDAR.html"/>
 <property name="Company Context Wiki" value="https://docs.exoplatform.org/PLF42/PLFUG/WIKI.html"/>
 <property name="Company Context Forum"
 value="https://docs.exoplatform.org/PLF44/PLFUG/FORUM.html"/>
 <property name="Company Context FAQ:Answers"
 value="https://docs.exoplatform.org/PLF44/PLFUG/ANSWERS.html"/>
 <property name="Company Context Documents"
 value="https://docs.exoplatform.org/PLF44/PLFUG/DOCUMENTS.html"/>
 <property name="Company Context Connections"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/CONNECTIONS.html"/>
 <property name="personnal:all-spaces"
 value="https://docs.exoplatform.org/PLF44/PLFUG/SPACE.html"/>
 <property name="personnal:connections"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/CONNECTIONS.html"/>
 <property name="personnal:activities"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/ACTIVITY.html"/>
 <property name="personnal:notifications"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/NOTIFICATIONS.html"/>
 <property name="personnal:profile"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/PROFILE.html"/>
 <property name="personnal:wiki"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/WIKI.html"/>
 <property name="dashboard"
 value="https://docs.exoplatform.org/PLF44/PLFUG/APPS/DASHBOARD.html"/>
 <property name="space:activity_stream"
 value="https://docs.exoplatform.org/PLF44/PLFUG/SPACE.html"/>
 <property name="space:manager"
 value="https://docs.exoplatform.org/PLF44/PLFUG/SPACE.html"/>
 <property name="space:wiki"
 value="https://docs.exoplatform.org/PLF44/PLFUG/WIKI.html"/>
 <property name="space:forum"
 value="https://docs.exoplatform.org/PLF44/PLFUG/FORUM.html"/>
 <property name="space:calendar"
 value="https://docs.exoplatform.org/PLF44/PLFUG/CALENDAR.html"/>
 <property name="space:faq_annswer"
 value="https://docs.exoplatform.org/PLF44/PLFUG/ANSWERS.html"/>
 <property name="space:document"
 value="https://docs.exoplatform.org/PLF44/PLFUG/DOCUMENTS.html"/>
 <property name="default"
 value="https://docs.exoplatform.org/PLF44/PLFUG.html"/>
 </properties-param>
 </init-params>
 </component>
 <component>
 <key>org.exoplatform.platform.navigation.component.breadcrumb.UserNavigationHandlerService</key>
 <type>org.exoplatform.platform.navigation.component.breadcrumb.impl.UserNavigationHandlerServiceImpl</type>
 <init-params>
 <values-param>
 <name>user.navigation.uri</name>
 <value>profile</value>
 <value>edit-profile</value>
 <value>connections</value>
 <value>activities</value>
 <value>connections/all-people</value>
 <value>connections/network</value>
 <value>connections/receivedInvitations</value>
 <value>connections/pendingRequests</value>
 <value>connections/yours</value>
 <value>connections/invitations</value>
 <value>connections/requests</value>
 </values-param>
 </init-params>
 </component>
</configuration>

	Deploy your extension and restart the server. Now, when you click on
the Help icon, you will be redirected to the corresponding address as
shown above.

Upload component

In this section, you will learn how to configure the Upload service
that is defined by the org.exoplatform.upload.UploadService class.

This can be configured with the following XML code:

<component>
 <type>org.exoplatform.upload.UploadService</type>
 <init-params>
 <value-param>
 <name>upload.limit.size</name>
 <description>Maximum size of the file to upload in MB</description>
 <value>10</value>
 </value-param>
 </init-params>
 </component>

This code allows uploading files with the default size limit (10MB). The
default value unit is in Megabytes.

This limitation will be used by default by all applications if no
application-specific limit is set.

If the value is set to 0, the upload size is unlimited.

Using the Upload component

	Create an org.exoplatform.webui.form.input.UIUploadInput object
type by using one of three following constructors:

	The default constructor that allows uploading the file with the size
of 10 MB.

public UIUploadInput(String name, String bindingExpression, int limitFile)

	This constructor allows you to customize the size limit of uploaded
files by using the limitSize parameter. The default value unit is
Megabytes.

public UIUploadInput(String name, String bindingExpression,int limitFile, int limitSize)

	This constructor allows you to customize the size limit and the value
unit by using the limitSize and unit parameters respectively.

In eXo Platform, you can set the value unit to Megabytes (MB),
Kilobytes (KB) or Gigabytes (GB).

public UIUploadInput(String name, String bindingExpression, int limitFile, int limitSize, UploadUnit unit)

The following is an example using the third form:

PortletRequestContext pcontext = (PortletRequestContext)WebuiRequestContext.getCurrentInstance();
 PortletPreferences portletPref = pcontext.getRequest().getPreferences();
 int limitFile = Integer.parseInt(portletPref.getValue("uploadFileLimit", "1").trim());
 int limitSize = Integer.parseInt(portletPref.getValue("uploadFileSizeLimit", "").trim());
 UploadUnit limitUnit = UploadUnit.valueOf(portletPref.getValue("uploadFileLimitUnit", "MB").trim());
UIUploadInput uiInput = new UIUploadInput("upload", "upload", limitFile, limitSize, limitUnit);

	Obtain the limitation from the XML configuration by adding the
following code to either portlet.xml or portlet-preferences.xml:

<! The number of files are uploaded -->
<preference>
 <name>uploadFileLimit</name>
 <value>3</value>
 <read-only>false</read-only>
</preference>
<! The size limit -->
<preference>
 <name>uploadFileSizeLimit</name>
 <value>300</value>
 <read-only>false</read-only>
</preference>
<! The unit limit -->
<preference>
 <name>uploadFileLimitUnit</name>
 <value>KB</value>
 <read-only>false</read-only>
</preference>

Note

The 0 value means the upload size is unlimited, and the value unit is set to MegaBytes.

	Use the getUploadDataAsStream() method to get the uploaded data:

UIUploadInput input = (UIUploadInput)uiForm.getUIInput("upload");
InputStream[] inputStreams = input.getUploadDataAsStreams();
...

The upload service stores a temporary file on the file system during the
upload process. When the upload is finished, the service must be cleaned
to:

	Delete the temporary file.

	Delete the classes used for the upload.

	Use the removeUploadResource(String uploadId) method defined in
the upload service to purge the file:

UploadService uploadService = uiForm.getApplicationComponent(UploadService.class) ;
UIUploadInput uiChild = uiForm.getChild(UIFormUploadInput.class) ;
for(String uploadId : uiChild.getUploadIds()) {
 uploadService.removeUpload(uploadId) ;
}

Note

Ensure the file is saved before the service is cleaned.

Internationalization configuration

This chapter covers:

	Locales configuration
Provision of the configuration for defining which languages are
available to users in the “Change Language” section.

	ResourceBundleService
Description of the ResourceBundleService configuration.

	Navigation resource bundles
Description of the language configuration for navigation.

	Portlets
Description of the language configuration for portlets.

	Translating the language selection form
Instructions on how to translate a language in the Interface Language
Setting.

Note

Assumed Knowledge

eXo Platform is fully configurable for internationalization;
however, users should have a general knowledge of
Internationalization in Java products before attempting these
configurations.

Oracle Java hosts a comprehensive guide to internationalize
Java products `here <http://docs.oracle.com/javase/tutorial/i18n/TOC.html>http://docs.oracle.com/javase/tutorial/i18n/TOC.html>`__.

All eXo Platform applications contain property files for various
languages.
They are packaged with the portlets applications in a
WEB-INF/classes/locale/ directory.

These files are located in the classes folder of the WEB-INF directory
to be loaded by the class loader.

All resource files are in a subfolder named locale.

For example, the translations for the NavigationPortlet are located in
web.war/WEB-INF/classes/locale/portlet/portal.

NavigationPortlet_de.properties
NavigationPortlet_en.properties
NavigationPortlet_es.properties
NavigationPortlet_fr.properties
NavigationPortlet_nl.properties
NavigationPortlet_ru.properties
NavigationPortlet_uk.properties
NavigationPortlet_ar.xml

Those files contain typical key=value Java EE properties. For example,
the French one:

javax.portlet.title=Portlet Navigation

There are also properties files in the portal itself. They form the
portal resource bundle.

From a portlet, you can then access translations from the portlet itself
or shared at the portal level, both are aggregated when you need them.

Note

Translation in XML format

It is also possible to use a proprietary XML format to define
translations. This is a more convenient way for some languages, such
as Japanese, Arabic or Russian. Property files have to be ISO 8859-1
encoded with Unicode escape sequences, while the XML file can define
its encoding. As a result, it is easier for you to read or edit a
translation in XML instead of handling the Unicode escape sequences
in property files.
For more information, refer to ResourceBundleService section

Locales configuration

Various languages are available in the portal package. The configuration
below will define which languages shown in the “Change Language” section
and made available to users.

The portal.war:/WEB-INF/conf/common/common-configuration.xml file of
your installation contains the following section:

<component>
 <key>org.exoplatform.services.resources.LocaleConfigService</key>
 <type>org.exoplatform.services.resources.impl.LocaleConfigServiceImpl</type>
 <init-params>
 <value-param>
 <name>locale.config.file</name>
 <value>war:/conf/common/locales-config.xml</value>
 </value-param>
 </init-params>
</component>

This configuration points to the locale configuration file
(portal.war:/WEB-INF/conf/common/locales-config.xml) that contains
the following code:

<?xml version="1.0" encoding="UTF-8"?>
<locales-config>
 <locale-config>
 <locale>en</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Default configuration for english locale</description>
 </locale-config>

 <locale-config>
 <locale>fr</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Default configuration for the french locale</description>
 </locale-config>

 <locale-config>
 <locale>ar</locale>
 <output-encoding>UTF-8</output-encoding>
 <input-encoding>UTF-8</input-encoding>
 <description>Default configuration for the arabic locale</description>
 <orientation>rt</orientation>
 </locale-config>
</locales-config>

	locale: This has to be defined, such as
` http://ftp.ics.uci.edu-pub-ietf-http-related-iso639.txt <http://ftp.ics.uci.edu-pub-ietf-http-related-iso639.txt>`__. In
this example, “ar” is Arabic.

	output-encoding: This deals with the character encoding. It is
recommended that UTF-8 be used.

	input-encoding: In the Java implementation, the encoding parameters
will be used for the request response stream. The input-encoding
parameter will be used for requesting setCharacterEncoding(..).

	description: Brief description of the language.

	orientation: The default orientation of text and images is
Left-To-Right. eXo Platform supports Right-To-Left orientation.
Modifying the text orientation is explained in ?.

ResourceBundleService

The resource bundle service is configured in:
portal.war:/WEB-INF/conf/common/common-configuration.xml:

<component>
 <key>org.exoplatform.services.resources.ResourceBundleService</key>
 <type>org.exoplatform.services.resources.impl.SimpleResourceBundleService</type>
 <init-params>
 <values-param>
 <name>classpath.resources</name>
 <description>The resources that start with the following package name should be load from file system</description>
 <value>locale.portlet</value>
 </values-param>
 <values-param>
 <name>init.resources</name>
 <description>Initiate the following resources during the first launch</description>
 <value>locale.portal.expression</value>
 <value>locale.portal.services</value>
 <value>locale.portal.webui</value>
 <value>locale.portal.custom</value>
 <value>locale.navigation.portal.classic</value>
 <value>locale.navigation.group.platform.administrators</value>
 <value>locale.navigation.group.platform.users</value>
 <value>locale.navigation.group.platform.guests</value>
 <value>locale.navigation.group.organization.management.executive-board</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <description>The properties files of the portal , those file will be merged
 into one ResoruceBundle properties </description>
 <value>locale.portal.expression</value>
 <value>locale.portal.services</value>
 <value>locale.portal.webui</value>
 <value>locale.portal.custom</value>
 </values-param>
 </init-params>
</component>

	classpath.resources: This is discussed in the later section.

	init.resources: Initiates resources related to portal, group, user
resource bundle.

	portal.resource.names: Defines all resources that belong to the
Portal Resource Bundle.

These resources are merged into a single resource bundle which is
accessible from anywhere in eXo Platform. All these keys are located in the
same bundle, which is separated from the navigation resource bundles.

Navigation resource bundles

There is a resource bundle for each navigation. A navigation can exist
for user, groups and portal.

The previous example shows bundle definitions for the navigation of the
classic portal and of four different groups. Each of these resource
bundles occupies a different sphere, they are independent of each other
and they are not included in the portal.resource.names parameter.

The properties for a group must be in the
WEB-INF/classes/locale/navigation/group/ folder. For example,
/WEB-INF/classes/locale/navigation/group/organization/management/executive-board_en.properties.

The folder and file names must correspond to the group hierarchy. The
group name “executive-board” is followed by the ISO 639 code.

Each language defined in LocalesConfig must have a resource file
defined. If the name of a group is changed, the name of the folder
and/or files of the correspondent navigation resource bundles must also
be changed.

Content of executive-board_en.properties:

organization.title=Organization
organization.newstaff=New Staff
organization.management=Management

This resource bundle is only accessible for the navigation of the
organization.management.executive-board group.

Portlets

Portlets are independent applications and deliver their own resource
files.

All shipped portlet resources are located in the locale/portlet
subfolder. The ResourceBundleService parameter called
classpath.resources defines this subfolder.

Example: Adding a Spanish translation to GadgetPortlet

	Create the GadgetPortlet_es.properties file in:
WEB-INF/classes/locale/portlet/gadget/GadgetPortlet.

	Add Spanish as a supported-locale to portlet.xml (‘es’ is
the 2 letters code for Spanish). The resource-bundle is already
declared and is the same for all languages:

<supported-locale>en</supported-locale>
 <supported-locale>es</supported-locale>
 <resource-bundle>locale.portlet.gadget.GadgetPortlet</resource-bundle>

See the portlet specification for more details about the portlet
internationalization.

Standard portlet resource keys

The portlet specifications define three standard keys: Title, Short
Title and Keywords. Keywords are formatted as a comma-separated list of
tags.

javax.portlet.title=Breadcrumbs Portlet
javax.portlet.short-title=Breadcrumbs
javax.portlet.keywords=Breadcrumbs, Breadcrumb

Debugging resource bundle usage

When translating an application, it can sometimes be important to find
out which key underlies some given labels in the user interface. eXo Platform
offers the Magic locale to handle such situations.

You can start the Portal in debug mode and use the Magic locale
from the list of available portal languages to assist in finding the
correct translated key value.

This special locale translates a key to the same value. For example, the
translated value for the “organization.title” key is the
“organization.title” value. Selecting Magic locale allows use of the
portal and its applications with all the keys visible. This makes it
easier to discover the correct key for a given label in the portal page.

Accessing the Magic Locale:

	Start the portal in debug mode by executing the following command-line
argument:

[USER@HOST jboss-jpp-6.0]$./bin/standalone.sh -
Dexo.product.developing=true

	Open http://localhost:8080/portal/classic to display eXo Platform
landing page.

	Click Change Language.

	Select ma from the list of available languages to activate the Magic
locale.

Translating the language selection form

[image: image0]

When choosing a language as on the screenshot above, the user is
presented with a list of languages on the left side in the current
chosen language and on the right side, the same language translated into
its own language. Those texts are obtained from the JDK API
java.util.Locale.getDisplayedLanguage() and
java.util.Locale.getDisplayedCountry() (if needed) and all languages
may not be translated and can also depend on the JVM currently used. It
is still possible to override those values by editing the
locale.portal.webui resource bundle. To do this, edit the
gatein.ear/portal.war/WEB-INF/classes/locale/portal/webui_xx_yy.properties
where xx_yy represents the country code of the language in which you
want to translate a particular language. In that file, add or modify a
key, such as Locale.xx_yy with the value being the translated string.

Example: Changing the displayed text for Traditional Chinese in French

First edit
gatein.ear/portal.war/WEB-INF/classes/locale/portal/webui_fr.properties
where ne is the country code for French, and add the following key
into it:

Locale.zh_TW=Chinois traditionnel

After a restart, the language will be updated in the user interface when
a user is trying to change the current language.

Developing Content

This chapter provides developers with techniques for developing
components in Content, usually known as Sites Explorer and Content
Administration.

	Content form
Shows you how to develop a “content” - from its back-end as a JCR
node type to the UI.

	Dialog validator
A validator is a part of a content edit form (called dialog),
that helps validate user input, and can be re-used by varied
dialogs.

	Content List templates
While a View is supposed to display a single content, a List
provides methods to query content - possibly of different types -
and layouts to display the content.

	Publication lifecycle
eXo Platform provides a built-in publication lifecycle but you
can create a new one.

	CKEditor
CKEditor is included in eXo Platform already. This tutorial gives
a help in customizing or writing new tools with it.

	Categories
Let’s get familiar with the concepts of category and category
tree in eXo Platform.

	Script action
Tutorial of writing an ECMS action, a very useful feature for
developers to make things happen in a Content system.

	Adding a Contextual Menu Entry
Tutorial of writing a Contextual Menu Entry.

Content form

eXo Platform comes with a bunch of content forms (Web Content, Illustrated
Web Content, File and more). For some reasons, you may want to create
your own content form. To do that, follow either of the following ways:

	Directly inline, via the Content Administration interface. See Node Types
and Document templates
for more details.

	In your extension,
via XML configuration files as described in this section.

This tutorial instructs you to create your own content form named
“Article” by using a custom extension.
This custom extension requires a jar and a war, so make sure you are
aware of creating and deploying these files into eXo Platform.

Below are steps for the war. In this context, the webapp name is
custom-form that needs to be configured properly in the jar.

[image: image0]

Step 1. Creating a new content type named “exo:article”

	Edit custom-form.war!/WEB-INF/conf/mycustom-conf/nodetypes/nodetype-configuration.xml.
This file contains the full definition of the content type, for
example:

<nodeTypes xmlns:nt="http://www.jcp.org/jcr/nt/1.0" xmlns:mix="http://www.jcp.org/jcr/mix/1.0"
 xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <nodeType name="exo:article" isMixin="false" hasOrderableChildNodes="false" primaryItemName="">
 <supertypes>
 <supertype>nt:base</supertype>
 <supertype>mix:referenceable</supertype>
 <supertype>exo:rss-enable</supertype>
 </supertypes>
 <propertyDefinitions>
 <propertyDefinition name="exo:text" requiredType="String" autoCreated="false" mandatory="false"
 onParentVersion="COPY"
 protected="false" multiple="false">
 <valueConstraints/>
 </propertyDefinition>
 </propertyDefinitions>
 <childNodeDefinitions>
 <childNodeDefinition name="*" defaultPrimaryType="nt:file" autoCreated="false" mandatory="false"
 onParentVersion="COPY" protected="false" sameNameSiblings="true">
 <requiredPrimaryTypes>
 <requiredPrimaryType>nt:file</requiredPrimaryType>
 </requiredPrimaryTypes>
 </childNodeDefinition>
 </childNodeDefinitions>
 </nodeType>
</nodeTypes>

By defining a supertype, you can reuse other content types and extend
them with more properties (just like inheritance in Object Oriented
Programming).

	Register the content type into
custom-form.war!/WEB-INF/conf/mycustom-conf/jcr/jcr-configuration.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.services.jcr.RepositoryService</target-component>
 <component-plugin>
 <name>add.nodeType</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNodeTypePlugin</type>
 <init-params>
 <values-param>
 <name>autoCreatedInNewRepository</name>
 <description>Node types configuration file</description>
 <value>war:/conf/mycustom-conf/nodetypes/nodetype-configuration.xml</value>
 </values-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

	Import jcr-configuration.xml inside
custom-form.war!/WEB-INF/conf/configuration.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <import>war:/conf/mycustom-conf/jcr/jcr-configuration.xml</import>
</configuration>

To view this content type through UI, you also need to create templates
linked to it, as described in Step 2. Creating a content template for the content type.

Step 2. Creating a content template for the content type

There are three of templates applied to a content type:

	Dialog is in the HTML form that allows creating node instances.

	View is in the HTML fragments which are used to display nodes.

	CSS can be embedded into the Views template to define how to
display HTML elements.

This tutorial only instructs how to create Dialog and View templates
that are mandatory. If you want to add CSS for your content type, create
Stylesheet.css under
custom-form.war!/WEB-INF/conf/mycustom-conf/nodetypes/artifacts/article/css.
You can use CSS templates to embed into the View template. See the
CSS
section for how to create a CSS template.

	Edit the Dialog template for the exo:article content type under
custom-form.war!/WEB-INF/conf/mycustom-conf/nodetypes/artifacts/article/dialogs/dialog1.gtmpl.
This step is mandatory.

<div class="UIForm FormLayout FormScrollLayout">
<%
uiform.begin()
%>
<%/* start render action*/%>
<% if (uiform.isShowActionsOnTop()) {
 uiform.processRenderAction()
}
%>
<%/* end render action*/%>
<div class="HorizontalLayout">
 <table class="UIFormGrid">
 <tr>
 <td class="FieldLabel">
 <label for="title">Title</label>
 </td>
 <td class="FieldComponent">
 <%
 String[] fieldTitle = ["jcrPath=/node/exo:title", "options=noSanitization", "validate=empty"] ;
 uicomponent.addTextField("title", fieldTitle) ;
 %>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 <label for="name">Name</label>
 </td>
 <td class="FieldComponent">
 <%
 String[] fieldName = ["jcrPath=/node", "options=noSanitization",
 "mixintype=mix:votable,mix:commentable,mix:i18n,mix:versionable", "editable=if-null",
 "validate=empty,name"] ;
 uicomponent.addTextField("name", fieldName) ;
 %>
 <script type="text/javascript">
 titleField = document.getElementById("title");
 titleField.onchange = function() { eXo.ecm.SELocalization.cleanName(this.value, "name"); } ;
 </script>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 <label for="content-lang">Language</label>
 </td>
 <td class="FieldComponent">
 <%
 String lang = org.exoplatform.portal.webui.util.Util.getPortalRequestContext().getLocale().toString();
 String[] fieldLang = ["jcrPath=/node/exo:language",
 "script=ecm-explorer/widget/FillSelectBoxWithLanguage.groovy", lang] ;
 uicomponent.addSelectBoxField("content-lang", fieldLang) ;
 %>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 <label for="summary">Summary</label>
 </td>
 <td class="FieldComponent">
 <div class="UIFCKEditor">
 <%
 String[] fieldSummary = ["jcrPath=/node/exo:summary", "options=Basic", ""] ;
 uicomponent.addRichtextField("summary", fieldSummary) ;
 %>
 </div>
 </td>
 </tr>
 <tr>
 <td class="FieldLabel">
 <label for="content">Content</label>
 </td>
 <td class="FieldComponent">
 <div class="UIFCKEditor">
 <%
 String[] fieldContent = ["jcrPath=/node/exo:text",
 "options=toolbar:CompleteWCM,'height:410px',noSanitization", ""] ;
 uicomponent.addRichtextField("content", fieldContent) ;
 %>
 </div>
 </td>
 </tr>
 </table>

</div>

<% if (!uiform.isShowActionsOnTop()) {
uiform.processRenderAction()
}
%>
<%uiform.end()%>
</div>

To create a Dialog template, you first need to understand the dialog
syntaxes. See
here
for its basic syntaxes.

	Edit the View template for the exo:article content type under
custom-form.war!/WEB-INF/conf/mycustom-conf/nodetypes/artifacts/article/views/view1.gtmpl.
This step is mandatory.

<%
 import org.exoplatform.ecm.webui.utils.Utils ;
%>
<style>
 <% _ctx.include(uicomponent.getTemplateSkin("exo:article", "Stylesheet")); %>
</style>
<div id="$uicomponent.id">
 <%
 def node = uicomponent.getNode() ;
 %>
 <p>Title: <%=Utils.getTitle(node)%></p>
 <p>Summary: <%=node.getProperty("exo:summary").getString()%></p>
 <p>Content: <%=node.getProperty("exo:text").getString()%></p>
 <%
 try{
 _ctx.include(uicomponent.getViewTemplate("mix:votable", "view1"));
 }catch (Exception e) {}

 try{
 _ctx.include(uicomponent.getViewTemplate("exo:comments", "view1"));
 } catch (Exception e) {}
 %>

</div>

See the
View
section for details. Also, you can see the full configuration of the
view1.gtmpl
here [https://github.com/exoplatform/ecms/blob/stable/5.0.x/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-artifacts/nodetype-templates/webContent/views/view1.gtmpl].

	Register the created templates (and CSS if any) with TemplateService
under
custom-form.war!/WEB-INF/conf/mycustom-conf/nodetypes/nodetype-templates-configuration.xml,
then declare template files into the system via the template plugin.

<?xml version="1.0" encoding="ISO-8859-1"?>

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>
 <component-plugin>
 <name>addTemplates</name>
 <set-method>addTemplates</set-method>
 <type>org.exoplatform.services.cms.templates.impl.TemplatePlugin</type>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>storedLocation</name>
 <value>war:/conf/mycustom-conf/nodetypes/artifacts</value>
 </value-param>
 <object-param>
 <name>template.configuration</name>
 <description>configuration for the localtion of nodetypes templates to inject in jcr</description>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig">
 <field name="nodeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$NodeType">
 <field name="nodetypeName">
 <string>exo:article</string>
 </field>
 <field name="documentTemplate">
 <boolean>true</boolean>
 </field>
 <field name="label">
 <string>Article</string>
 </field>
 <field name="referencedView">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/article/views/view1.gtmpl</string>
 </field>
 <field name="roles">
 <string>*</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 <field name="referencedDialog">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/article/dialogs/dialog1.gtmpl</string>
 </field>
 <field name="roles">
 <string>*:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

Note

To further understand the template plugin, you can refer to the
Template section.

	Import nodetype-templates-configuration.xml inside
custom-extension.war!/WEB-INF/conf/configuration.xml. This file
now looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <import>war:/conf/mycustom-conf/jcr/jcr-configuration.xml</import>
 <import>war:/conf/mycustom-conf/nodetypes/nodetype-templates-configuration.xml</import>
</configuration>

After following the above steps, you also need to edit
custom-form.war!/WEB-INF/web.xml.

<?xml version="1.0" encoding="UTF-8"?>

<web-app version="3.0" metadata-complete="true"
 xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

 <display-name>custom-form</display-name>

 <!-- == -->
 <!-- LISTENER -->
 <!-- == -->
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>

</web-app>

Testing the content form “Article”

Now, deploy your custom extension into eXo Platform by putting
custom-form.war in the webapps folder and custom-form-config.jar
in the lib folder of eXo Platform. See
here for more
details. Restart the server, and go to Administration Content Sites
Explorer. Here, click New Content. You will see your newly content
form “Article” in the list of content forms.

[image: image1]

Basic syntaxes of Dialog templates

See the following basic syntaxes which are often used for creating a
Dialog template.

	uicomponent: An instance of the current object.

	ctx: The current context which is used to get the request
context.

	jcrPath: The relative path inside the current node. It allows
binding a field to the node’s properties. For example, bind a field
to the exo:text property of the exo:article node.

<%
 String[] fieldContent = ["jcrPath=/node/exo:text", "options=toolbar:CompleteWCM,'height:410px',noSanitization", ""] ;
 uicomponent.addRichtextField("content", fieldContent) ;
%>>

The configuration above also shows how to add the Content field to
the Dialog template via the
uicomponent.addRichtextField("content", fieldContent) parameter.

	options: A list of parameters which are input while the content
templates are initialized.

To further understand how to use the Dialog syntax, see the
Dialogs
section. Now, you can easily create a Dialog template.

Note

By default, JavaScript is disabled for any fields of some content
templates to prevent the XSS attacks in eXo Platform. You can specify
whether JavaScript is allowed to run on a field of the content
template or not by using the “option” parameter as the example
below:

String [] htmlArguments = ["jcrPath = / node / default.html / JCR: content / JCR: data",
 "options = toolbar: CompleteWCM, height: '410px ', noSanitization" htmlContent];

Interceptors

By adding interceptors to your template, you will be able to execute a
Groovy script just before or just after saving the node. Pre-save
interceptors are mostly used to validate input values and their overall
meaning while the post-save interceptor can be used to do some
manipulations or references for the newly created node, such as binding
it to a forum discussion or Wiki space.

To add an interceptor, insert the following fragment anywhere in your
template:

<% uicomponent.addInterceptor("ecm-explorer/interceptor/PreNodeSaveInterceptor.groovy", "prev");%>

The first argument is the path of the interceptor class that you have
created. All the interceptors are created in
ecm-explorer/interceptor/. The second argument can have the prev
value which executes the interceptor before saving the content or the
post value which executes the interceptor after having saved the
content.

There are two ways to declare an interceptor Groovy script:

	Via the Content Administration portlet. See the
Scripts
for more details.

	Via the XML configuration file by using ScriptService. See the
example below:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.scripts.ScriptService</target-component>
 <component-plugin>
 <name>manage.script.plugin</name>
 <set-method>addScriptPlugin</set-method>
 <type>org.exoplatform.services.cms.scripts.impl.ScriptPlugin</type>
 <description>Nothing</description>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>predefinedScriptsLocation</name>
 <value>war:/conf/dms-extension/dms/artifacts</value>
 </value-param>
 <object-param>
 <name>predefined.scripts</name>
 <description>description</description>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig">
 <field name="resources">
 <collection type="java.util.ArrayList">
 <!-- ecm-explorer/interceptor -->
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description">
 <string>Pre Node Save Interceptor</string>
 </field>
 <field name="name">
 <string>ecm-explorer/interceptor/PreNodeSaveInterceptor.groovy</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description">
 <string>Post Node Save Interceptor</string>
 </field>
 <field name="name">
 <string>ecm-explorer/interceptor/PostNodeSaveInterceptor.groovy</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The interceptor Groovy scripts must implement the CmsScript interface.
Pre-save interceptors obtain input values within the context:

public class PreNodeSaveInterceptor implements CmsScript {

 public PreNodeSaveInterceptor() {
 }

 public void execute(Object context) {
 Map inputValues = (Map) context;
 Set keys = inputValues.keySet();
 for(String key : keys) {
 JcrInputProperty prop = (JcrInputProperty) inputValues.get(key);
 println(" --> "+prop.getJcrPath());
 }
 }

 public void setParams(String[] params) {
 }

}

Whereas the post-save interceptor is passed the path of the saved node
in the context:

<% uicomponent.addInterceptor("ecm-explorer/interceptor/PostNodeSaveInterceptor.groovy", "post");%>

public class PostNodeSaveInterceptor implements CmsScript {

 public PostNodeSaveInterceptor() {
 }

 public void execute(Object context) {
 String path = (String) context;

 println("Post node save interceptor, created node: "+path);
 }

 public void setParams(String[] params) {
 }
}

Dialog validator

In eXo Platform, you can validate the input element of content template
against the declared validation rules by creating your own validator
into a jar file, then adding it to the dialog fields.

In this tutorial, it is assumed that you need to create a
custom-validator that allows:

	Limiting length of the dialog fields.

	Restricting characters entered in the dialog fields.

Creating a dialog validator

	Create a Maven project, for example, named custom-validator, with
the following structure:

[image: image2]

	Edit the
java/org/exoplatform/ecm/webui/form/validator/CustomValidator.java
file with the following content (See the sample
here [https://github.com/exoplatform/ecms/blob/develop/core/webui/src/main/java/org/exoplatform/ecm/webui/form/validator/ECMNameValidator.java]):

package org.exoplatform.ecm.webui.form.validator;

import org.exoplatform.web.application.ApplicationMessage;
import org.exoplatform.webui.core.UIComponent;
import org.exoplatform.webui.exception.MessageException;
import org.exoplatform.webui.form.UIForm;
import org.exoplatform.webui.form.UIFormInput;
import org.exoplatform.webui.form.validator.Validator;

public class CustomValidator implements Validator {

 public void validate(UIFormInput uiInput) throws Exception {
 if (uiInput.getValue()==null || ((String)uiInput.getValue()).trim().length()==0) return;
 UIComponent uiComponent = (UIComponent) uiInput ;
 UIForm uiForm = uiComponent.getAncestorOfType(UIForm.class) ;
 String label;
 try{
 label = uiForm.getLabel(uiInput.getName());
 } catch(Exception e) {
 label = uiInput.getName();
 }
 label = label.trim();
 if(label.charAt(label.length() - 1) == ':') label = label.substring(0, label.length() - 1);
 String s = (String)uiInput.getValue();

 Object[] args = { label };
 if (s.length() > 50) {
 throw new MessageException(new ApplicationMessage("CustomValidator.msg.lengthInCorrect", args, ApplicationMessage.WARNING)) ;
 }
 for(int i = 0; i < s.length(); i ++){
 char c = s.charAt(i);
 if(Character.isDigit(c) || Character.isLetter(c) || c==' ' || c=='.' || c==',') {
 continue ;
 }
 throw new MessageException(new ApplicationMessage("CustomValidator.msg.Invalid-char", args, ApplicationMessage.WARNING)) ;
 }
 }
}

In which:

	The allowed maximum length of the fields that use CustomValidator
is 50 characters.

if (s.length() > 50) {
 throw new MessageException(new ApplicationMessage("CustomValidator.msg.lengthInCorrect", args, ApplicationMessage.WARNING)) ;
 }

	Only letters, digits, spaces, full stops (.), commas (,) are accepted
in the fields that use CustomValidator.

if(Character.isDigit(c) || Character.isLetter(c) || c==' ' || c=='.' || c==',') {
 continue ;
 }

	Update the pom.xml file that declares dependencies of the classes
imported in the CustomValidator.java file.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>exo.custom.validator</groupId>
 <artifactId>custom-validator</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>custom-validator</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.component.web.controller</artifactId>
 <version>3.5.9.Final</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.framework</artifactId>
 <version>3.5.9.Final</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.platform-ui</groupId>
 <artifactId>platform-ui-webui-core</artifactId>
 <version>4.0.5</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Create the language resource for your CustomValidator in
resources/locale/portal/custom_validator_en.xml.

<?xml version="1.0" encoding="UTF-8"?>
<bundle>
<!--
 ###
 # Messages of Custom validator #
 ###
 -->
 <CustomValidator>
 <msg>
 <lengthInCorrect>Your '{0}' length is larger than 50 characters. Please reduce your length.</lengthInCorrect>
 <Invalid-char>The field '{0}' contains some invalid characters. Please enter another value.</Invalid-char>
 </msg>
 </CustomValidator>
</bundle>

	Edit the resources/conf/portal/configuration.xml file to
configure ResourceBundleService.

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>ResourceBundle Plugin</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>init.resources</name>
 <value>locale.portal.custom_validator</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <value>locale.portal.custom_validator</value>
 </values-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Pay attention to the locale.portal.custom_validator value. It is the
translation of the path of your resources
(locale/portal/custom_validator) - with the elimination of language
code and file extension.

	Build the Maven project using the command: mvn clean install.

	Put the .jar file (target/custom-validator-1.0-SNAPSHOT.jar)
into the lib folder of eXo Platform.

	$PLATFORM_TOMCAT_HOME/lib (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib (in
JBoss).

	Start the eXo Platform server.

Testing

Now you can use your own CustomValidator by adding
“validate=org.exoplatform.ecm.webui.form.validator.CustomValidator”
to the field content of the dialog that is currently used by the content
template.

In this procedure, it is assumed that you want to use
CustomValidator in the Name field of the Web Content template.

	Go to [image: image3] –> Content –> Content Administration.

	In the Templates –> Documents, click [image: image4] next to the Web
Content template to open the View & Edit Template form.

	Select the Dialog tab, then click [image: image5] corresponding to the
dialog that is currently used by the template (for example,
dialog1).

	Declare CustomValidator for webContentFieldName in the
Content field of the Edit form. For example, replace

String[] webContentFieldName = ["jcrPath=/node", "nodetype=exo:webContent", "mixintype=mix:votable,mix:commentable,mix:i18n", "editable=if-null","validate=name,empty"] ;

with

String[] webContentFieldName = ["jcrPath=/node", "nodetype=exo:webContent", "mixintype=mix:votable,mix:commentable,mix:i18n", "editable=if-null","validate=org.exoplatform.ecm.webui.form.validator.CustomValidator"] ;

	Click Save, then go to [image: image6] –> Content –> Site Explorer to open
the Sites Management page.

	Click New Content, then select the Web Content template.

	Try inputting special characters that are not in the list of allowed characters
or inputting more than 50 characters in the Name field, then click
Save.

You will see the following warnings.

	Invalid characters:

[image: image7]

	Incorrect length:

[image: image8]

Content List templates

This section covers the following main topics:

	Creating a new Content List template
Ways to create a new Content List template via XML configuration and
IDE.

	Customizing Content List templates
Instructions on how to customize Content List templates.

eXo Platform provides many powerful features to manipulate and expose any
types of content on a page. This is due to the fact that eXo Platform stores
all the content in its Java Content Repository (JCR) and renders the
content on a page using Groovy Templates.

This section shows you how to create and customize a Content List
template that is used in the Content List portlet. For example, in the
sample ACME site, you can show the content in One-column or Two-column
display just by selecting different templates:

[image: image9]

Creating a new Content List template

Creating a new Content List template could be performed via the
following ways:

	Directly inline, via the Content Administration interface. This
is the easiest and quickest way to create or edit Content List
templates. This is really practical to quickly test your
developments. See the List templates
section for more details.

	In your extension, via XML configuration files.
This way is related to the configuration. You can see a sample of
ACME site
here [https://github.com/exoplatform/ecms/blob/develop/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-artifacts/application-templates/content-list-viewer/list/TwoColumns.gtmpl].

Creating a Content List template via XML configuration files

Assuming that you want to change the display of one ACME site part from
two-column to three-column, you need to do as follows:

	Create a CLV template named ThreeColumns.gtmpl under
custom-extension.war!/WEB-INF/conf/my-artifacts/content-list-viewer/list/
with the following content.

<%
 import javax.jcr.Node;
 import org.exoplatform.wcm.webui.paginator.UICustomizeablePaginator;
 import org.exoplatform.wcm.webui.clv.UICLVPortlet;
 import org.exoplatform.wcm.webui.Utils;
 import org.exoplatform.services.wcm.core.NodeLocation;
%>

<div id="$uicomponent.id" class="ThreeColumnsCLVTemplate">
 <div class="CLV">
 <%
 def header = uicomponent.getHeader();
 def rssLink = uicomponent.getRssLink();
 def isShowRssLink = uicomponent.isShowRssLink();
 def isShowHeader = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_HEADER) && header != null && header.trim().length() != 0;
 %>
 <div class="TopBoxHeader ClearFix">
 <%
 if (isShowHeader) {
 %>
 <div class="TitleBarL">
 <div class="TitleBarR">
 <div class="TitleBarM">
 <%if (isShowRssLink) {
 %><a class="RssIcon" onclick="javascript:window.open('$rssLink');" style="cursor:pointer" rel="tooltip" data-placement="bottom" title="<%= _ctx.appRes("UICLVPresentation.label.rssFeed") %>"> <%
 }%>
 $header
 </div>
 </div>
 </div>
 <%
 }
 %>

 </div>
 <%

 if (uicomponent.getUIPageIterator().getAvailable() == 0) {
 %>
 <div style="height: 20px; text-align: center; font-size: 13px; background: white; padding: 10px; margin: 5px;">
 <%= _ctx.appRes(uicomponent.getParent().getMessageKey()) %>
 </div>
 <%
 } else {
 %>
 <div class="Contents">
 <%
 def currentPageData = uicomponent.getCurrentPageData();
 for (def i = 0; i < currentPageData.size(); i++) {
 def viewNode = currentPageData.get(i);
 if(!Utils.isViewable(viewNode)) continue;
 def isShowTitle = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_TITLE);
 def isShowDate = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_DATE_CREATED);
 def isShowLink = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_LINK);
 def isShowReadmore = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_READMORE);

 def itemLink = uicomponent.getURL(viewNode);
 def itemDateCreated = uicomponent.getCreatedDate(viewNode);
 def itemOwner = uicomponent.getAuthor(viewNode);

 def imgSrc = uicomponent.getIllustrativeImage(viewNode);
 def isShowImage = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_ILLUSTRATION) && imgSrc != null;

 def itemName = viewNode.getName();
 def itemTitle = uicomponent.getTitle(viewNode);
 if (itemTitle != null && itemTitle.trim().length() != 0)
 itemName = itemTitle;

 def itemSummary = uicomponent.getSummary(viewNode);
 def itemSummaryField = uicomponent.getSummaryField(viewNode);
 def isShowSummary = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_SUMMARY) && itemSummary != null;

 %>

 <%=uicomponent.addQuickEditDiv("Column3", viewNode)%>

 <%
 if(isShowImage) {
 %><%
 }
 %>
 <div class="Content">
 <%
 if (isShowTitle) {
 if (isShowLink) {
 %><div class="Title">$itemName</div><%
 } else {
 %><div class="Title">
 <%
 print uicomponent.getInlineEditingField(viewNode, "exo:title", itemName, "TEXT", "CLVTitle_"+String.valueOf(i), "GroovyCLVTitle", true, "button_direction=left-to-right");
 %>
 </div><%
 }
 }

 if (isShowDate) {
 %><div class="DateAndMail">$itemDateCreated by $itemOwner</div><%
 }
 if (isShowSummary) {
 %><div class="Summary"> <%
 if (itemSummaryField!=null) {
 print uicomponent.getInlineEditingField(viewNode, itemSummaryField, itemSummary, "TEXTAREA", "Text_"+String.valueOf(i), "CLV2ColSummary", true, "height=80px");
 }
 %> </div><%
 }
 %>
 </div>
 <%
 if (isShowReadmore) {
 %><div class="LinkMore"><a href="$itemLink" rel="tooltip" data-placement="bottom" title="<%= _ctx.appRes("UICLVPresentation.label.readmore") %>"><%= _ctx.appRes("UICLVPresentation.label.readmore") %></div><%
 }
 %>
 </div>
 <% if ((i+1) % 2 == 0) { %>
 <% } %>

 <%
 }
 %>
 <div class="CaptionFunc ClearFix">
 <% String labelRefreshAction = _ctx.appRes("UICLVPresentation.action.refresh");
 def isShowRefresh = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_REFRESH_BUTTON);
 if (isShowRefresh) {
 String link = uicomponent.event("Refresh");
 %>
 <div class="CaptionRefresh">
 $labelRefreshAction
 </div>
 <%
 }
 if (uicomponent.showPaginator()) {
 uicomponent.renderChild(UICustomizeablePaginator.class)
 }
 %>

 </div>
 </div> <%
 }
 %>
 </div>
</div>

	Create clv-templates-configuration.xml under
custom-extension.war!/WEB-INF/conf/myacme-conf/wcm/, then declare
ThreeColumns.gtmpl into clv-templates-configuration.xml.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <!-- Deploy template for Content List Viewer Portlet -->
 <external-component-plugins>
 <target-component>org.exoplatform.services.cms.views.ApplicationTemplateManagerService</target-component>
 <component-plugin>
 <name>clv.templates.plugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.views.PortletTemplatePlugin</type>
 <description>This plugin is used to import views templates for Content List Viewer</description>
 <init-params>
 <value-param>
 <name>portletName</name>
 <value>content-list-viewer</value>
 </value-param>
 <value-param>
 <name>portlet.template.path</name>
 <value>war:/conf/my-artifacts/content-list-viewer</value>
 </value-param>
 <object-param>
 <name>Three columns CLV template</name>
 <description>Three columns CLV template</description>
 <object type="org.exoplatform.services.cms.views.PortletTemplatePlugin$PortletTemplateConfig">
 <field name="title">
 <string>Three Columns</string>
 </field>
 <field name="templateName">
 <string>ThreeColumns.gtmpl</string>
 </field>
 <field name="category">
 <string>list</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

</configuration>

See the explanation about init-params in the Portlet
Template
section.

	Register clv-templates-configuration.xml into
custom-extension.war!/WEB-INF/conf/configuration.xml.

<import>war:/conf/myacme-conf/wcm/clv-templates-configuration.xml</import>

	Create pages.xml, which sets the pre-set
display [https://github.com/exoplatform/platform/blob/develop/samples/wai-template/src/main/webapp/WEB-INF/conf/sample-portal/waiportal/portal/template/WAIPortal/pages.xml]
of the ACME site, under
custom-extension.war!/WEB-INF/conf/myacme-conf/portal/acme/. The
new pages.xml overrides configuration of the ACME site.

Next, change TwoColumns.gtmpl into ThreeColumns.gtmpl.

<preference>
 <name>formViewTemplatePath</name>
 <value>/exo:ecm/views/templates/content-list-viewer/list/ThreeColumns.gtmpl</value>
 <read-only>false</read-only>
</preference>

	Create DefaultStylesheet.css under
custom-extension.war!/templates/skin/acme with the following
content:

.ThreeColumnsCLVTemplate .Contents .Column3 {
float: left;
width: 31%;
margin: 0 10px 10px 0;
padding: 0;
}

.ThreeColumnsCLVTemplate .CLV {
border:1px solid transparent;
-moz-border-radius-topleft:0px;
-moz-border-radius-topright:0px;
}

.ThreeColumnsCLVTemplate .Contents .Column3 {
margin-right: 10px;
padding: 0 0 10px;
}

.UITableColumnContainer .UITableColumnContainer .Column3,.UITableColumnContainer .ThreeColumnsCLVTemplate .CLV {
_border:none;
}

.ThreeColumnsCLVTemplate .CLV {
padding: 13px 10px 0;
-moz-border-radius-topleft: 5px;
-webkit-border-top-left-radius: 5px;
-moz-border-radius-topright: 5px;
-webkit-border-top-right-radius: 5px;
}

.ThreeColumnsCLVTemplate .TitleBarM {
color: #2D4396;
font-size: 14px;
font-weight: bold;
}

.ThreeColumnsCLVTemplate .Contents {
padding-top: 10px;
}

.ThreeColumnsCLVTemplate .Contents .Column2 {
float: left;
width: 48%;
margin: 0 10px 10px 0;
padding: 0;
}

.ThreeColumnsCLVTemplate .Contents .Image {
display: block;
float: left;
}

.ThreeColumnsCLVTemplate .Contents .Image img {
width: 48px;
}

.ThreeColumnsCLVTemplate .Contents .Content {
padding: 0px 0px 0px 60px;
color: #5a5a5a;
line-height: 14px;
}

.ThreeColumnsCLVTemplate .Contents .Content .Title {
font-size: 12px;
font-weight: bold;
}

.ThreeColumnsCLVTemplate .Contents .Content .Title a {
color: #5a5a5a;
}

.ThreeColumnsCLVTemplate .Contents .LinkMore {
text-align: right;
padding: 5px 5px 0px 0px;
display: none;
}

.ThreeColumnsCLVTemplate .Contents .LinkMore a {
color: #f58220;
text-decoration: none;
}

.ThreeColumnsCLVTemplate .Contents .LinkMore a:hover {
text-decoration: underline;
}

	Register the newly created CSS in the above step for the Default skin
which is currently used in the ACME site by adding the following
module to gatein-resources.xml.

<portal-skin>
 <skin-name>Default</skin-name>
 <skin-module>myacme-css</skin-module>
 <css-path>/templates/skin/acme/DefaultStylesheet.css</css-path>
</portal-skin>

	Restart the server, then go to the homepage of ACME site and switch
to the Edit mode by clicking Edit –> Content on the top navigation
bar.

	Hover your cursor over the top of the list of news and click [image: image10],
then select “ThreeColumns.gtmpl” from the list of templates, then
click Save.

The ACME site is now displayed in the three-column template as below.

[image: image11]

Customizing Content List templates

You have created your new template, and used it on a page. Now, you
should add more interesting codes to the template to really loop over
the content based on the portlet configuration. But before this, you
need to understand caching and code modification.

eXo Template and Cache

To improve performance of a running system, the compiled version of the
template is cached by default. This is the reason why you do not see any
changes when you are modifying a template. There are 2 ways to work
around this:

	Run eXo Platform in the Dev mode as follows:

	Linux and OS X: start_eXo.sh --dev

	Windows: start_eXo.bat --dev

The –dev option allows disabling the cache, so nothing is cached
in this case.

	If you do not want to disable the cache (for example, to test your
developments in real conditions), you can use JMX with your favorite
JMX browser (jconsole, VisualVM, and more) to invalidate the cache
manually. For example, you can use the MBean for invalidating the
Template Service cache:
exo:portal=portal,service=cache,name=TemplateService.

Then, call the clearCache operation on it.

[image: image13]

Note

Do not forget to call this operation each time you modify your template to ensure that eXo Platform recompiles the template.

Accessing content in the template

The template used by the Content List portlet is based on the following
JAVA class: org.exoplatform.wcm.webui.clv.UICLVPresentation. This
class is responsible for setting the complete context that you can use
in the template, such as:

	The folder or category that contains the content to show. The Folder
Path field is in the preference screen.

	The display settings: title, number of documents, elements to show,
and more.

Here is the code to access these preferences:

// import all the classes need in the template
import javax.jcr.Node;
import org.exoplatform.wcm.webui.paginator.UICustomizeablePaginator;
import org.exoplatform.wcm.webui.clv.UICLVPortlet;
import org.exoplatform.wcm.webui.Utils;
import org.exoplatform.services.wcm.core.NodeLocation;

// get the portlet preferences

 def header = uicomponent.getHeader();
 def isShowRssLink = uicomponent.isShowRssLink();
 def isShowHeader = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_HEADER);
 def isShowRefresh = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_REFRESH_BUTTON);

 def isShowTitle = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_TITLE);
 def isShowDate = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_DATE_CREATED);
 def isShowLink = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_LINK);
 def isShowReadmore = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_READMORE);
 def isShowImage = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_ILLUSTRATION) ;
 def isShowSummary = uicomponent.isShowField(UICLVPortlet.PREFERENCE_SHOW_SUMMARY);

Templates use several available implicit variables, such as:

	uicomponent: This object holds all the context. It can be used to
retrieve the portlet preferences, get the information of a showing
node, and more.

	
	_ctx: This object is an instance of ``

	org.exoplatform.webui.application.WebuiRequestContext``.

It can be used to get i18N, get an instance of
org.exoplatform.web.application.JavascriptManager, get session
Id, and more.

The uicomponent object is defined by the container class of the
portlet that calls the template. This class contains many utility
methods. The code above retrieves all the preferences of the portlet.
Because the name is self-explanatory, it is not necessary to detail
them, especially when you look at the preferences screen below:

[image: image12]

Now, the template has all the preferences, it is time to loop on the
content to display the information.

The Content Service provides API to manipulate the content,
including pagination of content. The idea behind this is to let the
Content Service manage the JCR query, sorting, caching and paginating
data. So in your template, you will mainly manage 2 classes to loop
through the content to show:

	uicomponent.getUIPageIterator() - a paginator object that is
configured based on the portlet preferences.

	uicomponent.getCurrentPageData() - a list of the content (JCR
Nodes) that should be displayed on the current page.

So, you can display all the content of the page as a simple HTML list:

<ul style="margin: 20px">
 <%
 for (viewNode in uicomponent.getCurrentPageData()) {
 def title = viewNode.getProperty("exo:title").getString()
 print("$title");
 }
 %>

Just copy this code to your template, save it, then refresh the cache
and go to your page. You should see the list of the content in a simple
HTML list.

The uicomponent object provides a lot of methods to interact with
the content, and use the Content API under the hood. In the following
code, you can see the most important methods accessing the content
properties:

def itemName = viewNode.getName();
 def itemLink = uicomponent.getURL(viewNode);
 def webdDavLink = uicomponent.getWebdavURL(viewNode);
 def itemDateCreated = uicomponent.getCreatedDate(viewNode);
 def itemModifiedDate = uicomponent.getModifiedDate(viewNode);
 def itemOwner = uicomponent.getAuthor(viewNode);
 def imgSrc = uicomponent.getIllustrativeImage(viewNode);
 def itemTitle = uicomponent.getTitle(viewNode);
 def itemSummary = uicomponent.getSummary(viewNode);

One important point is the fact that these methods are responsible for
many things (for example, formatting dates, returning complete URLs)
that depends on the context of the portlet.

Based on these methods, you can now work on the presentation of the
information on the page. For example, you can click the image and the
title to go in the detailed view of the article. This is done simply by
using the following code:

<%
 for (viewNode in uicomponent.getCurrentPageData()) {
 def itemName = viewNode.getName();
 def itemLink = uicomponent.getURL(viewNode);
 def webdDavLink = uicomponent.getWebdavURL(viewNode);
 def itemDateCreated = uicomponent.getCreatedDate(viewNode);
 def itemModifiedDate = uicomponent.getModifiedDate(viewNode);
 def itemOwner = uicomponent.getAuthor(viewNode);
 def imgSrc = uicomponent.getIllustrativeImage(viewNode);
 def itemTitle = uicomponent.getTitle(viewNode);
 def itemSummary = uicomponent.getSummary(viewNode);

 %>
 <div style="overflow: auto;">

 <h3>$itemTitle</h3>
 $itemSummary
 </div>

 <%
 }
 %>

For simplicity reason, this code does not manage any null value.
Also, the template does not deal with the portlet preferences, such as
the “Header”, “RSS” links. The website should look like:

[image: image14]

The last important point is to add the support for the in-context
editing that allows users to edit the content directly from the template
by adding the 15 (``

<%=uicomponent.addQuickEditDiv(“MyTemplateContentEditor”, viewNode)%>``)

and 19 (</div>) lines to your template. This is also done with a
method of the uicomponent object that creates a DIV around the
content:

<%
 for (viewNode in uicomponent.getCurrentPageData()) {
 def itemName = viewNode.getName();
 def itemLink = uicomponent.getURL(viewNode);
 def webdDavLink = uicomponent.getWebdavURL(viewNode);
 def itemDateCreated = uicomponent.getCreatedDate(viewNode);
 def itemModifiedDate = uicomponent.getModifiedDate(viewNode);
 def itemOwner = uicomponent.getAuthor(viewNode);
 def imgSrc = uicomponent.getIllustrativeImage(viewNode);
 def itemTitle = uicomponent.getTitle(viewNode);
 def itemSummary = uicomponent.getSummary(viewNode);

 %>
 <div style="overflow: auto;">
 <%=uicomponent.addQuickEditDiv("MyTemplateContentEditor", viewNode)%>

 <h3>$itemTitle</h3>
 $itemSummary
 < /div>
 </div>

 <%
 }
 %>

After creating your own template for Content Service, you are free
to use your imagination for adding cool features to your site.

Publication lifecycle

This section covers the following topics:

	Creating your own publication lifecycle
Steps to create your own publication lifecycle.

	Adding an action to publication lifecycle
Steps to add an action to your own publication lifecycle.

Creating your own publication lifecycle

This section shows you how to create a publication lifecycle in an
existing publication plugin, for example, Authoring publication
plugin. Each lifecycle is related to a Publication plugin.

	Create publication-configuration.xml under
custom-extension.war!/WEB-INF/conf/myacme-conf/wcm/.

	Define lifecycles by a simple vertical workflow with steps (states)
and profiles (membership) as follows.

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.extensions.publication.PublicationManager</target-component>
 <component-plugin>
 <name>AddLifecycle</name>
 <set-method>addLifecycle</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.lifecycle.StatesLifecyclePlugin</type>
 <description>Configures</description>
 <priority>1</priority>
 <init-params>
 <object-param>
 <name>lifecycles</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig">
 <field name="lifecycles">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$Lifecycle">
 <field name="name">
 <string>lifecycle1</string>
 </field>
 <field name="publicationPlugin">
 <string>Authoring publication</string>
 </field>
 <field name="states">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>draft</string>
 </field>
 <field name="membership">
 <string>author:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>pending</string>
 </field>
 <field name="membership">
 <string>author:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>approved</string>
 </field>
 <field name="membership">
 <string>manager:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>staged</string>
 </field>
 <field name="membership">
 <string>publisher:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>published</string>
 </field>
 <field name="membership">
 <string>publisher:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 <component-plugin>
 <name>AddContext</name>
 <set-method>addContext</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.context.ContextPlugin</type>
 <init-params>
 <object-param>
 <name>contexts</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig">
 <field name="contexts">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>contextdefault</string>
 </field>
 <field name="priority">
 <string>200</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle1</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

	The configuration above defines a lifecycle called lifecycle1
with publication states, including draft, pending,
approved, staged, and published. Each state is set
permission to a given membership.

	The lifecycle is defined by the
org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$Lifecycle
object type. So, you can use this object type with the field tags
to add more lifecycles to the plugin.

Note

The value of the publicationPlugin field must be the name of the
publication plugin, for example, Authoring publication. Refer to the
States Lifecycle
and Context plugin
sections for more details about the parameters of the configuration above.

	Register publication-configuration.xml into
custom-extension.war!/WEB-INF/conf/configuration.xml.

<import>war:/conf/myacme-conf/wcm/publication-configuration.xml</import>

Adding an action to publication lifecycle

After defining the publication lifecycle, you can add an action to it as
follows:

	Create a listener which handles your desired task, for example,
my.package.MyListener, which extends Listener<CmsService, Node>.

public class my.package.MyListener extends Listener<CmsService, Node>

You need to implement the following method in your``my.package.MyListener``
listener.

public void onEvent(Event<CmsService, Node> event) throws Exception

For example, eXo Platform provides the
org.exoplatform.wcm.authoring.listener.PostUpdateStateEventListener
listener which automatically sends email notifications about the new
state to all users of defined groups. Refer to
PostUpdateStateEventListener [https://github.com/exoplatform/ecms/blob/develop/ext/authoring/webui/src/main/java/org/exoplatform/wcm/authoring/listener/PostUpdateStateEventListener.java]
for more details about its configuration.

	Declare your listener into
custom-extension.war!/WEB-INF/conf/myacme-conf/wcm/publication-configuration.xml.

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>PublicationService.event.postUpdateState</name>
 <set-method>addListener</set-method>
 <type>my.package.MyListener</type>
 <description>Your listener description</description>
 </component-plugin>
</external-component-plugins>

In which:

	name: This is defined in your own publication plugin.

	type: The path to your listener.

With this configuration, your my.package.MyListener will be executed
each time the content state is changed.

CKEditor

CKEditor is a WYSIWYG editor (text editor) which allows you to see what
the published results look like while editing your text. It brings to
the common web-editing features found on desktop-editing applications
like Microsoft Word or Open Office. See WYSIWYG widget
to have more information. This guide will walk you through the following
topics:

	Configuration in CKEditor
How to set configurations for CKEditor.

	Customizing CKEditor
How to change the CKEditor skin, to add a new toolbar, and to create
a basic plugin for CKEditor.

Configuration in CKEditor

CKEditor comes with a rich set of configuration options that make it
possible to customize its appearance, features, and behavior. The main
configuration file is named config.js. This file can be found in the
root of the CKEditor installation folder
(webapps/CommonsResources/ckeditor/config.js). By default, this file
is mostly empty. To change the CKEditor configuration, add the settings
that you want to modify to the config.js file.

For example:

CKEDITOR.editorConfig = function(config)
{
 config.language = 'en';
 config.uiColor = '#AADC6E';
};

Instead of using the default config.js file, you can create a copy
of that file anywhere in your website and simply point the editor
instances to load it. For example, in PRODUCT, the configuration file
for CKEditor is placed at webapps/CommonsResources/eXoConfig.js, so
the content of the config.js file will be:

CKEDITOR.editorConfig = function(config)
{
 config.customConfig = "../eXoConfig.js";
};

Customizing CKEditor

Changing the CKEditor skin

You can change the CKEditor skin by adjusting a single configuration
option. In eXo Platform, to change the CKEditor skin, do as follows:

	Open the webapps/CommonsResources/eXoConfig.js configuration file
of CKEditor.

	Set up a skin for CKEditor. It may be the name of the skin folder
inside the editor installation path, or the name and the path
separated by a comma.

config.skin = 'kama';
config.skin = 'myskin,/customstuff/myskin/';

By default, CKEditor has 2 skins for users to select: kama, and
moono. They are placed in the
webapps/CommonsResources/ckeditor/skins folder.

Adding a new toolbar

CKEditor is a full-featured WYSIWYG editor, but not all of its options
are needed in all cases. Therefore, the toolbar customization is one of
the most common and required tasks when dealing with CKEditor.

	Toolbar Definition is a JavaScript array which contains the
elements to be displayed in all toolbar rows available in the editor.
In eXo Platform, the toolbar definition is placed in the
webapps/CommonsResources/eXoConfig.js file. The following code
snippet contains the default CKEditor toolbar set in eXo Platform:

config.toolbar_Default = [
 ['Source','Templates'],
 ['Cut','Copy','Paste','PasteText','PasteFromWord','-','Find','Replace','SelectAll'],
 ['Undo','Redo','-','RemoveFormat'],
 ['Bold','Italic','Underline','Strike'],
 ['NumberedList','BulletedList'],
 ['Link','Unlink','Anchor'],
 ['Image','Flash','Table','SpecialChar'],
 ['TextColor','BGColor'],
 ['Maximize', 'ShowBlocks'],
 ['Style','Format','Font','FontSize']
] ;

	To add a new toolbar in eXo Platform, add the following code to
webapps/CommonsResources/eXoConfig.js:

config.toolbar_MyToolbar =
[
 ['Bold', 'Italic', '-', 'NumberedList', 'BulletedList', '-', 'Link', 'Unlink','-','About']
];

	To show the newly added toolbar, you have to add it to a field of a
template. For example, to show the new toolbar on the content field
of HTML file, you need to modify the dialog template of HTML file as
follows:

String[] fieldSummary = ["jcrPath=/node/jcr:content/jcr:data", "", "validate=empty", "options=toolbar:MyToolbar, noSanitization"] ;
uicomponent.addRichtextField("contentHtml", fieldSummary) ;

By adding a new HTML file, you will see the new toolbar (MyToolbar) on
the content field:

[image: image15]

Creating a basic plugin for CKEditor

It is assumed that you develop a timestamp plugin that inserts the
current date and time into the editing area of CKEditor. The
timestamp will be added after a user clicks a dedicated toolbar
button. It uses the insertHtml function which can be easily adjusted
to insert any other HTML elements into CKEditor.

	Create a directory named timestamp in the ckeditor/plugins
folder.

	Create a plugin.js file that contains the plugin logic in
timestamp folder. Also, you will create a toolbar icon for the
plugin by adding an images folder and subsequently placing the
timestamp.png file inside it.

	Modify the plugin.js file in which you will write the behavior.

The following is the code used to create a simple plugin named
timestamp:

CKEDITOR.plugins.add('timestamp',
{
 init: function(editor)
 {
 editor.addCommand('insertTimestamp',
 {
 exec : function(editor)
 {
 var timestamp = new Date();
 editor.insertHtml('The current date and time is: ' + timestamp.toString() + '');
 }
 });
 editor.ui.addButton('Timestamp',
 {
 label: 'Insert Timestamp',
 command: 'insertTimestamp',
 icon: this.path + 'images/timestamp.png'
 });
 }
});

To use the created plugin, plug it to CKEditor by adding the following
codes to webapps/CommonsResources/eXoConfig.js:

(function() {CKEDITOR.plugins.addExternal('timestamp',CKEDITOR.eXoPath+'ckeditor/plugins/timestamp/','plugin.js');})();
 ...
 config.extraPlugins = 'content,insertGadget,insertPortalLink,acceptInline,cancelInline,onchange,helpBBCode,syntaxhighlight,timestamp';
 ...
 config.toolbar_MyToolbar = [
 ['Bold', 'Italic', '-', 'NumberedList', 'BulletedList', '-', 'Link', 'Unlink','-','About', 'Timestamp']
];

The following is the illustration of the Timestamp plugin added to the
CKEditor:

[image: image16]

Categories

Category is a particular classification arranged in a hierarchical
structure and help end-users easily organize their content.

There are 2 ways to create a category tree:

	Directly inline, via the Content Administration interface. See
here
for more details.

	In your extension,
via XML configuration files.

Configuring a category tree via XML configuration files

	Create categories-configuration.xml under
custom-extension.war!/WEB-INF/conf/myacme-conf/wcm/.

	Add external-component-plugins for the category tree to the
custom-extension.war!/WEB-INF/conf/myacme-conf/wcm/categories-configuration.xml
as follows:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.taxonomy.TaxonomyService</target-component>
 <component-plugin>
 <name>TaxonomyPlugin</name>
 <set-method>addTaxonomyPlugin</set-method>
 <type>org.exoplatform.services.cms.taxonomy.impl.TaxonomyPlugin</type>
 <init-params>
 <value-param>...</value-param>
 <object-param>...</object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

You can view the sample
here [https://github.com/exoplatform/platform/blob/develop/samples/acme-intranet/webapp/src/main/webapp/WEB-INF/conf/office-extension/wcm/taxonomy/intranet-taxonomies-configuration.xml].

	Define the repository, workspace, name of the tree and its JCR path
via value-param.

For example, create a category tree named powers:

<value-param>
 <name>autoCreateInNewRepository</name>
 <value>false</value>
</value-param>
 <value-param>
 <name>workspace</name>
 <value>collaboration</value>
</value-param>
 <value-param>
 <name>path</name>
 <value>/sites/acme/categories</value>
</value-param>
 <value-param>
 <name>treeName</name>
 <value>powers</value>
</value-param>

	Configure permissions for each group of users in the site, and the
triggered action when a new document is added to the category tree
via object-param.

For example, set permission for the powers category tree:

<object-param>
 <name>permission.configuration</name>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig">
 <field name="taxonomies">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Taxonomy">
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>any</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>false</string>
 </field>
 <field name="setProperty">
 <string>false</string>
 </field>
 <field name="remove">
 <string>false</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/administrators</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/web-contributors</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
</object-param>

When you create a new category, you will add a pre-configured
exo:taxonomyAction to the root node of the category tree. This
action is triggered when a new document is added to anywhere in the
category tree. The default action moves the document to the physical
storage location and replaces the document in the category tree with a
symlink of the exo:taxonomyLink type pointing to it. The physical
storage location is defined by a workspace name, a path and the current
date and time.

For example, configure actions for a document added to the powers
category tree:

<object-param>
 <name>predefined.actions</name>
 <description>description</description>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig">
 <field name="actions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig$TaxonomyAction">
 <field name="type">
 <string>exo:taxonomyAction</string>
 </field>
 <field name="name">
 <string>taxonomyAction</string>
 </field>
 <field name="description">
 <string></string>
 </field>
 <field name="homePath">
 <string>collaboration:/sites/acme/categories/powers</string>
 </field>
 <field name="targetWspace">
 <string>collaboration</string>
 </field>
 <field name="targetPath">
 <string>/sites/acme/web contents</string>
 </field>
 <field name="lifecyclePhase">
 <collection type="java.util.ArrayList">
 <value>
 <string>node_added</string>
 </value>
 </collection>
 </field>
 <field name="roles">
 <string>*:/platform/users</string>
 </field>
 <field name="mixins">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig$Mixin">
 <field name="name">
 <string>mix:affectedNodeTypes</string>
 </field>
 <field name="properties">
 <string>
 exo:affectedNodeTypeNames=nt:file,acme:contact_us,exo:cssFile,exo:htmlFile,exo:jsFile,exo:webContent,exo:pictureOnHeadWebcontent,acme:product,exo:link
 </string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
</object-param>

	Describe the structure and names of the categories and configure their
permissions inside your category tree.

<object-param>
 <name>taxonomy.configuration</name>
 <description>configuration predefined taxonomies to inject in jcr</description>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig">
 <field name="taxonomies">
 <collection type="java.util.ArrayList">
 <!-- Defense taxonomy -->
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$category">
 <field name="name">
 <string>DefenseTaxonomy</string>
 </field>
 <field name="path">
 <string>/Defense</string>
 </field>
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>any</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>false</string>
 </field>
 <field name="setProperty">
 <string>false</string>
 </field>
 <field name="remove">
 <string>false</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/administrators</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/web-contributors</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 <!-- Defense/Vision taxonomy -->
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Taxonomy">
 <field name="name">
 <string>VisionTaxonomy</string>
 </field>
 <field name="path">
 <string>/Defense/Vision</string>
 </field>
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>any</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>false</string>
 </field>
 <field name="setProperty">
 <string>false</string>
 </field>
 <field name="remove">
 <string>false</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/administrators</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
</object-param>

This configuration shows you how to add the Defense category and its
Vision sub-category to the power category tree and how to set
the permission for these categories.

	Register categories-configuration.xml into custom-extension.war!/WEB-INF/conf/configuration.xml.

<import>war:/conf/myacme-conf/wcm/categories-configuration.xml</import>

Script action

A script action, also known as ECMS action, is basically a Groovy script
that can be triggered by user click or events like content addition.

The action can do lots of things like sending an email or notification,
transforming a document into PDF, watermarking an image. It is the way
to perform some tasks in Content like restoring a node from Trash. You
can find such built-in scripts
here [https://github.com/exoplatform/ecms/tree/develop/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/artifacts/scripts/ecm-explorer/action].

In this introductory example, you write a script that sends emails
telling a user about content update in a specific folder.

Overview

An action involves:

	A Groovy script that implements CmsScript and runs your business
logic.

	A node type definition, that is the data model for action. The word
“action” might be used for both meanings, but strictly speaking, an
“action” is a node type, and an “action instance” is a node of that
type.

	Templates (view and dialog) that are used when users add/edit/view an
action instance via UI.

Tip

All the stuffs can be done via UI or by an extension. This tutorial
covers both but is more focused in an extension. Source code can be
found here [https://github.com/exo-samples/docs-samples/tree/master/ecms-action].

The extension

You need to create a portal extension by following portal extension tutorial.
Here is its structure:

[image: image17]

The file names are self explanatory. You can change the structure except
that scripts/ecm-explorer/action path is not variable.

The Groovy script

First, the script must implement CmsScript, and two methods:

import org.exoplatform.services.cms.scripts.CmsScript;
public class SampleScript implements CmsScript {
 public void execute(Object context) throws Exception {
 ...
 }
 public void setParams(String[] arg0) {} //in this example, this method does nothing.
}

Constructor

This does not need a constructor, however if you need some services from
the portal container, you should let the CmsScript framework pass them
to your script on its creation:

import org.exoplatform.services.jcr.RepositoryService;
import org.exoplatform.services.jcr.ext.app.SessionProviderService;
...
private RepositoryService repositoryService_ ;
private SessionProviderService seProviderService_;
//Constructor
public SendMailAction(RepositoryService repositoryService, SessionProviderService sessionProviderService) {
 repositoryService_ = repositoryService ;
 seProviderService_ = sessionProviderService;
}

By this way, the framework is responsible for assuring the services are
available before you get them, and you do not need to worry about some
circumstances - like the script is triggered during the startup when a
service is not created yet.

Object context

The object context provides you all the information of the action
launching, in summary:

	The source, typically a folder where the action instance is created.

	The node, on which the event happens. In this example, it is a node
created/removed under the source.

	The event type, or the lifecycle phase, so you know what happened.

	Other variables. For example, you need a “To” address to send mails
to, so you let the users input it when they create an action
instance.

Complete the execute(Object context) method, by extracting
information you need and sending a message:

public void execute(Object context) throws Exception {
 Map values = (Map) context;
 String to = (String) values.get("exo:to");
 String subject = (String) values.get("exo:subject");
 String srcWorkspace = (String) values.get("srcWorkspace");
 String srcPath = (String) values.get("srcPath");

 if (to == null) {
 LOG.warn("A SendMailAction at " + srcWorkspace + ":" + srcPath + " is canceled because the TO address is not determined");
 return;
 }

 Message message = new Message();
 message.setTo(to);
 message.setSubject(subject);
 message.setBody("There is content update in " + srcWorkspace + ":" + srcPath);

 try {
 ((MailService) CommonsUtils.getService(MailService.class)).sendMessage(message);
 } catch (Exception e) {
 e.printStackTrace();
 }
}

To quickly explore which keys the context has, you can cast it to a
String and print it out.

Script registration

In configuration.xml file, register your script, with attention to
the two path parameters.

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.scripts.ScriptService</target-component>
 <component-plugin>
 <name>manage.script.plugin</name>
 <set-method>addScriptPlugin</set-method>
 <type>org.exoplatform.services.cms.scripts.impl.ScriptPlugin</type>
 <description></description>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>predefinedScriptsLocation</name>
 <value>war:/conf/ecms-action</value>
 </value-param>
 <object-param>
 <name>predefined.scripts</name>
 <description></description>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig">
 <field name="resources">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Send Mail Script</string></field>
 <field name="name"><string>ecm-explorer/action/SendMailScript.groovy</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

To create a script in UI (Content Administration), go to
AdvancedScripts.

The action node type

Define your action node type exo:sendMailAction in
nodetypes-configuration.xml file.

Basically it extends the built-in type exo:scriptAction, and adds
some other properties. The two first properties are the script’s path
and label.

<nodeTypes xmlns:nt="http://www.jcp.org/jcr/nt/1.0" xmlns:mix="http://www.jcp.org/jcr/mix/1.0"
 xmlns:jcr="http://www.jcp.org/jcr/1.0">
 <nodeType name="exo:sendMailAction" isMixin="false" hasOrderableChildNodes="false" primaryItemName="">
 <supertypes>
 <supertype>exo:scriptAction</supertype>
 </supertypes>
 <propertyDefinitions>
 <propertyDefinition name="exo:script"
 requiredType="String" autoCreated="true" mandatory="true" onParentVersion="COPY" protected="false" multiple="false">
 <valueConstraints />
 <defaultValues>
 <defaultValue>ecm-explorer/action/SendMailScript.groovy</defaultValue>
 </defaultValues>
 </propertyDefinition>
 <propertyDefinition name="exo:scriptLabel"
 requiredType="String" autoCreated="true" mandatory="true" onParentVersion="COPY" protected="false" multiple="false">
 <valueConstraints />
 <defaultValues>
 <defaultValue>Send Mail Action</defaultValue>
 </defaultValues>
 </propertyDefinition>
 ...
 </propertyDefinitions>
 </nodeType>
</nodeTypes>

You want “To” address and the mail subject passed to your script in
context parameter, so here you define them as action properties:

<propertyDefinition name="exo:to"
 requiredType="String" autoCreated="false" mandatory="true" onParentVersion="COPY" protected="false" multiple="false">
 <valueConstraints />
</propertyDefinition>
<propertyDefinition name="exo:subject"
 requiredType="String" autoCreated="true" mandatory="true"
 onParentVersion="COPY" protected="false" multiple="false">
 <valueConstraints />
 <defaultValues>
 <defaultValue>Content update</defaultValue>
 </defaultValues>
</propertyDefinition>

Then register the node type in configuration.xml file:

<external-component-plugins>
 <target-component>org.exoplatform.services.jcr.RepositoryService</target-component>
 <component-plugin>
 <name>add.nodeType</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNodeTypePlugin</type>
 <init-params>
 <values-param>
 <name>autoCreatedInNewRepository</name>
 <description>Node types configuration file</description>
 <value>war:/conf/nodetypes-configuration.xml</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In UI (Content Administration), to create an action node type, go to
RepositoryNode Types. The UI will give you all the choices as equivalent
as an xml definition does. Alternatively, if you want a simple type that
extends exo:scriptAction with some string variables, go to
AdvancedActions.

The templates

There are properties that you fix the values in the node type
definition, and there are properties that you let the users input when
they create an action instance. In this example, you let the users
choose lifecycle phases (events to trigger the action), “To” and
“Subject”.

For that purpose, you write two Groovy templates: a dialog to edit the
action, and a view to display it.

The dialog, lifecyle selectbox, isDeep checkbox and text fields

See the full code of the dialog SendMailActionDialog.gtmpl in the
project source. In almost cases, the dialog allows users to input an
action name, so let’s start with this structure:

<div class="uiAddActionForm resizable">
 <h6 class="titleBar"><%=_ctx.appRes(uicomponent.getId() + ".title")%></h6>
 <% uiform.begin() %>
 <div class="form-horizontal" style="min-width:550px;">
 <div class="control-group" style="display:none">
 <label class="control-label" for="id"><%=_ctx.appRes("ScriptAction.dialog.label.id")%>:</label>
 <div class="controls">
 <%
 String[] fieldId = ["jcrPath=/node", "mixintype=mix:affectedNodeTypes", "editable=false", "visible=if-not-null"];
 uicomponent.addMixinField("id", fieldId) ;
 %>
 </div>
 </div>
 <div class="control-group">
 <label class="control-label" for="actionName"><%=_ctx.appRes("ScriptAction.dialog.label.name")%>:</label>
 <div class="controls">
 <%
 String[] fieldName = ["jcrPath=/node/exo:name", "validate=empty,XSSValidator"];
 uicomponent.addTextField("actionName", _ctx.appRes("ScriptAction.dialog.label.name"), fieldName);
 %>
 </div>
 </div>
 </div>
 <%uiform.end()%>
</div>

<%/* start render action*/%>
 <%uiform.processRenderAction()%>
<%/* end render action*/%>

Then for each variable you add a control-group that consists of a
label and an input. The input can vary in many kinds. Though it might
not always be the right logic to let users input these fields in this
action, the project aims at showing some typical controls, then you see
in the code: lifecycle phase selectbox, “isDeep” selectbox, “To” and
“Subject” text.

Here is the snippet of lifecycle selectbox:

<div class="control-group">
 <label class="control-label" for="lifecycle"><%=_ctx.appRes("ScriptAction.dialog.label.lifecycle")%>:</label>
 <div class="controls">
 <%
 String[] fieldLifecycle = ["jcrPath=/node/exo:lifecyclePhase",
 "options=read,node_added,node_removed,property_added,property_removed,property_changed",
 "multiValues=true", "onchange=true","size=5","validate=empty"] ;
 uicomponent.addSelectBoxField("lifecycle", fieldLifecycle) ;
 %>
 </div>
</div>

Tip

Add read if you want the ability to run the action from the context menu.

The “isDeep” option, if true, sets the listeners on all over the
subtree, so events that happen in child nodes trigger the action.

The view

Much more simpler than the dialog, in a view you just need to get the
properties, convert to string if necessary and display them in a table.

<%
 def node = uicomponent.getNode();
 StringBuilder builder;
%>
<table class="uiGrid table table-hover table-striped">
 <tr>
 <td>Action Name</td>
 <td>
 <%if(node.hasProperty("exo:name")) {%>
 <%=node.getProperty("exo:name").getString()%>
 <%}%>
 </td>
 </tr>
 <tr>
 <td>Lifecycle Phases</td>
 <td>
 <%
 if (node.hasProperty("exo:lifecyclePhase")) {
 builder = new StringBuilder();
 def values = node.getProperty("exo:lifecyclePhase").getValues();
 for (value in values) {
 builder.append(value.getString()).append(",");
 }
 if (builder.length() > 0) {%><%= builder.deleteCharAt(builder.length() -1) %><%}
 }
 %>
 </td>
 </tr>
 <tr>
 <td>Is Deep?</td>
 <td>
 <%if(node.hasProperty("exo:isDeep")){%>
 <%=node.getProperty("exo:isDeep").getString()%>
 <%}%>
 </td>
 </tr>
 <tr>
 <td>To Address</td>
 <td>
 <%if(node.hasProperty("exo:to")){%>
 <%=node.getProperty("exo:to").getString()%>
 <%}%>
 </td>
 </tr>
 <tr>
 <td>Signature</td>
 <td>
 <%if(node.hasProperty("exo:subject")){%>
 <%=node.getProperty("exo:subject").getString()%>
 <%}%>
 </td>
 </tr>
</table>

Templates registration

To register the view and dialog, add the following to
configuration.xml file:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>
 <component-plugin>
 <name>addTemplates</name>
 <set-method>addTemplates</set-method>
 <type>org.exoplatform.services.cms.templates.impl.TemplatePlugin</type>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>storedLocation</name>
 <value>war:/conf/ecms-action/templates</value>
 </value-param>
 <object-param>
 <name>template.configuration</name>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig">
 <field name="nodeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$NodeType">
 <field name="nodetypeName"><string>exo:sendMailAction</string></field>
 <field name="documentTemplate"><boolean>false</boolean></field>
 <field name="label"><string>Send Mail Action</string></field>
 <field name="referencedView">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile"><string>/views/SendMailActionView.gtmpl</string></field>
 <field name="roles"><string>*</string></field>
 </object>
 </value>
 </collection>
 </field>
 <field name="referencedDialog">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile"><string>/dialogs/SendMailActionDialog.gtmpl</string></field>
 <field name="roles"><string>*</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Notice the parameter documentTemplate is set to false to mark this
as action template.

In UI (Content Administration), to create action templates, go to
TemplatesDocuments and select the Actions tab.

Action creation

In UI, to create an action instance for a folder, the user will choose
the folder, then select Actions from the Actions bar. Select
exo:sendMailAction, then complete the dialog.

[image: image18]

If you know a certain location where an instance should be created, you
can do it by the extension. Add the following to configuration.xml:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.actions.ActionServiceContainer</target-component>
 <component-plugin>
 <name>exo:scriptAction</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.actions.impl.ScriptActionPlugin</type>
 <init-params>
 <object-param>
 <name>predefined.actions</name>
 <description></description>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig">
 <field name="workspace"><string>collaboration</string></field>
 <field name="actions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig$Action">
 <field name="type"><string>exo:sendMailAction</string></field>
 <field name="name"><string>sendMailAction</string></field>
 <field name="description"><string>A sample ECMS action</string></field>
 <field name="srcWorkspace"><string>collaboration</string></field>
 <field name="srcPath"><string>/sites/shared</string></field>
 <field name="isDeep"><boolean>true</boolean></field>
 <field name="lifecyclePhase">
 <collection type="java.util.ArrayList">
 <value><string>node_added</string></value>
 <value><string>node_removed</string></value>
 </collection>
 </field>
 <field name="variables">
 <string>exo:subject=Content update;exo:to=test@example.com</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Note that:

	The source location (where to add the action instance) is determined
by its workspace and its path.

	The variables (“To” and “Subject”) are separated by comma.

Some tips for debugging

Sites Explorer or Crash addon sets your sight inside JCR repository. If
you are using Sites Explorer, you should change the preferences to
enable DMS structure and show hidden nodes. To use Crash, follow Crash addon guide.

Scripts and templates are stored in dms-system workspace, at the
paths:

	/exo:ecm/scripts/ecm-explorer/action/SendMailScript.groovy

	/exo:ecm/templates/exo:sendMailAction/dialogs

	/exo:ecm/templates/exo:sendMailAction/views

Action instances are stored under the source node. For example, if you
have created an action in
collaboration:/sites/test-send-mail-action, and name it mailMe,
then check the path:

	/sites/test-send-mail-action/exo:actions/mailMe

/sites/test-send-mail-action/exo:actions/mailMe
+-properties
| +-jcr:primaryType: exo:sendMailAction
| +-jcr:mixinTypes: [exo:sortable,exo:modify,exo:datetime,exo:owneable,mix:affectedNodeTypes,mix:referenceable,exo:rss-
| | enable,mix:lockable]
| +-jcr:uuid: 'fd0a7e497f00010114a120a432b05e7d'
| +-exo:dateCreated: 2015-08-05T15:46:40.202+07:00
| +-exo:dateModified: 2015-08-05T15:46:40.202+07:00
| +-exo:index: 1000
| +-exo:isDeep: true
| +-exo:lastModifiedDate: 2015-08-05T15:46:40.204+07:00
| +-exo:lastModifier: 'root'
| +-exo:lifecyclePhase: ['node_added','node_removed','read']
| +-exo:name: 'mailMe'
| +-exo:owner: 'root'
| +-exo:roles: ['*:/platform/users']
| +-exo:script: 'ecm-explorer/action/SendMailScript.groovy'
| +-exo:scriptLabel: 'Send Mail Action'
| +-exo:subject: 'ContEnt updAte'
| +-exo:title: 'mailMe'
| +-exo:to: 'chautn@exoplatform.com'
+-children

Adding a Contextual menu enty

This section details how to add a Contextual menu enty which is an
action that could be accessed via a right click.

For example, a TestButton button will be displayed in Sites Explorer
when right click on a content. Clicking on this button TestButton will
display a message in the log.

To add that button, please follow these steps:

	Create a Maven project having the following directory
structure [https://github.com/exo-samples/docs-samples/tree/master/create-action-menu-extension]:

[image: image19]

Where:

	pom.xml [https://github.com/exo-samples/docs-samples/blob/master/create-action-menu-extension/pom.xml]:
The project’s POM file.

	TestButtonActionComponent.java [https://github.com/exo-samples/docs-samples/blob/master/create-action-menu-extension/src/main/java/com/acme/TestButtonActionComponent.java]:
The simple action to show the log message.

	configuration.xml [https://github.com/exo-samples/docs-samples/blob/master/create-action-menu-extension/src/main/resources/conf/portal/configuration.xml]:
The configuration file in which you should register your action with
org.exoplatform.webui.ext.UIExtensionManager service.

	Create a new action class TestButtonActionComponent which should
extend from UIAbstractManagerComponent. You should also create
its corresponding listener TestButtonActionListener which extends
from UIActionBarActionListener.

You can view the complete class
here [https://github.com/exo-samples/docs-samples/blob/master/create-action-menu-extension/src/main/java/com/acme/TestButtonActionComponent.java].

	In the configuration.xml file, register the new action under
UIExtensionManager target-component as a component-plugin as
follows [https://github.com/exo-samples/docs-samples/blob/master/create-action-menu-extension/src/main/resources/conf/portal/configuration.xml#L10-L32].

Note

Some notes should be respected for the java class TestButtonActionComponent:

	TestButton will be used to label the action.

	TestButtonActionComponent is the class name of your action.

	There is a matching rule between the action name (TestButton) and
the listener class name (TestButtonActionListener): The listener
class name = the action name + ActionListener.

	Build your project using this command: mvn clean install

	Copy the .jar file (target/action-example-1.0.jar) to the lib folder
of eXo Platform.

	Restart the server.

Testing the added Rightclick action

	Log in to the platform and go to Sites Explorer.

	Upload a document.

	Right click on this document, the TestButton is added to the action
list and the message log is displayed after clicking on it.

[image: image20]

Developing Applications

Portlets and gadgets are the two main types of eXo applications.
Portlets are user interface components that provide fragments of
markup code from the server side, while gadgets generate dynamic web
content on the client side.

This chapter includes the following main topics:

	Developing a portlet
Steps to create, build and deploy a portlet in eXo Platform. CSS and
JavaScript in portlets. Portlet development using frameworks like
JSF, Spring MVC, Juzu.

	Developing a gadget
Steps to create a gadget, create and apply resources in a gadget,
and many methods of customizing a gadget.

	Extending eXo applications
Concept and mechanism of UI Extension framework which allows the
customization and extensibility of eXo applications through
simple plugins.

Developing a portlet

In this part, you learn some portlet development techniques, including:

	HelloWorld portlet
Writing a very basic JSR-286 portlet.

	Portlet deployment
Deploying a portlet in eXo Platform by UI and by configuration.

	Portlet localization
Notice the resource path in eXo portlet is specific.

	Portlet CSS
Using portal-managed CSS with gatein-resources.xml.

	Adding JavaScript to a portlet
Using modularized JavaScript in eXo Platform.

	Portlet preferences
Portlet preferences in eXo are not user-specific.

	JSF2 portlet example
Writing a JSF2 portlet using JBoss Portlet Bridge.

	JSF2 portlet with CDI
Writing a JSF2 portlet that utilizes CDI.

	Public render parameters
Example of the JSR-286 feature.

	Contextual properties
eXo’s leverage of JSR-286 public render parameter to obtain
contextual information, such as navigation URI, site and page name.

	Juzu portlet
Introduction to Juzu framework that makes portlet development much easier.

	Spring MVC portlet
it is officially supported as of Platform 4.2.

You should also read:

	JSR-286, Portlet Specification [http://www.jcp.org/en/jsr/detail?id=286]

	Chapter 4, JavaEE Tutorial, Oracle [http://docs.oracle.com/javaee/6/tutorial/doc/bnaph.html]

HelloWorld portlet

In this part, you will create a very basic portlet which contains a
simple JSP page. The source code is available
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/hello-portlet].

	Create a new Maven project as follows:

[image: image0]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>hello-portlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <build>
 <finalName>hello-portlet</finalName>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit WEB-INF/web.xml:

<web-app>
 <display-name>hello-portlet</display-name>
</web-app>

	Edit WEB-INF/portlet.xml:

<portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello</portlet-name>
 <portlet-class>com.acme.samples.HelloPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <portlet-info>
 <title>Hello</title>
 </portlet-info>
 </portlet>
</portlet-app>

	Edit HelloPortlet.java:

package com.acme.samples;

 import java.io.IOException;

 import javax.portlet.GenericPortlet;
 import javax.portlet.PortletRequestDispatcher;
 import javax.portlet.RenderRequest;
 import javax.portlet.RenderResponse;
 import javax.portlet.PortletException;
 import javax.portlet.RenderMode;

 public class HelloPortlet extends GenericPortlet {
 @RenderMode(name = "view")
 public void Hello(RenderRequest request, RenderResponse response) throws IOException, PortletException {
 PortletRequestDispatcher prDispatcher = getPortletContext().getRequestDispatcher("/jsp/hello.jsp");
 prDispatcher.include(request, response);
 }
 }

	Edit jsp/hello.jsp:

<h2>Hello</h2>
<h6>Welcome to Hello portlet!</h6>
<p><i>Powered by eXo Platform.</i><p>

After being built, the package should be target/hello-portlet.war.
Go to next section
to deploy it in eXo Platform.

Portlet deployment

The portlet war file should be installed into
$PLATFORM_TOMCAT_HOME/webapps (in Tomcat) or
$PLATFORM_JBOSS_HOME/standalone/deployments (in JBoss).

Particularly for JBoss, you need to include a
WEB-INF/jboss-deployment-structure.xml file to your portlet war,
to declare platform.ear as a dependency:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <dependencies>
 <module name="deployment.platform.ear" export="true"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

For more information, see Master Your Portlet Packaging in JBoss article, [http://blog.exoplatform.com/en/2014/04/22/master-portlet-packaging-jboss].

Both Tomcat and JBoss support hot deployment.

To test your portlet in action, you need to add it to a page. This task
can be done in two ways:

	through UI

	by configuration

Activating a portlet through UI

First, you need to register your portlet as a portal-managed
application:

	Log in as an administrator.

	Click AdministrationApplications.

	Click Portlet on the right of the screen. Scroll down to find your
portlet in the list and click it.

	Scroll up to see the screen below, then click Click here to add into
categories.

[image: image1]

	Select one category (or more), such as Development, then save.

Once a portlet has been added to a category, you can change it as
follows:

	Click Manage Applications.

	Find the category that has your portlet. Here you can unregister it
from the category by clicking the [image: image2] icon, or click Hello to
edit the default permission.

[image: image3]

The default permission takes effect when you add the portlet to a page
and do not edit the permission by yourself.

Next, create a page and add the portlet to it. If you need instructions
to create a page, see Adding a new page, User guide <ManagingPages.AddingNewPage>.
The portlet in view mode will be as follows:

[image: image4]

Registering a portlet by configuration

In the previous section, you registered the hello-portlet to an
application category and add it to a page through UI. In this section,
you learn how to register this portlet by configuration.

The registration of portal-managed applications is performed by
configuring the ApplicationRegistryService service, so you need a
portal extension. In the following example, you are going to make the
hello-portlet as an extension containing service configuration. The
source code is available
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/register].

	Make your hello-portlet a portal extension
by adding META-INF/exo-conf/configuration.xml file:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Add PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value><string>hello-portlet</string></value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Add a new configuration file named WEB-INF/conf/application-registry.xml:

 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.application.registry.ApplicationRegistryService</target-component>
 <component-plugin>
 <name>acme.apps</name>
 <set-method>initListener</set-method>
 <type>org.exoplatform.application.registry.ApplicationCategoriesPlugins</type>
 <description></description>
 <init-params>
 <object-param>
 <name>ACME Apps</name>
 <description></description>
 <object type="org.exoplatform.application.registry.ApplicationCategory">
 <field name="name"><string>ACMEApps</string></field>
 <field name="displayName"><string>ACME applications</string></field>
 <field name="description"><string>ACME applications</string></field>
 <field name="accessPermissions">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value><string>*:/platform/users</string></value>
 </collection>
 </field>
 <field name="applications">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.application.registry.Application">
 <field name="applicationName"><string>Hello</string></field>
 <field name="categoryName"><string>ACMEApps</string></field>
 <field name="displayName"><string>Hello</string></field>
 <field name="type"><string>portlet</string></field>
 <field name="description"><string>Hello Portlet</string></field>
 <field name="contentId"><string>hello-portlet/Hello</string></field>
 <field name="accessPermissions">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value><string>*:/platform/administrators</string></value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
 </configuration>

- ``accessPermissions``: Set this to *Everyone* if you want to make the
 category/portlet public.

- ``contentId``: The *hello-portlet/Hello* pattern is the package name
 (declared in ``web.xml``) and the portlet name (declared in
 ``portlet.xml``).

	Add the WEB-INF/conf/configuration.xml file to import the new
configuration file:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <import>war:/conf/application-registry.xml</import>
</configuration>

After deploying the hello-portlet.war, you can test that the portlet
is registered under the ACME applications category:

[image: image5]

Adding portlet to page by configuration

Through UI, you have to register a portlet to portal-managed
applications prior to adding it to a page. By configuration, it is not
required.

You can download the source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/add-to-page].

Assume that you have already configured a site and some pages by site extension.
To add your hello-portlet to a page, you just need to modify pages.xml
to add the following configuration:

<portlet-application>
 <portlet>
 <application-ref>hello-portlet</application-ref>
 <portlet-ref>Hello</portlet-ref>
 </portlet>
 <title>Hello</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
</portlet-application>

So the whole file looks like this:

<page-set xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_2 http://www.gatein.org/xml/ns/gatein_objects_1_2"
 xmlns="http://www.gatein.org/xml/ns/gatein_objects_1_2">
 <page>
 <name>homepage</name>
 <title>Home Page</title>
 <access-permissions>*:/platform/users</access-permissions>
 <edit-permission>*:/platform/administrators</edit-permission>
 <portlet-application>
 <portlet>
 <application-ref>hello-portlet</application-ref>
 <portlet-ref>Hello</portlet-ref>
 </portlet>
 <title>Hello</title>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 <show-application-state>false</show-application-state>
 <show-application-mode>false</show-application-mode>
 </portlet-application>
 </page>
</page-set>

	application-ref: The web context that you declare in web.xml
of the portlet package.

	portlet-ref: The portlet name declared in portlet.xml.

	accessPermissions: Set it to Everyone if you want to make the
portlet public.

Undeploying a portlet

The removal of a portlet war will not lead to auto-removal of its
application registries and instances in pages. The registered
application is still visible and available to be added to a page;
however, it does not work anymore and the page will display a message
like “This portlet encountered an error and could not be displayed”.

So you should find and remove all the instances of the portlet from
every page.

Redeploying a portlet

Both Tomcat and JBoss support hot redeployment, so you can just replace
the old war with the new one and it should work. However, depending on
the technology the portlet uses, the hot redeployment might not work
properly. In this case, a server restart is required.

Injecting a portlet using Dynamic Container

The mechanism

If you want to inject a portlet to every page in a site, you might add
it directly to the shared layout (sharedlayout.xml). However, in
case you have more than one extension that overrides
sharedlayout.xml, only the last loaded one takes effect. This leads
to trouble that portlets injection cannot be solved in packaging, it
will require extra tasks in deployment (like merging several layouts
from different projects).

As of 4.1, the trouble is solved by the Dynamic Container feature. A
shared layout and an extension get involved in how it works:

	The shared layout must contain some Dynamic Container instances

To make a site ready to inject portlets, there should be some Dynamic
Containers added to the shared layout. This is done by
sharedlayout.xml, like this:

<container id="top-dynamic-container" template="system:/groovy/portal/webui/container/UIAddOnContainer.gtmpl">
 <name>top-dynamic-container</name>
 <factory-id>addonContainer</factory-id>
</container>

	The extension project must configure a component plugin to inject
portlets to a container.

So it is important that the extension project is aware of the
container name. The configuration will be described later.

	In the heart of the feature is the component plugin
org.exoplatform.commons.addons.AddOnPluginImpl that takes care of
injecting specified portlets to a specified Dynamic Container. This
makes Dynamic Container a special kind of container, because the
portlets that it will contain are pre-defined. In other words, the
portlet drag-and-drop is not in the Dynamic Container designation.

So in this way, whenever the named container instance is put into a
page, or all pages via sharedlayout.xml, the portlet injection is
done automatically. An extension does not have to override the layout.

Example

In the following example, you inject the “Help” portlet (a built-in, for
simplification) into all pages of the Intranet site. The Help portlet is
already featured at the top right of the homepage by default, so you
will add another one to the left. The source code of this example is
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/dynamic-container].

Make a custom extension as described in Portal extension
section.

Edit WEB-INF/conf/configuration.xml:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.commons.addons.AddOnService</target-component>
 <component-plugin>
 <name>addPlugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.commons.addons.AddOnPluginImpl</type>
 <description></description>
 <init-params>
 <value-param>
 <name>priority</name>
 <value>5</value>
 </value-param>
 <value-param>
 <name>containerName</name>
 <value>left-topNavigation-container</value>
 </value-param>
 <object-param>
 <name>help-portlet</name>
 <description></description>
 <object type="org.exoplatform.portal.config.serialize.PortletApplication">
 <field name="state">
 <object type="org.exoplatform.portal.config.model.TransientApplicationState">
 <field name="contentId">
 <string>platformNavigation/UIHelpPlatformToolbarPortlet</string>
 </field>
 </object>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

In which:

	The container instance is identified by containerName. Find below
a picture that depicts the default layout of the Intranet site.

	The portlets are identified by contentId. In the example,
platformNavigation is the webapp name (declared in web.xml),
and UIHelpPlatformToolbarPortlet is the portlet name (declared in
portlet.xml).

To inject more than one portlet, add more object-param with
different names.

Default Dynamic Container instances

Here are the Dynamic Container instances in the Intranet site:

[image: image6]

For a customized site, you can manage Dynamic Containers by customizing
sharedlayout.xml.
The configuration sample is given above. There are two templates of
Dynamic Container:

	system:/groovy/portal/webui/container/UIAddOnContainer.gtmpl

	system:/groovy/portal/webui/container/UIAddOnColumnContainer.gtmpl

Portlet localization

In this example you add some language resources and CSS to be used in
the JSP of the HelloWorld portlet. You can download the portlet’s source
code here [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/localization].

The example is plain JSR-286, except one thing: eXo expects that the
resource bundle should be found in the locale/portlet folder. The
path is fixed and you need to pack your .properties files in a
sub-folder of this path.

	Create a new Maven project as follows:

[image: image7]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>hello-portlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <build>
 <finalName>hello-portlet</finalName>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit web.xml:

<web-app>
 <display-name>hello-portlet</display-name>
</web-app>

	Edit HelloPortlet.java:

package com.acme.samples;

import java.io.IOException;

import javax.portlet.GenericPortlet;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletException;
import javax.portlet.RenderMode;

public class HelloPortlet extends GenericPortlet {
 @RenderMode(name = "view")
 public void Hello(RenderRequest request, RenderResponse response) throws IOException, PortletException {
 PortletRequestDispatcher prDispatcher = getPortletContext().getRequestDispatcher("/jsp/hello.jsp");
 prDispatcher.include(request, response);
 }
}

	Edit HelloPortlet_en.properties to add language properties:

com.acme.samples.HelloPortlet.Hello=Hello!
com.acme.samples.HelloPortlet.Msg1=This is a portlet example.
com.acme.samples.HelloPortlet.Msg2=Written by a baker.

	Edit HelloPortlet_fr.properties to add language properties:

com.acme.samples.HelloPortlet.Hello=Bonjour!
com.acme.samples.HelloPortlet.Msg1=C'est un example de portlet.
com.acme.samples.HelloPortlet.Msg2=Ecrit par un boulanger.

	Edit portlet.xml to register supported locale and the
resource-bundle:

<portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello</portlet-name>
 <portlet-class>com.acme.samples.HelloPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <supported-locale>en</supported-locale>
 <resource-bundle>locale.portlet.HelloPortlet.HelloPortlet</resource-bundle>
 <portlet-info>
 <title>Hello</title>
 </portlet-info>
 </portlet>
</portlet-app>

	Edit Stylesheet.css:

.HelloPortlet1, .HelloPortlet2, .HelloPortlet3 {
 padding: 10px;
 font-style: italic;
 font-size: 18px;
 width: 400px;
}
.HelloPortlet1 {
 background-color: antiquewhite;
}
.HelloPortlet2 {
 background-color: lemonchiffon;
}
.HelloPortlet3 {
 background-color: wheat;
}

	Edit hello.jsp to add language properties:

 <%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
 <%@ page import="java.util.ResourceBundle"%>

 <portlet:defineObjects />

 <%
 String contextPath = request.getContextPath();
 ResourceBundle resource = portletConfig.getResourceBundle(request.getLocale());
 %>

 <link rel="stylesheet" type="text/css" href="<%=contextPath%>/skin/Stylesheet.css"/>
 <div class="HelloPortlet1">
 <%=resource.getString("com.acme.samples.HelloPortlet.Hello")%>
 </div>
 <div class="HelloPortlet2">
 <%=resource.getString("com.acme.samples.HelloPortlet.Msg1")%>
 </div>
 <div class="HelloPortlet3">
 <%=resource.getString("com.acme.samples.HelloPortlet.Msg2")%>
 </div>

- Notice the *taglib* and *portlet:defineObjects* is added to be able
 to use the ``portletConfig`` object.

- To simplify this example, a CSS link is added to the body (JSP) but
 this is not recommended. Please see the :ref:`Portlet CSS <PLFDevGuide.DevelopingApplications.DevelopingPortlet.CSS>`
 section for a better way.

After deployment, add the portlet to a page and test:

[image: image8]

Note

The locale resource bundle needs to be packed in a sub folder under WEB-INF/classes/locale/portlet/.

Portlet CSS

In the example of Portlet localization,
the CSS resource is added into the JSP. It might make the page slow and
ugly.

<link rel="stylesheet" type="text/css" href="<%=contextPath%>/skin/Stylesheet.css"/>
<div>..</div>

In this section you improve it by letting the portal manage your CSS
resource. You can download all source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/css].

The registration of a CSS resource to the portal is done via
WEB-INF/gatein-resources.xml in your .war. For this purpose you
will make your webapp a portal
extension, by adding
META-INF/exo-conf/configuration.xml file:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Add PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>hello-portlet</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

The CSS resource is registered like below:

	Add the WEB-INF/gatein-resources.xml file so that you have:

[image: image9]

	Edit gatein-resources.xml:

 <gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <portlet-skin>
 <application-name>hello-portlet</application-name>
 <portlet-name>Hello</portlet-name>
 <skin-name>Default</skin-name>
 <css-path>/skin/Stylesheet.css</css-path>
 </portlet-skin>
 </gatein-resources>

- The application-name is the name of war file and needs to be
 configured as the same value in ``web.xml``.

- The portlet-name is configured in ``portlet.xml``.

- Do not miss the :ref:`note <Note-Using-Shared-CSS-Resource>` at
 the end of this section.

Modify the jsp/hello.jsp file (to remove the link tag):

<%@ taglib uri="http://java.sun.com/portlet" prefix="portlet" %>
<%@ page import="java.util.ResourceBundle"%>
<%@ page import="org.exoplatform.services.resources.ResourceBundleService"%>
<%@ page import="org.exoplatform.container.PortalContainer"%>

<portlet:defineObjects />

<%
 String contextPath = request.getContextPath();
 ResourceBundle resource = portletConfig.getResourceBundle(request.getLocale());
%>

<div class="HelloPortlet1">
 <%=resource.getString("com.acme.samples.HelloPortlet.Hello")%>
</div>
<div class="HelloPortlet2">
 <%=resource.getString("com.acme.samples.HelloPortlet.Msg1")%>
</div>
<div class="HelloPortlet3">
 <%=resource.getString("com.acme.samples.HelloPortlet.Msg2")%>
</div>

The result will be:

[image: image10]

Note

To allow many portlets to use a shared CSS resource, the resource should be registered as a portal-skin module. Find details in Managing eXo Platform look and feel.

Adding JavaScript to a portlet

In this example, you add a button to the Hello portlet and use jQuery to
register an event for the button. When you click the “here” button, a
popup will appear. The source code used in this section is
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/js].

Note

This is a quick tutorial. You are strongly recommended to read
Developing JavaScript chapter to
write your JavaScript safely in eXo Platform.

The registration of a JavaScript module is done via
WEB-INF/gatein-resources.xml in your .war. For this purpose you
will make your webapp a portal extension,
by adding META-INF/exo-conf/configuration.xml file:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Add PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>hello-portlet</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

The JavaScript is added like below:

	Add the WEB-INF/gatein-resources.xml file:

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <portlet>
 <name>Hello</name>
 <module>
 <script>
 <path>/js/foo.js</path>
 </script>
 <depends>
 <module>jquery</module>
 <as>jq</as>
 </depends>
 </module>
 </portlet>
</gatein-resources>

	Add the /js/foo.js file to src/main/webapp:

(function($) {
 $("body").on("click", ".hello .btn", function() {
 alert("Hello World!");
 });
})(jq);

	Modify the jsp/hello.jsp file:

<div class='hello'>
 <h2>Hello</h2>
 <h6>Welcome to Hello portlet!</h6>
 <p>Click here to display the popup window.</p>
 <p><i>Powered by eXo Platform.</i></p>
</div>

The result when you click the “here” button:

[image: image11]

Portlet preferences

JSR-168 lets the implementations decide whether portlet preferences are
user-specific or not.

In this example you will learn that portlet preferences in eXo are not
user-specific. The source code of this example is
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/portlet-preferences].

	Create a new Maven project as follows:

[image: image12]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>hello-portlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <build>
 <finalName>hello-portlet</finalName>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit web.xml:

<web-app>
 <display-name>hello-portlet</display-name>
</web-app>

	Edit HelloPortlet.java:

package com.acme.samples;

import java.io.IOException;

import javax.portlet.GenericPortlet;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.PortletMode;
import javax.portlet.PortletPreferences;

public class HelloPortlet extends GenericPortlet {

 @Override
 protected void doView(RenderRequest request, RenderResponse response) throws IOException, PortletException {

 PortletRequestDispatcher dispatcher = getPortletContext().getRequestDispatcher("/jsp/view.jsp");
 dispatcher.forward(request, response);
 }

 @Override
 protected void doEdit(RenderRequest request, RenderResponse response) throws IOException, PortletException {

 PortletRequestDispatcher dispatcher = getPortletContext().getRequestDispatcher("/jsp/edit.jsp");
 dispatcher.forward(request, response);
 }

 @Override
 public void processAction(ActionRequest request, ActionResponse response) throws IOException, PortletException {

 String borderColor = request.getParameter("border_color");
 PortletPreferences preferences = request.getPreferences();
 preferences.setValue("border_color", borderColor);
 preferences.store();

 response.setPortletMode(PortletMode.VIEW);
 }
}

	Edit portlet.xml to support VIEW and EDIT modes:

<portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello</portlet-name>
 <portlet-class>com.acme.samples.HelloPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 <portlet-mode>EDIT</portlet-mode>
 </supports>
 <portlet-info>
 <title>Portlet preferences</title>
 </portlet-info>
 </portlet>
</portlet-app>

	Edit view.jsp:

<%@ page import="javax.portlet.PortletURL" %>
<%@ page import="javax.portlet.PortletMode" %>
<%@ page import="javax.portlet.PortletPreferences" %>
<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet"%>
<portlet:defineObjects/>

<%
 PortletURL editURL = renderResponse.createRenderURL();
 editURL.setPortletMode(PortletMode.EDIT);

 PortletPreferences preferences = renderRequest.getPreferences();
 String borderColor = preferences.getValue("border_color", "transparent");
%>

<div style="border: solid 1px <%=borderColor%>">
 <a href="<%=editURL%>">Click here to switch to edit mode!
</div>

	Edit edit.jsp:

<%@ page import="javax.portlet.PortletURL" %>
<%@ page import="javax.portlet.PortletMode" %>
<%@ page import="javax.portlet.PortletPreferences" %>
<%@ taglib uri="http://java.sun.com/portlet_2_0" prefix="portlet"%>
<portlet:defineObjects/>

<%
 PortletURL viewURL = renderResponse.createRenderURL();
 viewURL.setPortletMode(PortletMode.VIEW);

 PortletURL actionURL = renderResponse.createActionURL();
 PortletPreferences preferences = renderRequest.getPreferences();
 String borderColor = preferences.getValue("border_color", "transparent");
%>

<div style="border: solid 1px <%=borderColor%>">
 <a href="<%=viewURL%>">Click here to switch to view mode!
 <p></p>
 <form action="<%=actionURL%>" method="POST">
 <label>Select border color:</label>
 <select name="border_color">
 <option value="transparent" <%=(borderColor == "transparent" ? "selected=\"selected\"" : "")%>>None</option>
 <option value="red" <%=(borderColor == "red" ? "selected=\"selected\"" : "")%>>Red</option>
 <option value="blue" <%=(borderColor == "blue" ? "selected=\"selected\"" : "")%>>Blue</option>
 </select>
 <input type="submit" value="Save"/>
 </form>
</div>

After deployment, add the portlet to a page and test:

[image: image13]

Note

Again, the portlet preferences are not user-specific. In this example, when a user changes the value of border color, it affects other users.

JSF2 portlet example

In this example, you write a JSF2 portlet using JBoss Portlet Bridge (JPB) [https://docs.jboss.org/author/display/PBRDOC/Home].

The code sample [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/jsf2-portlet]
originates from JPB project [https://github.com/portletbridge/portletbridge/tree/4.3.x/examples/jsf2portlet],
and is modified in this example so that you can build it independently.

	Create a new Maven project as follows:

[image: image14]

	Edit pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.jboss.portletbridge.examples</groupId>
 <artifactId>jsf2portlet-example</artifactId>
 <packaging>war</packaging>
 <name>JSF 2 Portlet Example</name>
 <version>1.0</version>

 <dependencies>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-api</artifactId>
 <version>2.1.14</version>
 </dependency>
 <dependency>
 <groupId>com.sun.faces</groupId>
 <artifactId>jsf-impl</artifactId>
 <scope>runtime</scope>
 <version>2.1.14</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.portletbridge</groupId>
 <artifactId>portletbridge-api</artifactId>
 <version>3.1.2.Final</version>
 </dependency>
 <dependency>
 <groupId>org.jboss.portletbridge</groupId>
 <artifactId>portletbridge-impl</artifactId>
 <version>3.1.2.Final</version>
 <scope>runtime</scope>
 </dependency>
 </dependencies>

 <build>
 <finalName>jsf2portlet-example</finalName>
 </build>
</project>

Pay attention to the runtime scope. This tells Maven to include the
dependencies to WEB-INF/lib.

Note

The portlet bridge libraries must be available and are usually bundled with the WEB-INF/lib directory of the web archive.

	Write the managed bean Echo.java:

package com.acme.samples.jsf2portlet;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;
import javax.faces.event.ActionEvent;

@ManagedBean(name = "echo")
@SessionScoped
public class Echo {

 String str = "hello";

 public String getStr() {
 return str;
 }

 public void setStr(String str) {
 this.str = str;
 }

 public void reset(ActionEvent ae) {
 str = "";
 }

}

	Edit web.xml:

<?xml version="1.0"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 version="2.5">

 <display-name>JSF2 Portlet Example</display-name>
 <context-param>
 <param-name>javax.portlet.faces.RENDER_POLICY</param-name>
 <param-value>ALWAYS_DELEGATE</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <param-value>*.xhtml</param-value>
 </context-param>
 <context-param>
 <param-name>javax.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.xhtml</param-value>
 </context-param>
 <servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>javax.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.faces</url-pattern>
 </servlet-mapping>
</web-app>

The context-params are explained at
http://myfaces.apache.org/core21/myfaces-impl/webconfig.html.

	Edit *.xhtml files:

	main.xhtml:

<f:view id="ajaxEcho" xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html">
 <h:head />
 <h:body>
 <h2>JSF 2 portlet</h2>
 <p>this is simple JSF 2.0 portlet with AJAX echo.</p>
 <h:form id="form1">
 Output: <h:outputText id="out1" value="#{echo.str}" />

 Input: <h:inputText id="in1" autocomplete="off" value="#{echo.str}">
 <f:ajax render="out1" />
 </h:inputText>

 <!-- A no-op button, just to lose the focus from "in1" -->
 <h:commandButton id="button1" value="Echo" type="button" />

 <!-- Resets the string, refreshes the form, but not the page -->
 <h:commandButton id="reset" value="reset" actionListener="#{echo.reset}">
 <f:ajax render="@form" />
 </h:commandButton>
 <!-- Reloads the page, doesn't reset the string -->
 <h:commandButton id="reload" value="reload" />
 <h:messages />
 </h:form>
 </h:body>
</f:view>

Here the tag f:ajax is used.

	edit.xhtml:

<ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.com/jsf/core"

 xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:h="http://java.sun.com/jsf/html">

 Edit Mode
</ui:composition>

	help.xhtml:

<ui:composition xmlns="http://www.w3.org/1999/xhtml" xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ui="http://java.sun.com/jsf/facelets" xmlns:h="http://java.sun.com/jsf/html">

 Help Mode
</ui:composition>

	Edit portlet.xml:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>jsf2portlet</portlet-name>
 <portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/pages/main.xhtml</value>
 </init-param>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.edit</name>
 <value>/pages/edit.xhtml</value>
 </init-param>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.help</name>
 <value>/pages/help.xhtml</value>
 </init-param>
 <init-param>
 <name>javax.portlet.faces.preserveActionParams</name>
 <value>true</value>
 </init-param>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 <portlet-mode>EDIT</portlet-mode>
 <portlet-mode>HELP</portlet-mode>
 </supports>
 <portlet-info>
 <title>JSF 2.0 AJAX Portlet</title>
 </portlet-info>
 </portlet>
</portlet-app>

This last step makes the JSF2 application a portlet.

Deploy the portlet, add it to a page as instructed in previous sections,
and test it:

[image: image15]

Some references:

	Java Server Faces, Oracle
Tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/bnaph.html]

	Ajax with JSF, Oracle
Tutorial [http://docs.oracle.com/javaee/6/tutorial/doc/gkiow.html]

JSF2 portlet with CDI

In previous section,
you have learnt to write JSF2 portlet. In this section, your JSF2
portlet will utilize CDI (Contexts and Dependency Injection).

This section will not explain JBoss Portlet Brigde again, so get back to
the previous section if necessary.

The code sample can be found
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/jsf2-portlet-cdi].

Note

Currently you could not use JSF together with CDI in Tomcat. This tutorial is for JBoss only.

Also note that the deployment of this portlet does not follow Portlet deployment
section completely, so do not miss the deployment
part at the end of this tutorial.

So why CDI?

If you want to get a quick understanding about CDI, and current
Dependency Injection frameworks, this
introduction [https://jaxenter.com/tutorial-introduction-to-cdi-contexts-and-dependency-injection-for-java-ee-jsr-299-104536.html]
may help. As CDI is a part of Java EE specification, Oracle’s
Documentation [https://docs.oracle.com/javaee/7/tutorial/partcdi.htm#GJBNR]
is always recommended.

Note this tutorial sticks with Weld, CDI implementation of
JBoss [http://weld.cdi-spec.org/documentation/].

In this tutorial, you learn the basic CDI via an example, in which you
use @Inject annotation, with some Scopes and Qualifiers.

In the example, your JSF2 portlet is a form in which users input email
subject/body and press buttons to send emails. There are two kinds of
recipients - “customers” and “partners” - so you have two buttons. See
the screenshot below:

[image: image16]

The To mail lists are different in the two cases. So “customers”
addresses are provided by a Bean, and “partners” are provided by a
modified one of that Bean. Both are at ApplicationScoped.

The From field will be the email of the logged-in user. It is
provided by another Bean at SessionScoped.

The base idea of CDI is: your application (the portlet in this example)
does not create the Mail list providers, but let CDI create and manage
the lifecycle of them, so the application always gets the same object
for the same context. As important as that, it is CDI which knows the
chain of the dependencies, not the application.

The three Beans are declared by annotations, but need to be packaged
together with a beans.xml file.

Now let’s start your project. Again, see the full code sample at
GitHub [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/jsf2-portlet-cdi].

	Create a Maven project with the following structure:

[image: image17]

	In pom.xml, add the dependencies of JSF, JPB and CDI, and also
some eXo dependencies to work with eXo Mail and Social services.

<!-- CDI (Contexts and Dependency Injection) -->
<dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>javax.enterprise</groupId>
 <artifactId>cdi-api</artifactId>
 <version>1.0-SP4</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.gatein</groupId>
 <artifactId>cdi-portlet-integration</artifactId>
 <version>1.0.3.Final</version>
 <scope>runtime</scope>
</dependency>
<!-- eXo -->
<dependency>
 <groupId>org.exoplatform.core</groupId>
 <artifactId>exo.core.component.security.core</artifactId>
 <version>2.5.13-GA</version>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-core</artifactId>
 <version>4.2.0</version>
 <scope>provided</scope>
</dependency>

	Edit the WEB-INF/beans.xml file:

<?xml version="1.0"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://jboss.org/schema/cdi/beans_1_0.xsd">
 <!-- This file is required to enable CDI for this web-app. There is nothing
 here because the beans will be declared using annotations. In case your beans
 are packaged in jar, this file should be placed under META-INF/ folder. -->
</beans>

	Edit the WEB-INF/portlet.xml file. You need to configure the
portlet filter to the org.gatein.cdi.PortletCDIFilter class.

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app version="2.0"
 xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd
 http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>jsf2portlet-cdi-example</portlet-name>
 <portlet-class>javax.portlet.faces.GenericFacesPortlet</portlet-class>
 <init-param>
 <name>javax.portlet.faces.defaultViewId.view</name>
 <value>/pages/main.xhtml</value>
 </init-param>
 <init-param>
 <name>javax.portlet.faces.preserveActionParams</name>
 <value>true</value>
 </init-param>
 <expiration-cache>0</expiration-cache>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>VIEW</portlet-mode>
 </supports>
 <portlet-info>
 <title>JSF2 Portlet CDI</title>
 </portlet-info>
 </portlet>
 <filter>
 <filter-name>PortletCDIFilter</filter-name>
 <filter-class>org.gatein.cdi.PortletCDIFilter</filter-class>
 <lifecycle>ACTION_PHASE</lifecycle>
 <lifecycle>EVENT_PHASE</lifecycle>
 <lifecycle>RENDER_PHASE</lifecycle>
 <lifecycle>RESOURCE_PHASE</lifecycle>
 </filter>
 <filter-mapping>
 <filter-name>PortletCDIFilter</filter-name>
 <portlet-name>jsf2portlet-cdi-example</portlet-name>
 </filter-mapping>
</portlet-app>

	Edit the WEB-INF/web.xml file. It is the same as the basic JSF2
portlet, so not repeated here.

	Edit the pages/main.xhtml file.

<f:view id="ajaxEcho" xmlns="http://www.w3.org/1999/xhtml" xmlns:ui="http://java.sun.com/jsf/facelets"
xmlns:f="http://java.sun.com/jsf/core" xmlns:h="http://java.sun.com/jsf/html">
 <h:head />
 <h:body>
 <h2>JSF 2 portlet</h2>
 <h:form id="form1">
 Subject: <h:inputText id="subject" autocomplete="off" value="#{mailSender.subject}"></h:inputText>

 Message: <h:inputTextarea id="body" value="#{mailSender.body}"></h:inputTextarea>

 <h:commandButton id="sendCustomer" value="Send Customers" actionListener="#{mailSender.sendCustomers}"></h:commandButton>

 <h:commandButton id="sendPartners" value="Send Partners" actionListener="#{mailSender.sendPartners}"></h:commandButton>
 </h:form>
 </h:body>
</f:view>

	Create the MailList.java interface:

package org.exoplatform.samples.jsf2portlet.cdi;

public interface MailList {

 public String getMailList();
}

There will be two implementations of this interface. In companion with
CDI, you annotate the two with
Qualifiers [https://docs.oracle.com/javaee/7/tutorial/cdi-basic006.htm#GJBCK].
For that, you will create two qualifiers, Customer and Partner.

	Edit the two qualifiers. In Customer.java:

package org.exoplatform.samples.jsf2portlet.cdi;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;
import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;
import javax.inject.Qualifier;

@Qualifier
@Retention(RUNTIME)
@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Customer {}

And do the same with Partner.java.

	Implement the MailList interface. Use the qualifier Customer in
CustomerMailList.java:

package org.exoplatform.samples.jsf2portlet.cdi;

import javax.faces.bean.ApplicationScoped;
import javax.faces.bean.ManagedBean;

@ManagedBean
@ApplicationScoped
@Customer
public class CustomerMailList implements MailList{

 public String getMailList() {
 return "user1@example.com, user2@example.com";
 }
}

Do it similarly in PartnerMailList.java, use the qualifier
Partner.

	Edit UserBean.java. This bean provides the current user email,
so its scope should be SessionScoped.

package org.exoplatform.samples.jsf2portlet.cdi;

import javax.faces.bean.ManagedBean;
import javax.faces.bean.SessionScoped;

import org.exoplatform.container.ExoContainerContext;
import org.exoplatform.services.security.ConversationState;
import org.exoplatform.social.core.manager.IdentityManager;
import org.exoplatform.social.core.identity.model.*;
import org.exoplatform.social.core.identity.provider.OrganizationIdentityProvider;

@ManagedBean
@SessionScoped
public class UserBean {

 private String userEmail;

 public UserBean() {
 IdentityManager identityManager = (IdentityManager) ExoContainerContext.getCurrentContainer().getComponentInstanceOfType(IdentityManager.class);
 String currentUserId = ConversationState.getCurrent().getIdentity().getUserId();
 Identity currentIdentity = identityManager.getOrCreateIdentity(OrganizationIdentityProvider.NAME, currentUserId, false);
 Profile profile = currentIdentity.getProfile();
 userEmail = profile.getEmail();
 }

 public String getUserEmail() {
 return userEmail;
 }
}

Now you have all dependencies that your JSF portlet will use. So
let’s finish the portlet.

	Edit the MailSender.java file:

package org.exoplatform.samples.jsf2portlet.cdi;

import javax.inject.*;
import javax.faces.bean.*;

import org.exoplatform.services.mail.MailService;
import org.exoplatform.services.mail.Message;
import org.exoplatform.commons.utils.CommonsUtils;

@ManagedBean
public class MailSender {

 private String subject, body;

 @Inject @Customer MailList customerMailList;
 @Inject @Partner MailList partnerMailList;
 @Inject UserBean userBean;

 public String getSubject() {
 return subject;
 }
 public void setSubject(String subject) {
 this.subject = subject;
 }
 public String getBody() {
 return body;
 }
 public void setBody(String body) {
 this.body = body;
 }

 public void sendCustomers() {
 Message message = new Message();
 message.setSubject(subject);
 message.setBody(body);
 message.setFrom(userBean.getUserEmail());
 message.setTo(customerMailList.getMailList());

 try {
 ((MailService) CommonsUtils.getService(MailService.class)).sendMessage(message);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void sendPartners() {
 Message message = new Message();
 message.setSubject(subject);
 message.setBody(body);
 message.setFrom(userBean.getUserEmail());
 message.setTo(partnerMailList.getMailList());

 try {
 ((MailService) CommonsUtils.getService(MailService.class)).sendMessage(message);
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

Deployment in eXo Platform JBoss

Your webapp needs to be scanned by Weld so you will not deploy it in
standalone/deployments as other portlet applications. Instead,
deploy it into platform.ear and add a module in application.xml.

	target/jsf2portlet-cdi-example.war into
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear.

	Edit $PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/META-INF/application.xml
to add a module like the following. The module must be added before
the starter module, so on top if you like that:

<module>
 <web>
 <web-uri>jsf2portlet-cdi-example.war</web-uri>
 <context-root>jsf2portlet-cdi-example</context-root>
 </web>
</module>

Then follow the Portlet deployment
section to register and add the portlet to a page for testing.

Note

Starting from eXo Platform 5.0, we upgraded to JBoss EAP 7.0 which uses Contexts and Dependency Injection (CDI) 1.2 [https://access.redhat.com/documentation/en-us/red_hat_jboss_enterprise_application_platform/7.0/html/development_guide/contexts_and_dependency_injection_cdi#introduction_to_cdi].
CDI 1.2 comes with the new notion of implicit bean archive allowing
to scan war archives for annotations to process by Weld (the JBoss
implementation of CDI). This new feature has some conflicts with our
development and thus it has been disabled by default for eXo Platform EAR
including its addons.

Public render parameters

In this example you write two portlets: one sets a value of a public
parameter, and the other consumes the value.

The source code of this example is
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/portlet/public-render-parameters].

	Create a new Maven project as follows:

[image: image18]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>hello-portlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <build>
 <finalName>prp-portlet</finalName>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit web.xml:

<web-app>
 <display-name>prp-portlet</display-name>
</web-app>

	Edit portlet.xml:

 <portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Sharing-PRP-Portlet</portlet-name>
 <portlet-class>com.acme.samples.SharingPRPPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <portlet-info>
 <title>Sharing-PRP-Portlet</title>
 </portlet-info>
 <supported-public-render-parameter>current_time</supported-public-render-parameter>
 </portlet>
 <portlet>
 <portlet-name>Consuming-PRP-Portlet</portlet-name>
 <portlet-class>com.acme.samples.ConsumingPRPPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <portlet-info>
 <title>Consuming-PRP-Portlet</title>
 </portlet-info>
 <supported-public-render-parameter>current_time</supported-public-render-parameter>
 </portlet>
 <public-render-parameter>
 <identifier>current_time</identifier>
 <name>current_time</name>
 </public-render-parameter>
 </portlet-app>

- In case you pack the two portlets separately, the two ``portlet.xml``
 files must repeat the same *public-render-parameter* and
 supported-public-render-parameter elements. In other words, there
 is no difference between the sharing portlet and the consuming one's
 configuration.

	Edit SharingPRPPortlet.java:

package com.acme.samples;

import java.io.IOException;
import java.io.PrintWriter;
import java.util.Date;

import javax.portlet.GenericPortlet;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.PortletURL;

public class SharingPRPPortlet extends GenericPortlet {

 @Override
 public void processAction(ActionRequest request, ActionResponse response) throws IOException, PortletException {
 response.setRenderParameter("current_time", new Date(System.currentTimeMillis()).toString());
 }

 @Override
 public void doView(RenderRequest request, RenderResponse response) throws IOException, PortletException {
 PortletURL actionURL = response.createActionURL();
 PrintWriter w = response.getWriter();
 w.write("<p>Click here to execute processAction()</p>");
 w.write("" + request.getParameter("current_time") + "");
 w.close();
 }
}

	Edit ConsumingPRPPortlet.java:

 package com.acme.samples;

 import java.io.IOException;
 import java.io.PrintWriter;
 import java.util.Map;

 import javax.portlet.GenericPortlet;
 import javax.portlet.RenderRequest;
 import javax.portlet.RenderResponse;
 import javax.portlet.PortletException;
 import javax.portlet.ActionRequest;
 import javax.portlet.ActionResponse;

 public class ConsumingPRPPortlet extends GenericPortlet {

 @Override
 public void doView(RenderRequest request, RenderResponse response) throws IOException, PortletException {
 Map<String, String[]> paramNames = request.getPublicParameterMap();
 PrintWriter w = response.getWriter();
 for (String name : paramNames.keySet()) {
 String value = request.getParameter(name);
 w.write("<p>" + "*" + name + ": " + value + "</p>");
 }
 w.close();
 }
 }

- In ``SharingPRPPortlet.java``, the ``current_time`` parameter is set
 by the ``processAction()`` method, so the ``doView()`` method
 provides a link to trigger ``processAction()``.

- While both the portlets prints ``current_time``, the
 ``ConsumingPRPPortlet`` portlet gets and prints all the public
 parameters that it supports.

 Add the two portlets to a page and test them:

[image: image19]

Contextual properties

ContextualPropertyManager service and plugins give you a way to access
information of portal context, like site type, page name and node URI.
You can also inject a property as you want.

Note

Such properties are accessed in the same way as public render
parameters, but unlike public render parameters, contextual
properties values cannot and should not be changed by the portlet.

In this example, you write a ContextualPropertyManager plugin that adds
a parameter (called current_time), and a portlet that gets all the
public contextual properties, including your one and the built-in ones.

The source code of this example is
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/contextual-properties].

The ContextualPropertyManager plugin project

	Create a new Maven project as follows:

[image: image20]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>cp-plugin</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <dependencies>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.portal</artifactId>
 <version>3.5.10.Final</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.container</artifactId>
 <version>2.4.9-GA</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit CPPlugin.java:

package com.acme.samples;

import java.util.Map;
import java.util.Date;

import org.exoplatform.portal.application.state.AbstractContextualPropertyProviderPlugin;
import javax.xml.namespace.QName;
import org.exoplatform.container.xml.InitParams;
import org.exoplatform.portal.webui.application.UIPortlet;

public class CPPlugin extends AbstractContextualPropertyProviderPlugin {

 private QName myQName;

 public CPPlugin (InitParams params) {

 super(params);
 this.myQName = new QName(namespaceURI, "current_time");
 }

 @Override
 public void getProperties(UIPortlet portletWindow, Map<QName, String[]> properties) {

 addProperty(properties, myQName, new Date(System.currentTimeMillis()).toString());
 }
}

	Edit conf/portal/configuration.xml:

<configuration>
 <external-component-plugins>
 <target-component>org.exoplatform.portal.application.state.ContextualPropertyManager</target-component>
 <component-plugin>
 <name>CPPlugin</name>
 <set-method>addPlugin</set-method>
 <type>com.acme.samples.CPPlugin</type>
 <priority>1</priority>
 <init-params>
 <value-param>
 <name>namespaceURI</name>
 <description>Namespace URI</description>
 <value>http://www.gatein.org/xml/ns/prp_1_0</value>
 </value-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Build the project and install target/cp-plugin-1.0.jar to the
lib folder of the server.

The portlet project

	Create a Maven project as follows:

[image: image21]

	Edit pom.xml:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>hello-portlet</artifactId>
 <version>1.0</version>
 <packaging>war</packaging>
 <build>
 <finalName>hello-portlet</finalName>
 </build>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit web.xml:

<web-app>
 <display-name>hello-portlet</display-name>
</web-app>

	Edit portlet.xml:

<portlet-app version="2.0" xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>Hello</portlet-name>
 <portlet-class>com.acme.samples.HelloPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <portlet-info>
 <title>Contextual properties</title>
 </portlet-info>
 <supported-public-render-parameter>navigation_uri</supported-public-render-parameter>
 <supported-public-render-parameter>page_name</supported-public-render-parameter>
 <supported-public-render-parameter>site_type</supported-public-render-parameter>
 <supported-public-render-parameter>site_name</supported-public-render-parameter>
 <supported-public-render-parameter>window_width</supported-public-render-parameter>
 <supported-public-render-parameter>window_height</supported-public-render-parameter>
 <supported-public-render-parameter>window_show_info_bar</supported-public-render-parameter>
 <supported-public-render-parameter>current_time</supported-public-render-parameter>
 </portlet>

 <public-render-parameter>
 <identifier>navigation_uri</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:navigation_uri</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>page_name</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:page_name</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>site_type</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:site_type</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>site_name</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:site_name</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>window_width</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:window_width</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>window_height</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:window_height</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>window_show_info_bar</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:window_show_info_bar</qname>
 </public-render-parameter>
 <public-render-parameter>
 <identifier>current_time</identifier>
 <qname xmlns:prp='http://www.gatein.org/xml/ns/prp_1_0'>prp:current_time</qname>
 </public-render-parameter>
</portlet-app>

	Edit HelloPortlet.java by simply dispatching requests to
view.jsp:

package com.acme.samples;

import java.io.IOException;
import java.util.Date;
import java.io.PrintWriter;

import javax.portlet.GenericPortlet;
import javax.portlet.PortletRequestDispatcher;
import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;
import javax.portlet.PortletException;
import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;

public class HelloPortlet extends GenericPortlet {

 @Override
 public void doView(RenderRequest request, RenderResponse response) throws IOException, PortletException {

 PortletRequestDispatcher dispatcher = getPortletContext().getRequestDispatcher("/jsp/view.jsp");
 dispatcher.include(request, response);
 }
}

	Edit view.jsp:

<%
 String navigation_uri = request.getParameter("navigation_uri");
 String page_name = request.getParameter("page_name");
 String site_type = request.getParameter("site_type");
 String site_name = request.getParameter("site_name");
 String window_width = request.getParameter("window_width");
 String window_height = request.getParameter("window_height");
 String window_show_info_bar = request.getParameter("window_show_info_bar");
 String current_time = request.getParameter("current_time");
%>

<style>
 #contextual_properties td:last-child {font-style: italic}
 #contextual_properties tr, td {padding: 5px}
</style>
<table border="1" id="contextual_properties" style="width: auto; border-spacing: 5px">
 <tr><td>navigation_uri</td><td><%=navigation_uri%></td></tr>
 <tr><td>page_name</td><td><%=page_name%></td></tr>
 <tr><td>site_type</td><td><%=site_type%></td></tr>
 <tr><td>site_name</td><td><%=site_name%></td></tr>
 <tr><td>window_width</td><td><%=window_width%></td></tr>
 <tr><td>window_height</td><td><%=window_height%></td></tr>
 <tr><td>window_show_info_bar</td><td><%=window_show_info_bar%></td></tr>
 <tr><td>current_time</td><td><%=current_time%></td></tr>
</table>

After deployment, add the portlet to a page and test:

[image: image22]

The properties window_width and window_height are the size of
the portlet instance. You can change these parameters, and
window_show_info_bar as well, in Portlet Setting menu (by clicking
Edit –> PageEdit –> Layout).

Juzu portlet

The source code used in this tutorial is
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/juzu-portlet].

Juzu framework offers the following features to ease portlet
development:

	Be able to develop your portlet like a standalone application, and
simply use the @Portlet annotation to make it a portlet.

	Live mode: no need to re-deploy your application, because changes are
applied when you save your files.

	Templating: use Groovy, type safe parameters, template validation at
compilation.

	Dependency injection - JSR-330 (CDI, Spring, Guice).

	Modular architecture with plugins.

References

	Juzu documentation: http://juzuweb.org - learn directly from this
site where Juzu team will update tutorials, references and Javadocs.

	Juzu source code: https://github.com/juzu/juzu.

This tutorial focuses on Juzu portlet deployment in PRODUCT Tomcat and
JBoss.

The dependencies are different for each server and each dependency
injection implementation, so the project will use different Maven build
profiles for packaging in each case:

	Use mvn clean package -Pplf-tomcat-guice to build a package for
Tomcat using Guice.

	Use mvn clean package -Pplf-jboss-guice to build a package for
JBoss using Guice.

	Use mvn clean package -Pplf-tomcat-spring to build a package for
Tomcat using Spring.

	Use mvn clean package -Pplf-jboss-spring to build a package for
JBoss using Spring.

Note

Currently, only Guice and Spring are covered in this tutorial. The
other implementation, Weld, will be documented later.

	Create a Maven project as follows:

[image: image23]

Note

You can use the following archetype to generate project but make
sure you will modify every single file in accordance with this
tutorial.

*mvn archetype:generate -DarchetypeGroupId=org.juzu
-DarchetypeArtifactId=juzu-archetype -DarchetypeVersion=1.0.0
-DgroupId=org.exoplatform.samples -DartifactId=hellojz
-Dversion=5.1.x*

	Edit Controller.java:

package org.exoplatform.samples;

import juzu.Path;
import juzu.View;
import juzu.Response;
import juzu.template.Template;

import javax.inject.Inject;
import java.io.IOException;

public class Controller {

 @Inject
 @Path("index.gtmpl")
 Template index;

 @View
 public Response.Content index() throws IOException {
 return index.ok();
 }
}

	Edit package-info.java:

@juzu.Application
@juzu.plugin.servlet.Servlet(value = "/")
package org.exoplatform.samples;

	Edit index.gtmpl:

Hello World

	Edit jboss-deployment-structure.xml:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <dependencies>
 <module name="deployment.platform.ear" export="true"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

	Edit portlet.xml:

<?xml version="1.0" encoding="UTF-8"?>
<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd" version="2.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd">
 <portlet>
 <portlet-name>SampleApplication</portlet-name>
 <display-name xml:lang="EN">Juzu Sample Application</display-name>
 <portlet-class>juzu.bridge.portlet.JuzuPortlet</portlet-class>
 <init-param>
 <name>juzu.app_name</name>
 <value>org.exoplatform.samples</value>
 </init-param>
 <supports>
 <mime-type>text/html</mime-type>
 </supports>
 <portlet-info>
 <title>Sample Application</title>
 </portlet-info>
 </portlet>
</portlet-app>

	Edit web-guice.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
 <!-- Run mode: prod, dev or live -->
 <context-param>
 <param-name>juzu.run_mode</param-name>
 <param-value>${juzu.run_mode:dev}</param-value>
 </context-param>
 <!-- Injection container to use: guice, spring, cdi or weld -->
 <context-param>
 <param-name>juzu.inject</param-name>
 <param-value>guice</param-value>
 </context-param>
</web-app>

	Edit web-spring.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd"
 version="3.0">
<!-- Run mode: prod, dev or live -->
 <context-param>
 <param-name>juzu.run_mode</param-name>
 <param-value>${juzu.run_mode:dev}</param-value>
 </context-param>
 <!-- Injection container to use: guice, spring, cdi or weld -->
 <context-param>
 <param-name>juzu.inject</param-name>
 <param-value>spring</param-value>
 </context-param>
</web-app>

	Edit pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.exoplatform.samples</groupId>
 <artifactId>hellojz</artifactId>
 <version>4.2.x</version>
 <packaging>war</packaging>
 <name>Juzu Application</name>
 <properties>
 <maven.compiler.target>1.6</maven.compiler.target>
 <maven.compiler.source>1.6</maven.compiler.source>
 </properties>
 <dependencies>
 <dependency>
 <groupId>org.juzu</groupId>
 <artifactId>juzu-core</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>org.juzu</groupId>
 <artifactId>juzu-plugins-servlet</artifactId>
 <version>1.0.0</version>
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
 </dependency>
 </dependencies>
 <build>
 <finalName>hellojz</finalName>
 </build>
 <profiles>
 <profile>
 <id>plf-tomcat-guice</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 <property>
 <name>target</name>
 <value>plf-tomcat-guice</value>
 </property>
 </activation>
 <dependencies>
 <dependency>
 <groupId>com.google.inject</groupId>
 <artifactId>guice</artifactId>
 <version>3.0</version>
 </dependency>
 </dependencies>
 <properties>
 <maven.war.webxml>src/main/web-guice.xml</maven.war.webxml>
 </properties>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <packagingExcludes>
 WEB-INF/jboss-deployment-structure.xml,
 WEB-INF/lib/*.jar
 </packagingExcludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>plf-jboss-guice</id>
 <activation>
 <property>
 <name>target</name>
 <value>plf-jboss-guice</value>
 </property>
 </activation>
 <dependencies>
 <dependency>
 <groupId>com.google.inject</groupId>
 <artifactId>guice</artifactId>
 <version>3.0</version>
 </dependency>
 </dependencies>
 <properties>
 <maven.war.webxml>src/main/web-guice.xml</maven.war.webxml>
 </properties>
 </profile>
 <profile>
 <id>plf-tomcat-spring</id>
 <activation>
 <property>
 <name>target</name>
 <value>plf-tomcat-spring</value>
 </property>
 </activation>
 <dependencies>
 <dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <scope>runtime</scope>
 <version>2.5.5</version>
 </dependency>
 </dependencies>
 <properties>
 <maven.war.webxml>src/main/web-spring.xml</maven.war.webxml>
 </properties>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <version>2.6</version>
 <configuration>
 <packagingExcludes>
 WEB-INF/jboss-deployment-structure.xml
 </packagingExcludes>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 <profile>
 <id>plf-jboss-spring</id>
 <activation>
 <property>
 <name>target</name>
 <value>plf-jboss-spring</value>
 </property>
 </activation>
 <dependencies>
 <dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <scope>runtime</scope>
 <version>2.5.5</version>
 </dependency>
 </dependencies>
 <properties>
 <maven.war.webxml>src/main/web-spring.xml</maven.war.webxml>
 </properties>
 </profile>
 </profiles>
</project>

Here are some remarks:

Dependencies

Juzu:

<dependency>
 <groupId>org.juzu</groupId>
 <artifactId>juzu-core</artifactId>
 <version>1.0.0</version>
</dependency>
<dependency>
 <groupId>org.juzu</groupId>
 <artifactId>juzu-plugins-servlet</artifactId>
 <version>1.0.0</version>
</dependency>
<dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>javax.servlet-api</artifactId>
 <version>3.0.1</version>
</dependency>

Guice:

<dependency>
 <groupId>com.google.inject</groupId>
 <artifactId>guice</artifactId>
 <version>3.0</version>
</dependency>

Spring:

<dependency>
 <groupId>javax.inject</groupId>
 <artifactId>javax.inject</artifactId>
 <version>1</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>2.5.5</version>
</dependency>

Note that you can deploy this portlet using Guice in Tomcat and JBoss or
using Spring in Tomcat as usual. However, to deploy this portlet using
Spring in JBoss, the following dependencies are needed at runtime:

	spring-beans-2.5.5.jar

	spring-context-2.5.5.jar

	spring-core-2.5.5.jar

	spring-web-2.5.5.jar

These dependencies have been already packaged in the generated
hellojz.war file. Therefore you can choose to deploy this portlet
via the 2 following ways:

	Copy these above dependencies from hellojz.war!/WEB-INF/lib/ to
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib,
then deploy this portlet as usual.

	Deploy the hellojz.war file into
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/ and
include it as the first module in the
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/META-INF/application.xml
file. The application.xml file will look like:

...
<display-name>plf-enterprise-jbosseap-ear</display-name>
<initialize-in-order>true</initialize-in-order>
<!-- The first module -->
<module>
<web>
 <web-uri>hellojz.war</web-uri>
 <context-root>hello-portlet-sample</context-root>
</web>
</module>
<!-- Other modules -->
...

Spring MVC portlet

Spring MVC portlet is officially supported as of eXo Platform 4.2.

This tutorial shows you how to write a basic Spring portlet. Please
visit chapter Portlet, Spring
documentation [http://docs.spring.io/autorepo/docs/spring/4.0.x/spring-framework-reference/html/portlet.html]
for your further reading. Besides, you can download all source code used
in this tutorial
here [https://github.com/exo-samples/docs-samples/tree/master/portlet/spring-mvc-portlet].

If you are already familiar with Spring portlet and just want to know
how to deploy it in eXo Platform, skip this section and go to
Portlet deployment section.

	Create a Maven project as follows:

[image: image24]

	Edit pom.xml:

 <project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.exoplatform.samples</groupId>
 <artifactId>sample-spring-mvc-portlet</artifactId>
 <version>4.2.x</version>
 <packaging>war</packaging>

 <dependencies>
 <dependency>
 <groupId>javax.portlet</groupId>
 <artifactId>portlet-api</artifactId>
 <version>2.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-webmvc-portlet</artifactId>
 <version>4.0.4.RELEASE</version>
 <!-- <version>2.5.5</version> -->
 </dependency>
 <dependency>
 <groupId>javax.servlet</groupId>
 <artifactId>jstl</artifactId>
 <version>1.2</version>
 </dependency>
 </dependencies>

 <build>
 <finalName>spring-mvc-portlet</finalName>
 </build>
 </project>

- Though the Spring version you see here is 4.0.4.RELEASE, it should
 work in older versions too. This example was tested against Spring
 2.5.5 and Spring 4.0.4.RELEASE.

	Edit Contact.java. This class is the data model.

package org.exoplatform.samples.spring;

public class Contact {
 private String firstName;
 private String lastName;
 private String displayName;
 private String email;

 public Contact(String firstName, String lastName, String displayName, String email) {
 this.firstName = firstName;
 this.lastName = lastName;
 this.displayName = displayName;
 this.email = email;
 }

 public String getFirstName() {
 return firstName;
 }
 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }
 public String getLastName() {
 return lastName;
 }
 public void setLastName(String lastName) {
 this.lastName = lastName;
 }
 public String getDisplayName() {
 return displayName;
 }
 public void setDisplayName(String displayName) {
 this.displayName = displayName;
 }
 public String getEmail() {
 return email;
 }
 public void setEmail(String email) {
 this.email = email;
 }
}

	Edit ContactService.java. This interface has only one method to
get a list of contacts:

package org.exoplatform.samples.spring;

import java.util.Set;

public interface ContactService {

 public Set getContacts();
}

	Edit ContactServiceImpl.java. This class implements ContactService
and provides a method to create some data for testing. For simplicity,
the data is in-memory.

package org.exoplatform.samples.spring;

import java.util.Set;
import java.util.LinkedHashSet;
import org.exoplatform.samples.spring.Contact;

public class ContactServiceImpl implements ContactService {

 private static Set contactList = new LinkedHashSet();

 public Set getContacts() {
 if (contactList.size() == 0) {
 initContacts();
 }
 return contactList;
 }

 public void initContacts() {
 contactList.add(new Contact("John", "Smith", "John Smith", "john.smith@exo.com"));
 contactList.add(new Contact("Mary", "Williams", "Mary Williams", "mary.williams@exo.com"));
 contactList.add(new Contact("Jack", "Miller", "Jack Miller", "jack.miller@exo.com"));
 contactList.add(new Contact("James", "Davis", "James Davis", "james.davis@exo.com"));
 }

}

	Edit ContactController.java.

 package org.exoplatform.samples.spring;

 import org.springframework.web.portlet.mvc.AbstractController;
 import javax.portlet.RenderRequest;
 import javax.portlet.RenderResponse;
 import org.springframework.web.portlet.ModelAndView;
 import java.util.Set;

 public class ContactController extends AbstractController {

 private ContactService contactService;

 public void setContactService(ContactService contactService) {
 this.contactService = contactService;
 }

 @Override
 public ModelAndView handleRenderRequestInternal(RenderRequest request, RenderResponse response) {
 Set contacts = contactService.getContacts();
 ModelAndView modelAndView = new ModelAndView("contactsView", "contacts", contacts);
 return modelAndView;
 }
 }

- Here you extend Spring's AbstractController and override the method
 handleRenderRequestInternal.

- This tutorial is limited in render phase. The super class has also
 the method handleActionRequestInternal that will be called in action
 phase.

	Edit portlet.xml.

<portlet-app xmlns="http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/portlet http://java.sun.com/xml/ns/portlet/portlet-app_2_0.xsd"
 version="2.0">
 <portlet>
 <portlet-name>contact</portlet-name>
 <display-name>Contact</display-name>
 <portlet-class>org.springframework.web.portlet.DispatcherPortlet</portlet-class>
 <supports>
 <mime-type>text/html</mime-type>
 <portlet-mode>view</portlet-mode>
 </supports>
 <portlet-info>
 <title>Contact</title>
 </portlet-info>
 </portlet>
</portlet-app>

All Spring portlets have portlet-class DispatcherPortlet that dispatches
requests to controllers.

	Each instance of DispatcherPortlet has its own
WebApplicationContext that inherits all the beans already defined
in the Root WebApplicationContext.

	Each one also has its portlet-scope beans which are created during
its initialization. Those beans are defined in a file named
{portlet-name}-portlet.xml (that is, contact-portlet.xml in
next step).

	Edit contact-portlet.xml.

 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

 <bean id="contactController" class="org.exoplatform.samples.spring.ContactController">
 <property name="contactService" ref="contactService" />
 </bean>
 <bean id="portletModeHandlerMapping" class="org.springframework.web.portlet.handler.PortletModeHandlerMapping">
 <property name="portletModeMap">
 <map>
 <entry key="view" value-ref="contactController" />
 </map>
 </property>
 </bean>
 </beans>

Here you define some portlet-scoped beans: a controller and a handler
mapping. The portlet-scoped bean definition overrides any bean with the
same name defined at global scope.

- The class ContactController you wrote is declared as a bean and is
 responsible for handling the view mode.

- Such beans as view resolver or services should be defined at the
 application context, so you do not have to define them for each
 portlet.

	Edit web.xml.

 <web-app version="2.5" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">
 <display-name>spring-mvc-portlet</display-name>
 <context-param>
 <param-name>contextConfigLocation</param-name>
 <param-value>/WEB-INF/applicationContext.xml</param-value>
 </context-param>
 <listener>
 <listener-class>org.springframework.web.context.ContextLoaderListener</listener-class>
 </listener>
 <servlet>
 <servlet-name>ViewRendererServlet</servlet-name>
 <servlet-class>org.springframework.web.servlet.ViewRendererServlet</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>ViewRendererServlet</servlet-name>
 <url-pattern>/WEB-INF/servlet/view</url-pattern>
 </servlet-mapping>
 </web-app>

- The ViewRendererServlet brings all the view rendering capabilities
 that exist in the Spring servlet framework to the portlet.

- Here you add a parameter, ``contextConfigLocation``, to customize the
 initialization of *DispatcherPortlet*. The goal is to define some
 beans at the application scope.

Note

Pay attention to the attribute version=”2.5”. The version 2.5 or
greater is required. You should specify the version, otherwise it
might not work in JBoss package.

	Edit applicationContext.xml.

 <beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:aop="http://www.springframework.org/schema/aop"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-2.5.xsd
 http://www.springframework.org/schema/aop http://www.springframework.org/schema/aop/spring-aop-2.5.xsd
 http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx-2.5.xsd">

 <bean id="contactService" class="org.exoplatform.samples.spring.ContactServiceImpl" />
 <bean id="viewResolver" class="org.springframework.web.servlet.view.InternalResourceViewResolver">
 <property name="viewClass" value="org.springframework.web.servlet.view.JstlView" />
 <property name="prefix" value="/WEB-INF/jsp/" />
 <property name="suffix" value=".jsp" />
 </bean>
 </beans>

Here you define the service bean that will be consumed by the
controller, and a view resolver.

- The JstlView is configured to resolve ``/WEB-INF/jsp/*.jsp`` files.

	Edit contactsView.jsp.

<%@taglib prefix = "c" uri = "http://java.sun.com/jsp/jstl/core" %>
<table border = "1">
 <tr>
 <th style="text-align:left">Name</th>
 <th style="text-align:left">Email</th>
 </tr>
 <c:forEach items = "${contacts}" var ="contact">
 <tr>
 <td>${contact.displayName}</td>
 <td>${contact.email}</td>
 </tr>
 </c:forEach>
</table>

Now, you can
deploy
the portlet in eXo Platform and test:

[image: image25]

Developing a gadget

Gadgets are basically simple applications written in JavaScript and can
be imported as windows. They are also considered as independent HTML
content, so their UI, including layout, font or color, may be different.
That is why you need to make consistent in the look and feel of all
gadgets in eXo Platform after creating any new gadgets. One of significant
advantages when developing gadgets is the fact that Google provides a
standard
OpenSocial [https://developers.google.com/gadgets/docs/overview],
which is an API for gadgets to interact with Social network platforms.
This section will instruct you to:

	Create a very simple gadget
in eXo Platform.

	Create resources
and apply them
into a gadget.

	Use AJAX and HTML DOM Object
for a gadget.

	Customize a gadget,
including: changing a gadget’s category, resizing, changing thumbnail
and setting preferences for a gadget.

To get more information on how to develop gadgets, see Managing Google Gadget, eXo Add-ons guide.

Creating a gadget

Creating a gadget is very simple. To create a gadget through a Webapp,
you need to create a sample bundle where you will add and deploy your
gadget. This procedure walks you through steps to create a very simple
gadget called Hello World.

The source code is provided
here [https://github.com/exo-samples/docs-samples/tree/master/gadget/simple-gadget].

Note

Unlike portlet, the gadget webapp is always required to be a portal extension.
As of 4.3, this can be done simply by adding a META-INF/exo-conf/configuration.xml file.

The META-INF/exo-conf/configuration.xml file should has the content
below. Unless you use a traditional custom-extension-config.jar,
always add this file to your gadget webapp, though it might not be
repeated in later tutorials.

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Add PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <!-- CHANGE THIS ACCORDINGLY TO YOUR WEBAPPS -->
 <string>hello-gadget</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Here are the steps to create your first gadget:

	Create a Maven project with the following pom.xml file. See the
project structure in the source link given above.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>sample</groupId>
 <artifactId>gadget</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <name>Hello Gadget sample</name>
 <build>
 <finalName>hello-gadget</finalName>
 </build>
</project>

	Edit web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" metadata-complete="true"
 xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <display-name>hello-gadget</display-name>
</web-app>

	Edit webapp/gadgets/HelloGadget/HelloGadget.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<Module>
 <ModulePrefs author="eXoPlatform"
 title="Hello World"
 directory_title="Hello World"
 description="The simplest gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <div class='hello'>
 <h2>Hello</h2>
 <h6>Welcome to Hello World gadget!</h6>
 <p><i>Powered by eXo Platform.</i></p>
 </div>
]]>
 </Content>
</Module>

	Edit webapp/WEB-INF/gadget.xml file:

<gadgets xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_0 http://www.gatein.org/xml/ns/gadgets_1_0"
 xmlns="http://www.gatein.org/xml/ns/gadgets_1_0">
 <gadget name="HelloGadget">
 <path>/gadgets/HelloGadget/HelloGadget.xml</path>
 </gadget>
</gadgets>

	Include WEB-INF/jboss-deployment-structure.xml file if the gadget
will be deployed in JBoss:

<jboss-deployment-structure xmlns="urn:jboss:deployment-structure:1.2">
 <deployment>
 <dependencies>
 <module name="deployment.platform.ear" export="true"/>
 </dependencies>
 </deployment>
</jboss-deployment-structure>

	Build the project with the command: mvn clean install.

	Install hello-gadget.war to:

	$PLATFORM_TOMCAT_HOME/webapps/ for Tomcat.

	$PLATFORM_JBOSS_HOME/standalone/deployments/ for JBoss.

Note

See details about deployment in portal extension section,
especially if you use the traditional extension with jar to be backward compatible.

	Start the server and go to UI to do the next steps.

	Select Administration –> Applications, then add this gadget into a

category:

[image: image26]

	Click My Dashboard (the menu drops down from the user name in the
Topbar) to add the gadget. The result:

[image: image27]

Note

You can also create and edit a gadget completely via UI.

Creating resources

To achieve the consistent look and feel, you have to collect the common
features of all gadgets as much as possible and put in a place where it
can be shared for all gadgets. You will use exo-gadget-resources for
this purpose. It is a .war file that contains commonly used static
resources (stylesheets, images, JavaScript libraries, and more)
available for all gadgets in eXo Platform at runtime:

/exo-gadget-resources
 |__skin
 | |__exo-gadget
 | | |__images
 | | |__gadget-common.css
 | |__...(3rd-party components' CSS)
 |__script
 |__jquery
 | |__3.2.1
 | |__...(other jQuery versions)
 | |__plugins
 |__utils

The resources are divided into 2 categories: skin and script.

Skin

This is the place for the shared stylesheets of the gadgets
(exo-gadget/gadget-common.css) and other third-party components
styles adapted to the eXo Platform skin (jqPlot, Flexigrid, and more).
This is a copy of the component’s original CSS with some modifications
to match the eXo Platform’s skin. You can find this original file at the
component’s folder under exo-gadget-resources/script then link to it
or make your own copy (put it in your gadget’s folder and refer to it in
gadget’s .xml file) to suit your need.

The gadget-common.css file is the main place for the global
stylesheets. When the eXo Platformskin is changed, updating stylesheets
in this file will affect all gadgets skins accordingly. In this file,
you will define stylesheets applied for all gadgets, such as gadget
title, gadget body, fonts, colors, tables, and some commonly used icons,
such as drop-down arrow, list bullet, setting button, and more.

Script

This is the place for commonly used third-party JavaScript libraries
(e.g: jQuery and its plugins) and a library of useful utility scripts
(the utils folder).

jQuery and plugins:

	jquery/<version>: jQuery JavaScript
library [http://jquery.com/].

	jquery/plugins/jqplot: Charts and Graphs for
jQuery [http://www.jqplot.com/].

	jquery/plugins/flexigrid: Lightweight but rich data
grid [http://flexigrid.info/].

	jquery/plugins/date.js: JavaScript date
library [http://www.datejs.com/].

	jquery/plugins/jquery.timers: JavaScript
timer [http://jquery.offput.ca/js/].

Note

Here you should keep the latest and several versions of jQuery because some plugins may not work with the latest version. Several versions of a plugin are also kept.

The utilities scripts:

	utils/pretty.date.js: Calculate the difference from a point of
time in the past to the present and display “4 months 3 weeks ago”,
for example.

Applying resources in a gadget

A gadget should use static resources available in
exo-gadget-resources instead of including them in their own package.
This helps reduce packaging size, avoid duplication (considering every
gadget uses the same jQuery version, instead of adding each jQuery in
its own package) and take advantages of automatic skin changing/updating
when exo-gadget-resources is updated.

A simple example of applying resources into a gadget is to use a
JavaScript. In this example, you will add a button to the Hello World
gadget and use jQuery to register an event for the button. When you
click the “here” button, the color of welcome message will be changed.
The source code of this example is
here [https://github.com/exo-samples/docs-samples/tree/master/gadget/gadget-resources].

	Edit HelloGadget.xml file:

 <?xml version="1.0" encoding="UTF-8" ?>
 <Module>
 <ModulePrefs author="eXoPlatform"
 title="Hello World"
 directory_title="Hello World"
 description="The simplest gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <script src="/exo-gadget-resources/script/jquery/3.2.1/jquery.min.js"></script>
 <script type="text/javascript">
 $("body").live("click", ".hello .btn", function() {
 $(".hello h6").css("color", "green");
 });
 </script>
 <div class='hello'>
 <h2>Hello</h2>
 <h6>Welcome to Hello World gadget!</h6>
 <p>Click here to change the default color of the welcome message.
 <p><i>Powered by eXo Platform.</i></p>
 </div>
]]>
 </Content>
 </Module>

The **Hello World** gadget is now displayed:

|image28|

	Add the CSS resources of eXo Platform to make consistent between
Hello World gadget and look and feel of eXo Platform which is
based on Twitter Bootstrap [http://twitter.github.io/bootstrap/].
To do that, edit HelloGadget.xml to add this:

<link rel="stylesheet" type="text/css" href="/eXoResources/skin/bootstrap/css/bootstrap.css" />

The look and feel of Hello World gadget is now changed:

[image: image29]

Using AJAX and HTML DOM Object

AJAX allows your gadget to be updated asynchronously by exchanging small
amounts of data with the server behind the scenes. Besides, with the
support of HTML DOM Object, the gadget’s content can be created
dynamically based on AJAX’s response data. This section instructs you
how to leverage these utilities to customize your gadget.

You can get the source code of this example
here [https://github.com/exo-samples/docs-samples/tree/master/gadget/ajax].

	Create a new Maven project with the following structure:

[image: image30]

	Edit pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchemainstance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>sample</groupId>
 <artifactId>gadget</artifactId>
 <packaging>war</packaging>
 <version>1.0</version>
 <name>Auto slideshow gadget sample</name>
 <build>
 <finalName>auto-slideshow</finalName>
 </build>
</project>

	Edit web.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0" metadata-complete="true"
 xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <display-name>auto-slideshow</display-name>
</web-app>

	Edit AutoSlideshowGadget.xml file:

 <?xml version="1.0" encoding="UTF-8" ?>
 <Module>
 <ModulePrefs title="Memories!" width="240" height="200"/>
 <Content type="html">
 <![CDATA[
 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="slideshow">
 </div>
]]>
 </Content>
 </Module>

in which you name the gadget as **Memories!**. The main body consists of
a div tag only. This file will be updated later.

	Download http://code.jquery.com/jquery-3.2.1.js and save it in
webapp/gadgets/AutoSlideshowGadget/.

	Edit style.css file:

img {width: 240px;
}
#slideshow {
 margin: 10px auto 10px;
 position: relative;
 width: 240px;
 height: 200px;
 padding: 10px;
 box-shadow: 0 0 20px rgba(0,0,0,0.4);
}
#slideshow > div {
 position: absolute;
 top: 10px;
 left: 10px;
 right: 10px;
 bottom: 10px;
}

	Edit myscript.js file. This script contains a function using
AJAX to call DriverConnector API (see here <rest-api/content/DriverConnector.getFoldersAndFiles>
for more details) to get all public images of root user. Another function,
the traverseXMLDoc function will be added in next steps.

function getImages() {
 //This function uses AJAX to send GET request to server's DriverConnector API and receive XML response
 jQuery.ajax({
 type: "GET",
 url: "/portal/rest/wcmDriver/getFoldersAndFiles?driverName=Collaboration¤tFolder=Users/r___/ro___/roo___/root/Public¤tPortal=intranet&repositoryName=repository&workspaceName=collaboration&filterBy=Image",
 contentType: "application/xml; charset=utf-8",
 dataType: "xml",
 success: function (data, status, jqXHR) {
 var strResults=new XMLSerializer().serializeToString(data.documentElement);
 //build dynamic html content for "slideshow" div tag
 traverseXMLDoc(strResults, "slideshow");
 },
 //error report
 error: function (jqXHR, status) {
 //error handler
 alert("Cannot retrieve data!");
 }
 });
}

Note

Notice the url parameter here is pointing to Public folder
of root user to retrieve image files. Therefore, in later steps,
it requires logging in as root user to upload images before anyone
can use this gadget.

	Add the traverseXMLDoc function with 2 input parameters to this
script as follows:

function traverseXMLDoc(xmlDoc, idOfContainerDomElement){
 //This function traverses through the whole XML response returned from server
 var $xmlDocObjChildren, $contentDiv;
 $contentDiv = $('#' + idOfContainerDomElement);
 if ($contentDiv.length === 0) {
 throw new Error('There are no DOM elements with this id: "' + idOfContainerDomElement + '"');
 }
 //Information of each image object is contained in "File" tag
 $xmlDocObjChildren = $(xmlDoc).find("File");
 $xmlDocObjChildren.each(function(index, Element) {
 var $currentObject = $(this),
 childElementCount = Element.childElementCount,
 //Image's url is contained in "url" attribute
 currentNodeType = $currentObject.attr('url');
 //Adding dynamic content into gadget's body
 $contentDiv.append('<div></div>');
 });
}

	Add some image effects by JavaScript and include all your created
resources to the AutoSlideshowGadget.xml file:

 <?xml version="1.0" encoding="UTF-8" ?>
 <Module>
 <ModulePrefs title="Memories!" width="240" height="200"/>
 <Content type="html">
 <![CDATA[
 <script src="jquery-3.2.1.js"></script>
 <script src="myscript.js"></script>
 <link rel="stylesheet" type="text/css" href="style.css" />
 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="slideshow">
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 getImages();
 //Creating gagdet's effects
 $("#slideshow > div:gt(0)").hide();
 setInterval(function() {
 $('#slideshow > div:first')
 .fadeOut(1000)
 .next()
 .fadeIn(1000)
 .end()
 .appendTo('#slideshow');
 }, 3000);
 </script>
]]>
 </Content>
 </Module>

Notice that you can follow :ref:`this section <PLFDevGuide.DevelopingApplications.DevelopingGadget.CreatingResources>`
to create CSS and Javascript resources in separate files to share
with other gadgets. In this guide, we make it simple by including
these resources right inside the war package.

	Edit gadget.xml file:

<gadgets xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_objects_1_0 http://www.gatein.org/xml/ns/gadgets_1_0"
 xmlns="http://www.gatein.org/xml/ns/gadgets_1_0">
 <gadget name="AutoSlideshowGadget">
 <path>/gadgets/AutoSlideshowGadget/AutoSlideshowGadget.xml</path>
 </gadget>
</gadgets>

	Deploy the gadget and add it to Root’s user dashboard. If necessary,

see Creating a gadget <PLFDevGuide.DevelopingApplications.DevelopingGadget.CreatingGadget>
for how to.

	Log in as Root, upload several images into Documents –> Public.

The result is as below:

[image: image31]

Customizing a gadget

You can customize gadgets in some aspects:

	Changing the category

	Resizing a gadget

	Changing a gadget thumbnail

	Setting preferences

Changing the category of a gadget

There are 2 ways to change the category of a gadget:

	Via UI as described in Adding a portlet/gadget to the Application list.
However, this works only one time for a new gadget. After you have
added it to a category, you could not change its category via UI.

	By configuring ApplicationCategoriesPlugins, as detailed below.

Here is the configuration example to add Hello World gadget to the
My Gadgets category.

Add the following configuration to WEB-INF/conf/configuration.xml
file:

<external-component-plugins>
 <target-component>org.exoplatform.application.registry.ApplicationRegistryService</target-component>
 <component-plugin>
 <name>new.portal.portlets.registry</name>
 <set-method>initListener</set-method>
 <type>org.exoplatform.application.registry.ApplicationCategoriesPlugins</type>
 <description>this listener init the portlets are registered in PortletRegister</description>
 <init-params>
 <object-param>
 <name>MyGadgets</name>
 <description>description</description>
 <object type="org.exoplatform.application.registry.ApplicationCategory">
 <field name="name"><string>MyGadgets</string></field>
 <field name="displayName"><string>My Gadgets</string></field>
 <field name="description"><string>List of personal gadgets for development.</string></field>
 <field name="accessPermissions">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value><string>*:/developers</string></value>
 </collection>
 </field>
 <field name="applications">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.application.registry.Application">
 <field name="applicationName"><string>HelloGadget</string></field>
 <field name="categoryName"><string>MyGadgets</string></field>
 <field name="displayName"><string>Hello Gadget</string></field>
 <field name="description"><string>The simplest gadget</string></field>
 <field name="type"><string>gadget</string></field>
 <field name="contentId"><string>HelloGadget</string></field>
 <field name="accessPermissions">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value><string>*:/developers</string></value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Deploy it to a fresh server. You will see the category is automatically
added:

[image: image32]

Note

This method only works for a fresh (empty data) server because the
categories defined in the ApplicationRegistryService configuration
are created all in once when you start PRODUCT for the first time,
and when the JCR repository is empty. In case the server is started
already, you may write a portlet for this job, as described below.

	Create the category by using the following code:

PortalContainer container = PortalContainer.getInstance();
 ApplicationRegistryService appService = (ApplicationRegistryService)container.getComponentInstanceOfType(ApplicationRegistryService.class);
 try {
 if (appService.getApplication("MyGadgets/HelloGadget") == null) {
 ApplicationCategory cat = new ApplicationCategory();
 cat.setName("MyGadgets");
 cat.setDisplayName("My Gadgets");
 cat.setDescription("List of personal gadgets for development");
 cat.setAccessPermissions(Arrays.asList("*:/developers"));

 Application app = appService.getApplication("Gadgets/HelloGadget");
 appService.save(cat, app);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }

	Add the above code block to one portlet action, for example:

@Override
 public void processAction(ActionRequest actionRquest, ActionResponse actionResponse) {
 PortalContainer container = PortalContainer.getInstance();
 ApplicationRegistryService appService = (ApplicationRegistryService)container.getComponentInstanceOfType(ApplicationRegistryService.class);
 try {
 if (appService.getApplication("MyGadgets/HelloGadget") == null) {
 ApplicationCategory cat = new ApplicationCategory();
 cat.setName("MyGadgets");
 cat.setDisplayName("My Gadgets");
 cat.setDescription("List of personal gadgets for development");
 cat.setAccessPermissions(Arrays.asList("*:/developers"));

 Application app = appService.getApplication("Gadgets/HelloGadget");
 appService.save(cat, app);
 }
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 @RenderMode(name = "view")
 public void hello(RenderRequest request, RenderResponse response) throws IOException, PortletException {
 PrintWriter writer = response.getWriter();
 PortletURL actionURL = response.createActionURL();
 writer.append("<p>Click here to create MyGadgets category</p>");
 }

	Deploy the portlet to which you have added the above code block, then
do the portlet action.

Resizing a gadget

This part instructs you how to use the configuration to resize the
gadget by adding the height attribute (for example, height=”300”) to the
<ModulePrefs> tag in the HelloGadget.xml file:

<ModulePrefs author="eXoPlatform"
 title="Hello World"
 directory_title="Hello World"
 description="The simplest gadget"
 height="300">
</ModulePrefs>

Note

You can also resize a gadget through the web console as described in Editing a gadget.

Changing a gadget thumbnail

The gadget thumbnails are displayed in the Page Editor window when you
edit a page. The thumbnail image size needs to be consistent for all
gadgets in the list. The current size (in eXo Platform) is 80 x 80 px,
so you should select an image of this size in PNG (preferred), JPG or
GIF format for your gadget thumbnail.

[image: image33]

	The image can also be one from a public website (absolute URL), for
example,
thumbnail="http://www.example.com/images/HelloWorld-icon.jpg"/ or
from an internal image (relative URL):
thumbnail="image/HelloWorld-icon ``. Add that attribute to the
<ModulePrefs> tag in the ``HelloGadget.xml file.

Setting preferences

The Google OpenSocial specifications describe different features that
can be used, but eXo Platform implements only some of them. See the code of
the following files:

	$PLATFORM_TOMCAT_HOME/lib/exo.portal.gadgets-core-{version}.jar!/gatein-features/gatein-container/Gadgets.js.

	$PLATFORM_TOMCAT_HOME/webapps/eXoResources/javascript/eXo/gadget/UIGadget.js.

	$PLATFORM_TOMCAT_HOME/lib/exo.portal.gadgets-core-{version}.jar!/gatein-features/gatein-container/ExoBasedUserPrefStore.js.

The following is a simple procedure to set preferences for Hello
World gadget. You can get the source
here [https://github.com/exo-samples/docs-samples/tree/master/gadget/preferences].

In HelloGadget.xml file:

	Enable the setprefs feature:

<ModulePrefs ...
 <Require feature="setprefs"/>
</ModulePrefs>

	Register one preference:

<UserPref
 name="welcome" display_name="Welcome message"
 default_value="Welcome to Hello World gadget!" required="true"/>

	Use JavaScript to get the registered preference that changes Welcome
message.

 var getUserPrefs = function() {
 var prefs = new _IG_Prefs(__MODULE_ID__);
 var welcome_message = prefs.getString("welcome");
 $(".hello .alert-info h6").text(welcome_message);
 };
 gadgets.util.registerOnLoadHandler(getUserPrefs);

In summary, the complete content of the ``HelloGadget.xml`` file will
be:

.. code:: xml

 <?xml version="1.0" encoding="UTF-8" ?>
 <Module>
 <ModulePrefs author="eXoPlatform"
 title="Hello World"
 directory_title="Hello World"
 description="The simplest gadget"
 height="300">
 <Require feature="setprefs"/>
 </ModulePrefs>
 <UserPref
 name="welcome" display_name="Welcome message"
 default_value="Welcome to Hello World gadget!" required="true"/>
 <Content type="html">
 <![CDATA[
 <link rel="stylesheet" type="text/css" href="/eXoResources/skin/bootstrap/css/bootstrap.css" />
 <script src="/exo-gadget-resources/script/jquery/1.6.2/jquery.min.js"></script>
 <script type="text/javascript">
 $("body").live("click", ".hello .btn", function() {
 $(".hello h6").css("color", "green");
 });
 var getUserPrefs = function() {
 var prefs = new _IG_Prefs(__MODULE_ID__);
 var welcome_message = prefs.getString("welcome");
 $(".hello .alert-info h6").text(welcome_message);
 };
 gadgets.util.registerOnLoadHandler(getUserPrefs);
 </script>
 <div class='hello well'>
 <h2>Hello</h2>
 <div class='alert alert-info'>
 <h6></h6>
 </div>
 <p>Click here to change the default color of the welcome message.
 <p><i>Powered by eXo Platform.</i></p>
 </div>
]]>
 </Content>
 </Module>

The Hello World gadget now appears with a pencil icon that allows
changing gadget preferences.

[image: image34]

Extending eXo applications

	Overriding application templates
Steps to override the default template of a portlet in eXo Platform.

	Applications Plugins
Tutorials to add plugin to eXo applications, such as Activity
composer or action in Wiki using UI Extension framework.

	Notification
Tutorials to extend or customize the notification system in eXo Platform.

	Overriding user profile design
Steps to override your profile page in eXo Platform.

	Wiki macro
A tutorial to write new macros in eXo Wiki.

	ExtensibleFilter mechanism
A tutorial to create and insert your own filter into eXo Platform.

Overriding application templates

Groovy templates can be overriden thanks to extension mechanism. Here
are steps to override a template of Organization portlet. The source
code used in this section is provided
here [https://github.com/exo-samples/docs-samples/tree/master/overriding-application-template]
for downloading.

	Take a look at
$PLATFORM_TOMCAT_HOME/webapps/eXoResources/groovy/organization/webui/component/UIOrganizationPortlet.gtmpl.
This file contains the template definitions of the Organization
portlet.

[image: image35]

	Create a UIOrganizationPortlet.gtmpl file and put it in
custom-extension.war!/groovy/organization/webui/component.

	Copy the existing content from UIOrganizationPortlet.gtmpl of
Step 1 into your custom-extension.war!/groovy/organization/webui/component/UIOrganizationPortlet.gtmpl,
then modify your file, for example change the color of text and
background on the toolbar.

	Refresh the browser if you are running eXo Platform at the developer
mode. You will see your modification take effect on the
Organization portlet.

[image: image36]

Note

If you are not running eXo Platform in the developer mode, you will have to restart the server.

Applications Plugins

Hereafter are some tutorials to write eXo add-ons using the UI Extension
framework:

	Creating a new activity type

	Creating an activity composer

	Adding your own Content UI Extensions

	Writing an action extension in Wiki

An explanation of the base framework can be found at Platform Reference
Guide - UI
Extensions.

In general, writing a complete UI Extension involves filter (business
logic or access permission), localization and CSS customization. You
might read more about the subjects:

	Internal filter

	External filter

	:ref:`Resource Bundle service <#sect-Reference_Guide-Internationalization_Configuration-ResourceBundleService>`__

	:ref:`Skin service <#sect-Reference_Guide-Skinning_Portal-Skin_Service>`__

	:ref:`JavaScript development <#sect-Reference_Guide-Javascript_Development>`__

Creating a new activity type

The creation of an activity type involves a UI Component which is
required for the activity display. In this tutorial, you define an
activity type and your own UI Component to display it. You can download
all source code of this tutorial
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/create-new-activity-type].

	Create a Maven project as follows:

[image: image37]

	Edit the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>integ-wiki</artifactId>
 <groupId>org.exoplatform.integration</groupId>
 <version>4.0.4</version>
 </parent>
 <artifactId>wiki-activity-type</artifactId>
 <packaging>jar</packaging>
 <version>1.0</version>
 <name>Activity type</name>
 <description>UI Extension - Activity type</description>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.platform-ui</groupId>
 <artifactId>platform-ui-webui-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.framework</artifactId>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-webui</artifactId>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.container</artifactId>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.core</groupId>
 <artifactId>exo.core.component.security.core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-core</artifactId>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.wiki</groupId>
 <artifactId>wiki-service</artifactId>
 </dependency>
 </dependencies>
</project>

	Edit the SampleUIActivity.java file:

package com.acme.samples.activitytype;

import org.exoplatform.webui.core.lifecycle.UIFormLifecycle;
import org.exoplatform.webui.config.annotation.ComponentConfig;
import org.exoplatform.social.webui.activity.BaseUIActivity;

@ComponentConfig(
 lifecycle = UIFormLifecycle.class,
 template = "classpath:groovy/com/acme/samples/SampleUIActivity.gtmpl"
)

public class SampleUIActivity extends BaseUIActivity {

}

	Edit the SampleUIActivity.gtmpl file. You can copy the code of
social-extension.war!/groovy/social/webui/activity/UIDefaultActivity.gtmpl.

Some samples that you can refer:

	integ-wiki-social-4.x.x.jar!/groovy/wiki/social-integration/plugin/space/WikiUIActivity.gtmpl

	integ-calendar-social-4.x.x.jar!/groovy/cs/social-integration/plugin/space/CalendarUIActivity.gtmpl

	integ-ecms-social-4.x.x.jar!/groovy/ecm/social-integration/plugin/space/ContentUIActivity.gtmpl

	Edit the SampleUIActivityBuilder.java file:

package com.acme.samples.activitytype;

import org.exoplatform.social.core.activity.model.ExoSocialActivity;
import org.exoplatform.social.webui.activity.BaseUIActivity;
import org.exoplatform.social.webui.activity.BaseUIActivityBuilder;

public class SampleUIActivityBuilder extends BaseUIActivityBuilder {

 @Override
 protected void extendUIActivity(BaseUIActivity uiActivity, ExoSocialActivity activity) {
 //
 }
}

	Edit the configuration.xml file:

 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>add.action</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 <init-params>
 <object-param>
 <name>Space Activity</name>
 <object type="org.exoplatform.social.webui.activity.UIActivityExtension">
 <field name="type"><string>org.exoplatform.social.webui.activity.BaseUIActivity</string></field>
 <field name="name"><string>test-activity-type</string></field>
 <field name="component">
 <string>com.acme.samples.activitytype.SampleUIActivity</string>
 </field>
 <field name="activityBuiderClass">
 <string>com.acme.samples.activitytype.SampleUIActivityBuilder</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

 <external-component-plugins>
 <target-component>org.exoplatform.wiki.service.WikiService</target-component>
 <component-plugin>
 <name>Wiki listener</name>
 <set-method>addComponentPlugin</set-method>
 <type>com.acme.samples.activitytype.GenerateActivity4Testing</type>
 <init-params>
 <value-param>
 <name>wikiPortletName</name>
 <value>wiki</value>
 </value-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

 </configuration>

The configuration fulfils two tasks:

- Register the plugin for UIActivityExtension, using the UI Extension
 mechanism. Pay attention that the activity type is registered as
 ``test-activity-type``.

- Register your GenerateActivity4Testing as a wiki listener.

	Edit the GenerateActivity4Testing.java file:

 package com.acme.samples.activitytype;

 import org.exoplatform.container.PortalContainer;
 import org.exoplatform.services.security.ConversationState;
 import org.exoplatform.social.core.identity.model.Identity;
 import org.exoplatform.social.core.identity.provider.OrganizationIdentityProvider;

 import org.exoplatform.social.core.activity.model.ExoSocialActivity;
 import org.exoplatform.social.core.activity.model.ExoSocialActivityImpl;
 import org.exoplatform.social.core.manager.ActivityManager;
 import org.exoplatform.social.core.manager.IdentityManager;

 import org.exoplatform.wiki.service.listener.PageWikiListener;
 import org.exoplatform.wiki.mow.api.Page;

 public class GenerateActivity4Testing extends PageWikiListener {

 public static final String ACTIVITY_TYPE = "test-activity-type";

 private void generateActivity() throws Exception {
 // Get current user and assign to ownerStream
 String username = ConversationState.getCurrent().getIdentity().getUserId();
 IdentityManager identityM =
 (IdentityManager) PortalContainer.getInstance().getComponentInstanceOfType(IdentityManager.class);
 Identity userIdentity = identityM.getOrCreateIdentity(OrganizationIdentityProvider.NAME, username, false);
 Identity ownerStream = userIdentity;

 // New activity
 ExoSocialActivityImpl activity = new ExoSocialActivityImpl();
 activity.setUserId(userIdentity.getId());
 activity.setTitle("This is an activity of type " + ACTIVITY_TYPE + ".");
 activity.setBody("This is for testing");
 activity.setType(ACTIVITY_TYPE);

 // Save activity
 ActivityManager activityM =
 (ActivityManager) PortalContainer.getInstance().getComponentInstanceOfType(ActivityManager.class);
 activityM.saveActivityNoReturn(ownerStream, activity);

 }

 @Override
 public void postAddPage(String wikiType, String wikiOwner, String pageId, Page page) throws Exception {

 generateActivity();

 }

 @Override
 public void postDeletePage(String wikiType, String wikiOwner, String pageId, Page page) throws Exception {
 //
 }

 @Override
 public void postUpdatePage(String wikiType, String wikiOwner, String pageId, Page page, String wikiUpdateType) throws Exception {
 //
 }
 }

This is supposed to create an activity of ``test-activity-type``
when a wiki page is added.

	Build and deploy the .jar file
(target/wiki-activity-type-1.0.jar) into eXo Platform package.

	$PLATFORM_TOMCAT_HOME/lib (in Tomcat)

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib (in
JBoss)

Testing

Start the server, log in and go to Wiki. Here, create a new wiki page,
then test the activity in the Intranet homepage:

[image: image38]

You have re-used the UIDefaultActivity template. To imagine out what can
be done with your own template, let’s see the wiki activity that uses
WikiUIActivity.gtmpl. Pay attention to the book icon on the leftmost,
the link to the relevant wiki page, and the excerpt of its content:

[image: image39]

What is ActivityBuilder?

In the above example, you extend BaseUIActivityBuilder and do not write
any extra code. To understand what you can do with your ActivityBuilder,
let’s see the following code of UILinkActivityBuilder:

public class UILinkActivityBuilder extends BaseUIActivityBuilder {
 private static final Log LOG = ExoLogger.getLogger(UILinkActivityBuilder.class);
 @Override
 protected void extendUIActivity(BaseUIActivity uiActivity, ExoSocialActivity activity) {
 UILinkActivity uiLinkActivity = (UILinkActivity) uiActivity;
 Map<String, String> templateParams = activity.getTemplateParams();
 uiLinkActivity.setLinkSource(templateParams.get(UILinkActivityComposer.LINK_PARAM));
 uiLinkActivity.setLinkTitle(templateParams.get(UILinkActivityComposer.TITLE_PARAM));
 uiLinkActivity.setLinkImage(templateParams.get(UILinkActivityComposer.IMAGE_PARAM));
 uiLinkActivity.setLinkDescription(templateParams.get(UILinkActivityComposer.DESCRIPTION_PARAM));
 uiLinkActivity.setLinkComment(templateParams.get(UILinkActivityComposer.COMMENT_PARAM));
 }
}

You can see more complex codes at the eXo Integration project [https://github.com/exoplatform/integration/tree/develop]
where many activity types are created. The example of this tutorial is
very similar to (and simpler than) the ks-wiki:spaces [https://github.com/exoplatform/integration/tree/develop/integ-wiki]
type.

Creating an activity composer

The Activity Stream portlet features a Composer container that contains
some built-in composers, like the File composer to share a document,
or the Link composer to share any external media resource. In general,
a composer is a UI form/dialog that binds to a Java class to compose and
save an activity.

The container is extensible, so you can add your own composer. In this
tutorial, it is assumed that you will add a LocationComposer that
functions as below:

	In the container, a Check-in icon is added (see the screenshot). A
click on it will expand an input field and a Check-in button.

	The user inputs his location and clicks the button. The input is
validated (for simplification, the sample code just checks that it is
empty or not), then the Share button is enabled. By clicking Share,
the user posts to the activity stream a message saying he “checked in
at” the location.

[image: image40]

Your project involves a Java class, a Groovy template, JavaScript and
some other resources. All source code of this project is provided
here [https://github.com/exo-samples/docs-samples/tree/master/create-activity-composer]
for downloading.

	Create a Maven project with 2 modules:

[image: image41]

	Edit the pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>social</artifactId>
 <groupId>org.exoplatform.social</groupId>
 <version>4.0.4</version>
 </parent>
 <artifactId>social-location-composer</artifactId>
 <version>4.0.x</version>
 <packaging>pom</packaging>
 <name>eXo Social - Location Composer</name>
 <description>eXo Social - Location Composer</description>
 <modules>
 <module>resources</module>
 <module>composer-plugin</module>
 </modules>
</project>

	Create folders and files for the composer-plugin folder, as follows:

[image: image42]

	Edit the composer-plugin/pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>social-location-composer</artifactId>
 <groupId>org.exoplatform.social</groupId>
 <version>4.0.x</version>
 </parent>
 <groupId>com.acme.samples</groupId>
 <artifactId>acme-location-composer-plugin</artifactId>
 <packaging>jar</packaging>
 <name>Sample activity composer plugin</name>
 <description>Sample activity composer plugin</description>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-common</artifactId>
 <version>4.0.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-core</artifactId>
 <version>4.0.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.commons</artifactId>
 <version>2.4.7-GA</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-webui</artifactId>
 <version>4.0.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.platform-ui</groupId>
 <artifactId>platform-ui-webui-core</artifactId>
 <version>4.0.4</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.component.web.controller</artifactId>
 <version>3.5.8-PLF</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.framework</artifactId>
 <version>3.5.8-PLF</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit the SampleActivityComposer.java file:

package com.acme.samples;

import java.util.LinkedHashMap;
import java.util.Map;
import java.util.ResourceBundle;

import org.exoplatform.social.core.activity.model.ExoSocialActivity;
import org.exoplatform.social.core.activity.model.ExoSocialActivityImpl;
import org.exoplatform.social.core.application.PeopleService;
import org.exoplatform.social.core.identity.model.Identity;
import org.exoplatform.social.core.identity.provider.OrganizationIdentityProvider;
import org.exoplatform.social.core.identity.provider.SpaceIdentityProvider;
import org.exoplatform.social.core.space.model.Space;
import org.exoplatform.social.core.space.spi.SpaceService;
import org.exoplatform.social.webui.Utils;
import org.exoplatform.social.webui.activity.UIDefaultActivity;
import org.exoplatform.social.webui.composer.UIActivityComposer;
import org.exoplatform.social.webui.composer.UIComposer;
import org.exoplatform.social.webui.composer.UIComposer.PostContext;
import org.exoplatform.social.webui.profile.UIUserActivitiesDisplay;
import org.exoplatform.social.webui.profile.UIUserActivitiesDisplay.DisplayMode;
import org.exoplatform.social.webui.space.UISpaceActivitiesDisplay;
import org.exoplatform.web.application.ApplicationMessage;
import org.exoplatform.webui.application.WebuiRequestContext;
import org.exoplatform.webui.config.annotation.ComponentConfig;
import org.exoplatform.webui.config.annotation.EventConfig;
import org.exoplatform.webui.core.UIApplication;
import org.exoplatform.webui.core.UIComponent;
import org.exoplatform.webui.event.Event;
import org.exoplatform.webui.event.EventListener;
import org.exoplatform.webui.form.UIFormStringInput;
import org.exoplatform.webui.form.UIFormTextAreaInput;

@ComponentConfig(template = "war:/groovy/com/acme/samples/SampleActivityComposer.gtmpl", events = {
 @EventConfig(listeners = SampleActivityComposer.CheckinActionListener.class),
 @EventConfig(listeners = UIActivityComposer.CloseActionListener.class),
 @EventConfig(listeners = UIActivityComposer.SubmitContentActionListener.class),
 @EventConfig(listeners = UIActivityComposer.ActivateActionListener.class) })
public class SampleActivityComposer extends UIActivityComposer {

 public static final String LOCATION = "location";

 private String location_ = "";

 private boolean isLocationValid_ = false;

 private Map<String, String> templateParams;

 public SampleActivityComposer() {
 setReadyForPostingActivity(false);
 UIFormStringInput inputLocation = new UIFormStringInput("InputLocation", "InputLocation", null);
 addChild(inputLocation);
 }

 public void setLocationValid(boolean isValid) {
 isLocationValid_ = isValid;
 }

 public boolean isLocationValid() {
 return isLocationValid_;
 }

 public void setTemplateParams(Map<String, String> tempParams) {
 templateParams = tempParams;
 }

 public Map<String, String> getTemplateParams() {
 return templateParams;
 }

 public void clearLocation() {
 location_ = "";
 }

 public String getLocation() {
 return location_;
 }

 private void setLocation(String city, WebuiRequestContext requestContext) {
 location_ = city;
 if (location_ == null || location_ == "") {
 UIApplication uiApp = requestContext.getUIApplication();
 uiApp.addMessage(new ApplicationMessage("Invalid location!", null, ApplicationMessage.ERROR));
 return;
 }

 templateParams = new LinkedHashMap<String, String>();
 templateParams.put(LOCATION, location_);

 setLocationValid(true);
 }

 @Override
 public void onActivate(Event<UIActivityComposer> uiActivityComposer) {
 }

 @Override
 public void onSubmit(Event<UIActivityComposer> uiActivityComposer) {
 }

 @Override
 public void onClose(Event<UIActivityComposer> uiActivityComposer) {
 }

 /* called when user clicks "Share" button.
 * create and save activity.
 */
 @Override
 public void onPostActivity(PostContext postContext,
 UIComponent uiComponent,
 WebuiRequestContext requestContext,
 String postedMessage) throws Exception {
 if (postContext == UIComposer.PostContext.SPACE){
 UISpaceActivitiesDisplay uiDisplaySpaceActivities = (UISpaceActivitiesDisplay) getActivityDisplay();
 Space space = uiDisplaySpaceActivities.getSpace();

 Identity spaceIdentity = Utils.getIdentityManager().getOrCreateIdentity(SpaceIdentityProvider.NAME,
 space.getPrettyName(),
 false);
 ExoSocialActivity activity = new ExoSocialActivityImpl(Utils.getViewerIdentity().getId(),
 SpaceService.SPACES_APP_ID,
 postedMessage,
 null);
 activity.setType(UIDefaultActivity.ACTIVITY_TYPE);
 Utils.getActivityManager().saveActivityNoReturn(spaceIdentity, activity);
 uiDisplaySpaceActivities.init();
 } else if (postContext == PostContext.USER) {
 UIUserActivitiesDisplay uiUserActivitiesDisplay = (UIUserActivitiesDisplay) getActivityDisplay();
 Identity ownerIdentity = Utils.getIdentityManager().getOrCreateIdentity(OrganizationIdentityProvider.NAME,
 uiUserActivitiesDisplay.getOwnerName(), false);
 if (postedMessage.length() > 0) {
 postedMessage += "
";
 }

 if (this.getLocation() != null && this.getLocation().length() > 0) {
 postedMessage += String.format("%s checked in at %s.", ownerIdentity.getProfile().getFullName(), this.getLocation());
 } else {
 postedMessage += String.format("%s checked in at Nowhere.", ownerIdentity.getProfile().getFullName());
 }
 ExoSocialActivity activity = new ExoSocialActivityImpl(Utils.getViewerIdentity().getId(),
 PeopleService.PEOPLE_APP_ID,
 postedMessage,
 null);
 activity.setType(UIDefaultActivity.ACTIVITY_TYPE);
 activity.setTemplateParams(templateParams);
 this.clearLocation();
 Utils.getActivityManager().saveActivityNoReturn(ownerIdentity, activity);

 this.setLocationValid(false);
 if (uiUserActivitiesDisplay.getSelectedDisplayMode() == DisplayMode.MY_SPACE) {
 uiUserActivitiesDisplay.setSelectedDisplayMode(DisplayMode.ALL_ACTIVITIES);
 }
 }
 }

 public static class CheckinActionListener extends EventListener<SampleActivityComposer> {

 // this is called on event "Checkin" (when users clicks Check-in button).
 @Override
 public void execute(Event<SampleActivityComposer> event) throws Exception {
 WebuiRequestContext requestContext = event.getRequestContext();
 SampleActivityComposer sampleActivityComposer = event.getSource();

 String city;
 try {
 city = requestContext.getRequestParameter(OBJECTID).trim();
 } catch (Exception e) {
 System.out.println("Exception when getting OBJECTID!");
 return;
 }

 if (city != null && city.length() > 0) {
 sampleActivityComposer.setLocationValid(true);
 } else {
 sampleActivityComposer.setLocationValid(false);
 }

 sampleActivityComposer.setLocation(city, requestContext);
 if (sampleActivityComposer.location_ != null && sampleActivityComposer.location_.length() > 0) {
 requestContext.addUIComponentToUpdateByAjax(sampleActivityComposer);
 event.getSource().setReadyForPostingActivity(true);
 }
 }
 }

}

Some remarks:

	The groovy template
(groovy/com/acme/SampleActivityComposer.gtmpl) is configured in
this class to be rendered when the composer is activated.

	The inner class (CheckinActionListener) listens to the “Checkin”
events (when the user clicks the Check-in button). The class name is
bound to the event name.

	Edit the composer-plugin/src/main/resources/conf/configuration.xml
file to register the extension:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <name>Add PortalContainer Definitions</name>
 <set-method>registerChangePlugin</set-method>
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>101</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>acme-extension</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Edit the composer-plugin/src/main/resources/conf/portal/configuration.xml
file to configure UIExtensionManager and ResourceBundleService:

<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_1.xsd http://www.exoplatform.org/xml/ns/kernel_1_1.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_1.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>add.action</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 <init-params>
 <object-param>
 <name>Sample Activity Composer</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"><string>org.exoplatform.social.webui.composer.UIActivityComposer</string></field>
 <field name="name"><string>SampleActivityComposer</string></field>
 <field name="component"><string>com.acme.samples.SampleActivityComposer</string></field>
 <field name="rank"><int>1</int></field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

 <external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>Location Activity Composer Plugin</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>classpath.resources</name>
 <description></description>
 <value>locale.com.acme.LocationComposer</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <description></description>
 <value>locale.com.acme.LocationComposer</value>
 </values-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Edit the resources in the locale/com/acme/LocationComposer_en.properties
file (that is configured as locale.com.acme.LocationComposer in
the previous step):

UIActivityComposer.label.SampleActivityComposer=Check-in
com.acme.LocationComposer.CheckinBtn=Check-in

The first line is for the tooltip of the composer icon, it is looked
up by the composer container so you must use the property name as it
is. The second property is for the label of the button, it is
handled by yourself in the SampleActivityComposer.gtmpl so name
it as you want.

	Create folders and files of the resources module. It will be
built into acme-extension.war that you have registered in the
conf/configuration.xml file.

[image: image43]

	Edit the resources/pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>social-location-composer</artifactId>
 <groupId>org.exoplatform.social</groupId>
 <version>4.0.x</version>
 </parent>
 <groupId>com.acme.samples</groupId>
 <artifactId>acme-extension</artifactId>
 <packaging>war</packaging>
 <name>eXo Social Location Composer Resources</name>
 <description>eXo Social Location Composer Resources</description>
 <build>
 <finalName>acme-extension</finalName>
 </build>
</project>

	Edit the web.xml file:

<web-app>
 <display-name>acme-extension</display-name>
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>
 <filter>
 <filter-name>ResourceRequestFilter</filter-name>
 <filter-class>org.exoplatform.portal.application.ResourceRequestFilter</filter-class>
 </filter>

 <filter-mapping>
 <filter-name>ResourceRequestFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

 <servlet>
 <servlet-name>GateInServlet</servlet-name>
 <servlet-class>org.gatein.wci.api.GateInServlet</servlet-class>
 <load-on-startup>0</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>GateInServlet</servlet-name>
 <url-pattern>/gateinservlet</url-pattern>
 </servlet-mapping>

</web-app>

	Edit the gatein-resources.xml file to register JavaScript and
CSS resources:

<gatein-resources
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">

 <portal-skin>
 <skin-name>Default</skin-name>
 <skin-module>acme.samples</skin-module>
 <css-path>/skin/DefaultSkin/Stylesheet.css</css-path>
 </portal-skin>
 <module>
 <name>location-activity-composer</name>
 <script>
 <path>/javascript/acme/samples/LocationComposer.js</path>
 </script>
 <depends>
 <module>socialUtil</module>
 </depends>
 <depends>
 <module>jquery</module>
 <as>jq</as>
 </depends>
 <depends>
 <module>mentionsPlugin</module>
 </depends>
 <depends>
 <module>mentionsLib</module>
 <as>mentions</as>
 </depends>
 <depends>
 <module>webui</module>
 </depends>
 </module>
</gatein-resources>

	Edit the javascript/acme/samples/LocationComposer.js file:

(function($) {
 var LocationComposer = {
 ENTER_KEY_CODE: 13,

 onLoad: function(params) {
 LocationComposer.configure(params);
 LocationComposer.init();
 },

 configure: function(params) {
 this.locationValid = params.locationValid || false;
 this.inputLocationId = params.inputLocationId || 'InputLocation';
 this.checkinButtonId = params.checkinButtonId || 'CheckinButton';
 this.checkinUrl = decodeURI(params.checkinUrl || "");
 this.location = params.location || '';
 },

 init: function() {
 LocationComposer = this;

 if (this.locationValid === "false") {
 this.inputLocation = $('#' + this.inputLocationId);
 this.checkinButton = $('#' + this.checkinButtonId);

 var LocationComposer = this;
 var inputLocation = this.inputLocation;
 var checkinBtn = this.checkinButton;
 inputLocation.on('focus', function(evt) {
 if (inputLocation.val() === '') {
 inputLocation.val('');
 }
 });
 this.inputLocation.on('keypress', function(evt) {
 if (LocationComposer.ENTER_KEY_CODE == (evt.which ? evt.which : evt.keyCode)) {
 $(checkinBtn).click();
 }
 });
 this.checkinButton.removeAttr('disabled');
 this.checkinButton.on('click', function(evt) {
 if (inputLocation.val() === '') {
 return;
 }
 var url = LocationComposer.checkinUrl.replace(/&/g, "&") + '&objectId=' + encodeURI(inputLocation.val()) + '&ajaxRequest=true';
 ajaxGet(url, function() {
 try {
 $('textarea#composerInput').exoMentions('showButton', function() {});
 } catch (e) {
 console.log(e);
 }
 });
 });
 }

 var closeButton = $('#UIActivityComposerContainer').find('a.uiIconClose:first');
 if (closeButton.length > 0) {
 closeButton.on('click', function() {
 $('textarea#composerInput').exoMentions('clearLink', function() { });
 });
 }
 }
 };
 return LocationComposer;
})(jq);

	Edit the SampleActivityComposer.gtmpl file:

<%
 import org.exoplatform.webui.form.UIFormStringInput;

 def uicomponentId = uicomponent.id;
 def labelCheckin = _ctx.appRes("com.acme.LocationComposer.CheckinBtn");

 def locationValid = uicomponent.isLocationValid();
 uicomponent.setLocationValid(false);
 def location = uicomponent.getLocation();

 def params = "{" +
 "locationValid: '" + locationValid + "'," +
 "inputLocationId: 'InputLocation'," +
 "checkinButtonId: 'CheckinButton'," +
 "checkinUrl: encodeURI('" + uicomponent.url("Checkin") + "')," +
 "location: '" + location + "'" +
 "}";

 def requestContext = _ctx.getRequestContext();
 def jsManager = requestContext.getJavascriptManager();
 jsManager.require("SHARED/jquery", "jq").require("SHARED/location-activity-composer", "locComposer").addScripts("locComposer.onLoad($params);");

%>
<div id="$uicomponentId">
 <div id="LocationComposerContainer" class="uiComposerLink clearfix">
 <button id="CheckinButton" class="btn pull-right">$labelCheckin</button>
 <div class="Title Editable">
 <%if (locationValid) {%>
 Location: $location
 <%} else {
 uicomponent.renderChild(UIFormStringInput.class);
 }%>
 </div>
 </div>
</div>

This code calls the location-activity-composer JavaScript module
that you registered in the gatein-resources.xml file.

	Edit the CSS resources in the skin/Default/Stylesheet.css file:

.sampleactivitycomposer .uiIconSocSampleActivityComposer {
 background: url('/eXoSkin/skin/images/themes/default/social/skin/UIManageSpaces/Member.png') no-repeat left 3px 3px;
}
a.sampleactivitycomposer:hover .uiIconSocSampleActivityComposer {
 background: url('/eXoSkin/skin/images/themes/default/social/skin/UIManageSpaces/Member.png') no-repeat left 3px 3px;
}

Here you re-use the background image that is packaged in
eXoSkin.war. You can create your own icon.

16. Build the project, then deploy
composer-plugin/target/acme-location-composer-plugin-4.0.x.jar into
$PLATFORM_TOMCAT_HOME/lib, and
resources/target/acme-extension.war into
$PLATFORM_TOMCAT_HOME/webapps.

Testing

Click the icon (with the “Check-in” tooltip) to bring up the location
input. Type something, click Check-in, then click Share. An activity
will display like you see at the beginning of this page.

Adding your own Content UI Extensions

There are many UI Components in Content Explorer and Administration that
allows plugins:

	Action bar

[image: image66]

	File viewer

[image: image67]

	Sidebar

[image: image68]

	Admin control panel

[image: image69]

	Context menu in the main working area

[image: image70]

Creating an action extension

This section shows you how to write an action in PRODUCT. Specifically,
a “ShowNodePath” button will be displayed in Sites Explorer. When
clicking on it, the node path of the current node will be shown. You can
download the source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/create-action-extension].

	Create a Maven project which has the following directory structure:

	pom.xml: The project’s POM file.

	ShowNodePathActionComponent.java: The simple action to view the
node path.

	configuration.xml: The configuration file to register your action
with the org.exoplatform.webui.ext.UIExtensionManager service.

Here is content of the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme</groupId>
 <artifactId>action-example</artifactId>
 <version>1.0</version>
 <packaging>jar</packaging>

 <properties>
 <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.core</artifactId>
 <version>3.5.2.Final</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.commons</groupId>
 <artifactId>commons-webui-ext</artifactId>
 <version>4.0.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.ecms</groupId>
 <artifactId>ecms-core-webui-explorer</artifactId>
 <version>4.0.0</version>
 </dependency>
 </dependencies>
</project>

	Create a new action and its corresponding listener by editing the
ShowNodePathActionComponent class as below:

package com.acme;

import javax.jcr.Node;

import org.exoplatform.ecm.webui.component.explorer.UIJCRExplorer;
import org.exoplatform.ecm.webui.component.explorer.control.listener.UIActionBarActionListener;
import org.exoplatform.web.application.ApplicationMessage;
import org.exoplatform.webui.config.annotation.ComponentConfig;
import org.exoplatform.webui.config.annotation.EventConfig;
import org.exoplatform.webui.core.UIComponent;
import org.exoplatform.webui.event.Event;

@ComponentConfig(
 events = { @EventConfig(listeners = ShowNodePathActionComponent.ShowNodePathActionListener.class) })

public class ShowNodePathActionComponent extends UIComponent {

 public static class ShowNodePathActionListener extends UIActionBarActionListener<ShowNodePathActionComponent> {
 @Override
 protected void processEvent(Event<ShowNodePathActionComponent> event) throws Exception {
 UIJCRExplorer uiJCRExplorer = event.getSource().getAncestorOfType(UIJCRExplorer.class);
 Node node = uiJCRExplorer.getCurrentNode();
 event.getRequestContext()
 .getUIApplication()
 .addMessage(new ApplicationMessage("Node path:" + node.getPath(), null, ApplicationMessage.INFO));
 }
 }
}

	Register the new action with UIExtensionManager in the
configuration.xml file as below:

<configuration xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>add.action</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 <init-params>
 <object-param>
 <name>ShowNodePath</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type">
 <string>org.exoplatform.ecm.dms.UIActionBar</string>
 </field>
 <field name="name">
 <string>ShowNodePath</string>
 </field>
 <field name="component">
 <string>com.acme.ShowNodePathActionComponent</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Some remarks about the Java code and the configuration:

	ShowNodePath will be used to label the action, until you
configure the label in resource bundle that will be explained later.

	ShowNodePathActionComponent is the class name of your action.

	There is a matching rule between the action name (ShowNodePath)
and the listener class name (ShowNodePathActionListener): the
listener class name = the action name + ActionListener.

	Build your project: mvn clean install

	Copy the .jar file (target/action-example-1.0.jar) to the
lib folder of PRODUCT.

	Restart the server.

Testing

	Log in as an administrator and go to Content Administration.

	Edit a view to add the action to one of tabs of the view. At this
step, you will see the ShowNodePath action as below:

[image: image71]

Make sure there is a drive that applies the view. For example, you
can choose the Admin view and the Collaboration drive.

	Go to Sites Explorer and select the drive, then switch to the edited
view.

	Select any node. The “ShowNodePath” button now displays in Action bar
as below:

[image: image72]

Next, you can perform the followings for your action extension:

	Customizing label and icon

	Filtering your action

Customizing label and icon

Customizing labels

As you can see in the screenshots in previous section, your action
displays in UI as “showNodePath” or “ShowNodePath”. You can change this
label to something in more friendly way, like “Show Node Path”, by
adding and registering your resource bundle to ResourceBundle service:

	Add the src/main/resources/locale/com/acme folder to your project.

	Add the ShowNodePath_en.xml file to this folder, with the
following content:

<bundle>
 <UITabForm>
 <label>
 <showNodePath>Show Node Path</showNodePath>
 </label>
 </UITabForm>
 <UIActionBar>
 <tooltip>
 <ShowNodePath>Show Node Path</ShowNodePath>
 </tooltip>
 </UIActionBar>
</bundle>

Note

Notice the “showNodePath” tag (lowercase for first letter) in
UITabForm. What you configure in UITabForm element will be displayed
in Content Administration portlet. The other, UIActionBar, is for

Sites Explorer portlet.

	Add the following configuration to src/main/resources/conf/portal/configuration.xml:

<external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>UI Extension</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>init.resources</name>
 <value>locale.com.acme.ShowNodePath</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <value>locale.com.acme.ShowNodePath</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The locale.com.acme.ShowNodePath value expresses that your resource
files should be located in the locale/com/acme/ folder and have the
“ShowNodePath” prefix in name. ShowNodePath_en.xml is resource for
English of which “en” is the locale code. You can add other
resources for many languagues.

Now re-build your project and deploy. Restart server and test, you will
see the labels change into “Show Node Path”.

See more details about ResourceBundle
service
and locale
codes.

If you want more samples of such configuration, see:

	webapps/ecmexplorer.war!/WEB-INF/classes/locale/portlet/explorer/JCRExplorerPortlet_en.xml

	webapps/ecmadmin.war!/WEB-INF/classes/locale/portlet/administration/ECMAdminPortlet_en.xml

Customizing icons

Edit the
webapps/ecmexplorer.war!/skin/icons/24x24/DefaultStylesheet.css file
(for the default Skin) and add the icon definition as below (in this
case, the “ManageUnLock” icon is re-used but you could add your own
picture into the
webapps/ecmexplorer.war!/skin/icons/24x24/DefaultSkin directory):

.ShowNodePathIcon{
width: 24px; height: 24px;
background: url('DefaultSkin/ManageUnLock.gif') no-repeat left center; /* orientation=lt */
background: url('DefaultSkin/ManageUnLock.gif') no-repeat right center; /* orientation=rt */
}

Filtering your action

¹. Write your filter class (com/acme/MyUIFilter.java):

package com.acme;

import java.util.Map;
import javax.jcr.Node;
import org.exoplatform.webui.ext.filter.UIExtensionFilter;
import org.exoplatform.webui.ext.filter.UIExtensionFilterType;

public class MyUIFilter implements UIExtensionFilter {
 /*
 * This method checks if the current node is a file.
 */
 public boolean accept(Map<String, Object> context) throws Exception {
 //Retrieve the current node from the context
 Node currentNode = (Node) context.get(Node.class.getName());
 return currentNode.isNodeType("nt:file");
 }

 /*
 * This is the type of the filter.
 */
 public UIExtensionFilterType getType() {
 return UIExtensionFilterType.MANDATORY;
 }

 /*
 * This is called when the filter has failed.
 */
 public void onDeny(Map<String, Object> context) throws Exception {
 System.out.println("This node is not a file!");
 }
}

This filter checks if the current node is a file. Because the filter
type is MANDATORY, the action will hide if the current node is a folder.
(Thus, with MANDATORY you cannot test onDeny method. Change the type
into OPTIONAL if you want to test the method.)

	Apply the filter in your action class (com/acme/ShowNodePathActionComponent.java):

...
import java.util.List;
import java.util.Arrays;
import org.exoplatform.webui.ext.filter.UIExtensionFilter;
import org.exoplatform.webui.ext.filter.UIExtensionFilters;

import com.acme.MyUIFilter;
...
public class ShowNodePathActionComponent extends UIComponent {
...
 /*
 * Add filters (MyUIFilter in this example)
 */
 private static final List<UIExtensionFilter> FILTERS = Arrays.asList(new UIExtensionFilter[] {new MyUIFilter()});

 @UIExtensionFilters
 public List<UIExtensionFilter> getFilters() {
 return FILTERS;
 }
}

Now build, deploy and test that your action displays only for nodes of
type “nt:file”.

You have added a filter by Java code. Another way is by configuration,
that is extremely good when the filter itself allows flexible
configuration. For example, you continue to add UserACLFilter (built-in)
that allows you to configure who can use the action:

Add the following configuration to conf/portal/configuration.xml:

<external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 ...
 <field name="extendedFilters">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.webui.ext.filter.impl.UserACLFilter">
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <string>manager:/platform/administrators</string>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 ...
</external-component-plugins>

Then test that the action displays only for the users who have
manager:/platform/administrators membership.

There are many useful built-in filters in Content. In your real project,
you should see if some of them meet your business logic before writing a
new one:

	org.exoplatform.webui.ext.filter.impl.UserACLFilter: Filters all
nodes that do not have any permission on the current context.

	org.exoplatform.webui.ext.filter.impl.FileFilter: Filters all
nodes that do not exist in the given MIME type list.

	org.exoplatform.ecm.webui.component.explorer.control.filter: This
package includes many filters, see in the table.

	Filters

	Description

	CanAddCategoryFilter

	Filters nodes to which it is impossible to
add categories.

	CanCutNodeFilter

	Filters nodes which cannot be cut.

	CanAddNodeFilter

	Filters nodes to which it is impossible to
add nodes.

	CanDeleteNodeFilter

	Filters nodes that cannot be deleted.

	CanRemoveNodeFilter

	Filters nodes that cannot be removed.

	CanEnableVersionFilter

	Filters nodes which do not allow
versioning.

	CanSetPropertyFilter

	Filters nodes that cannot be modified.

	``HasMetadataTemplatesFilter`
`

	Filters nodes that do not have metadata
templates.

	HasPublicationLifecycleFilt
er

	Filters all nodes that do not have the
publication plugins.

	HasRemovePermissionFilter

	Filters nodes that do not have the
Removepermission.

	IsFavouriteFilter

	Filters nodes that are not favorite.

	IsNotFavouriteFilter

	Filters nodes that are favorite.

	IsNotNtFileFilter

	Filters nodes that are of nt:file.

	IsHoldsLockFilter

	Filters nodes which do not hold lock.

	IsNotHoldsLockFilter

	Filters nodes which are holding lock.

	IsNotRootNodeFilter

	Filters the root node.

	IsInTrashFilter

	Filters nodes that are not in the trash
node.

	IsNotInTrashFilter

	Filters nodes that are in the trash node.

	``IsNotSameNameSiblingFilter`
`

	Filters nodes that allow the same name
siblings.

	IsMixCommentable

	Filters nodes that do not allow
commenting.

	IsMixVotable

	Filters nodes that do not allow voting.

	IsNotSimpleLockedFilter

	Filters nodes that are locked.

	IsNotSymlinkFilter

	Filters nodes that are symlinks.

	IsNotCategoryFilter

	Filters nodes that are of the category
type.

	``IsNotSystemWorkspaceFilter`
`

	Filters actions of the system-typed
workspace.

	IsNotCheckedOutFilter

	Filters nodes that are checked out.

	IsTrashHomeNodeFilter

	Filters nodes that are not trash ones.

	IsNotTrashHomeNodeFilter

	Filters a node that is the trash one.

	``IsNotEditingDocumentFilter`
`

	Filters nodes that are being edited.

	IsPasteableFilter

	Filters nodes where the paste action
is not allowed.

	IsReferenceableNodeFilter

	Filters nodes that do not allow adding
references.

	IsNotFolderFilter

	Filters nodes that are folders.

	IsCheckedOutFilter

	Filters nodes that are not checked out.

	IsVersionableFilter

	Filters nodes which do not allow
versioning.

	IsVersionableOrAncestorFilt
er

	Filters nodes and ancestor nodes which do
not allow versioning.

	IsDocumentFilter

	Filters nodes that are not documents.

	IsEditableFilter

	Filters nodes that are not editable.

Creating a file viewer

eXo Platform supports the inline visualization for many file formats.
For example, let’s see the display of PDF file:

[image: image73]

For those not yet available, one message will be displayed that requires
you to download it. Here is the view of a ZIP file:

[image: image74]

However, eXo Platform allows you to create a new file viewer to read one file
format, for example, ZIP files. Assuming that you want to display the
list of files contained in the ZIP file, follow the steps below. The
source code of this project is available
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/create-file-viewer]
for downloading.

	Create a Maven project, for example, named zip-viewer, with the
below structure:

[image: image75]

	Create the view template by editing the
resources/templates/ZipViewer.gtmpl. Here, you only need to
iterate all the ZIP files to display their names:

<style>
ul.zip-file-list {
 padding: 0 20px;
}
ul.zip-file-list li {
 list-style-position: inside;
 list-style-type: circle;
}
</style>
<%
import java.util.zip.ZipEntry
import java.util.zip.ZipInputStream
import org.exoplatform.webui.core.UIComponent

def uiParent = uicomponent.getParent()
def originalNode = uiParent.getOriginalNode()
def contentNode = originalNode.getNode("jcr:content")
def zis;

try {
 zis = new ZipInputStream(contentNode.getProperty("jcr:data").getStream())

 ZipEntry ze

 out.println("<ul class=\"zip-file-list\">")
 while ((ze = zis.getNextEntry()) != null) {
 out.println("" + ze.getName() + "")
 }
 out.println("")
} finally {
 zis?.close()
}
%>

	Open the java/org/exoplatform/ecm/dms/ZipViewer.java file. Once
the view template is ready, it has to be registered and linked to the
ZIP file type. The first step for registering the template is to
create a simple class which extends UIComponent and to define the
view template’s path. Note that this class defines the template’s
path, that is, templates/ZipViewer.gtmpl in this case.

package org.exoplatform.ecm.dms;

import org.exoplatform.webui.config.annotation.ComponentConfig;
import org.exoplatform.webui.core.UIComponent;

@ComponentConfig(
template = "classpath:templates/ZipViewer.gtmpl"
)
public class ZipViewer extends UIComponent {
}

	Edit the resources/conf/portal/configuration.xml file where the
class is declared by the
org.exoplatform.webui.ext.UIExtensionManager component.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>Zip File dynamic viewer</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 <init-params>
 <object-param>
 <name>Zip</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type">
 <string>org.exoplatform.ecm.dms.FileViewer</string>
 </field>
 <field name="rank">
 <int>110</int>
 </field>
 <field name="name">
 <string>Zip</string>
 </field>
 <field name="category">
 <string>FileViewer</string>
 </field>
 <field name="component">
 <string>org.exoplatform.ecm.dms.ZipViewer</string>
 </field>
 <field name="extendedFilters">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.webui.ext.filter.impl.FileFilter">
 <field name="mimeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <string>application/zip</string>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

This configuration links the org.exoplatform.ecm.dms.ZipViewer
component to the application/zip mimetype.

	Update the pom.xml file that declares dependencies of the classes
imported in the ZipViewer.java file.

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>exo.file.viewer</groupId>
 <artifactId>zip-viewer</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>zip-viewer</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.framework</artifactId>
 <version>3.5.9-PLF</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Build the zip-viewer project using the command:

 ``mvn clean install``.

Your JAR (``zip-viewer/target/zip-viewer-1.0-SNAPSHOT.jar``) should now
contain 3 files:

- ``templates/ZipViewer.gtmpl``

- ``org/exoplatform/ecm/dms/ZipViewer.class``

- ``conf/portal/configuration.xml``

	Put this .jar file into the eXo Platform package.

	$PLATFORM_TOMCAT_HOME/lib (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib (in
JBoss).

	Restart the server. The content of a ZIP file is now displayed as
below:

[image: image76]

Other components

Working with other toolbars is quite similar to UIActionbar, except
configurations and resources.

Sidebar

	Sample configuration

<object-param>
 <name>Example</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"><string>org.exoplatform.ecm.dms.UISideBar</string></field>
 <field name="name"><string>Example</string></field>
 <field name="rank"><int>110</int></field>
 <field name="component"><string>com.acme.ExampleActionComponent</string></field>
 </object>
</object-param>

Resources are located at
$PLATFORM_TOMCAT-HOME/webapps/ecmexplorer/WEB-INF/classes/locale/portlet/explorer/JCRExplorerPortlet_en.xml
(for English which is also the default language):

...
 <UISideBar>
 ...
 <label>
 <example>Example action</example>
 ...
 </label>
 ...
 </UISideBar>
 ...

Admin control panel

	Sample configuration

<object-param>
 <name>Example</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type">
 <string>org.exoplatform.ecm.dms.UIECMAdminControlPanel</string>
 </field>
 <field name="rank">
 <int>110</int>
 </field>
 <field name="name">
 <string>Example</string>
 </field>
 <field name="category">
 <string>Templates</string>
 </field>
 <field name="component">
 <string>org.exoplatform.ecm.webui.component.admin.manager.UITemplatesManagerComponent</string>
 </field>
 </object>
</object-param>

The “category” field specifies the category where your extension action
is performed. There are 4 options:

	Templates

	Explorer

	Repository

	Advanced

Resources are located at
$PLATFORM_TOMCAT-HOME/webapps/ecmadmin/WEB-INF/classes/locale/portlet/administration/ECMAdminPortlet_en.xml
(for English which is also the default language):

...
<UIECMAdminControlPanel>
 ...
<label>
 <example>Example panel</example>
 ...
</label>
 ...
</UIECMAdminControlPanel>
 ...

Context menu

	Sample configuration

<object-param>
 <name>Example</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"><string>org.exoplatform.ecm.dms.UIWorkingArea</string></field>
 <field name="rank"><int>105</int></field>
 <field name="name"><string>Example</string></field>
 <field name="category"><string>ItemContextMenu_SingleSelection</string></field>
 <field name="component"><string>com.acme.ExampleActionComponent</string></field>
 </object>
</object-param>

The “category” field specifies the category where your extension action
is performed. There are many options:

	ItemContextMenu_SingleSelection: This menu has only one item when
Trash Folder is right-clicked.

	ItemContextMenu: The menu appears when the user selects one or
many items.

	GroundContextMenu & ItemGroundContextMenu: The menu appears
when the user right-clicks the ground of node.

	Resources are located at ``

	
$TOMCAT-HOME/webapps/ecmexplorer/WEB-INF/classes/locale/portlet/explorer/JCRExplorerPortlet_en.xml

`` (for English which is also the default language):

<UIWorkingArea>
 ...
 <label>
 <example>Example action</example>
 ...
 </label>
 ...
</UIWorkingArea>

Writing an action extension in Wiki

This tutorial instructs you to plug an action to the Wiki page via the
following main steps:

	Creating your new project

	Creating new action and the corresponding listener

	Registering new action

	Registering localized resources

	Deploying and testing new action extension

Note that all source code used in this section is provided
here <https://github.com/exo-samples/docs-samples/tree/4.3.x/write-action-extension>
for downloading.

Creating your new project

Create a Maven project which has the following directory structure:

example
|__ pom.xml
|__ src
 |__ main
 |__ java
 | |__ com
 | |__ acme
 | |__ ViewSourceActionComponent.java
 |__ resources
 |__ conf
 | |__ portal
 | |__ configuration.xml
 |__ locale
 |__ com
 |__ acme
 |__ ViewSource_en.properties

Here is content of the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme</groupId>
 <artifactId>example</artifactId>
 <version>1.0</version>
 <name>eXo Wiki action - Example</name>
 <description>eXo Wiki action - Example</description>
 <dependencies>
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.webui.framework</artifactId>
 <version>3.5.5.Final</version>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.commons</groupId>
 <artifactId>commons-webui-ext</artifactId>
 <version>4.0.1</version>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.wiki</groupId>
 <artifactId>wiki-service</artifactId>
 <version>4.0.1</version>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.wiki</groupId>
 <artifactId>wiki-webui</artifactId>
 <version>4.1.0</version>
 </dependency>
 </dependencies>
</project>

Creating new action and the corresponding listener

Edit the ViewSourceActionComponent class as below:

package com.acme;

import java.util.Arrays;
import java.util.List;

import org.exoplatform.webui.config.annotation.ComponentConfig;
import org.exoplatform.webui.config.annotation.EventConfig;
import org.exoplatform.webui.event.Event;
import org.exoplatform.webui.ext.filter.UIExtensionFilter;
import org.exoplatform.webui.ext.filter.UIExtensionFilters;
import org.exoplatform.wiki.commons.Utils;
import org.exoplatform.wiki.mow.core.api.wiki.PageImpl;
import org.exoplatform.wiki.webui.UIWikiContentDisplay;
import org.exoplatform.wiki.webui.UIWikiPageContentArea;
import org.exoplatform.wiki.webui.UIWikiPortlet;
import org.exoplatform.wiki.webui.control.action.core.AbstractEventActionComponent;
import org.exoplatform.wiki.webui.control.filter.IsViewModeFilter;
import org.exoplatform.wiki.webui.control.listener.MoreContainerActionListener;

@ComponentConfig (
 template = "app:/templates/wiki/webui/control/action/AbstractActionComponent.gtmpl",
 events = {
 @EventConfig(listeners = ViewSourceActionComponent.ViewSourceActionListener.class)
 }
)

public class ViewSourceActionComponent extends AbstractEventActionComponent {

 public static final String ACTION = "ViewSource";

 private static final List<UIExtensionFilter> FILTERS = Arrays.asList(new UIExtensionFilter[] { new IsViewModeFilter() });

 @UIExtensionFilters

 public List<UIExtensionFilter> getFilters() {
 return FILTERS;
 }

 @Override
 public String getActionName() {
 return ACTION;
 }

 @Override
 public boolean isAnchor() {
 return false;
 }

 public static class ViewSourceActionListener extends MoreContainerActionListener<ViewSourceActionComponent> {
 @Override
 protected void processEvent(Event<ViewSourceActionComponent> event) throws Exception {
 UIWikiPortlet wikiPortlet = event.getSource().getAncestorOfType(UIWikiPortlet.class);
 UIWikiContentDisplay contentDisplay = wikiPortlet.findFirstComponentOfType(UIWikiPageContentArea.class)
 .getChildById(UIWikiPageContentArea.VIEW_DISPLAY);
 PageImpl wikipage = (PageImpl) Utils.getCurrentWikiPage();
 contentDisplay.setHtmlOutput(wikipage.getContent().getText());
 event.getRequestContext().addUIComponentToUpdateByAjax(contentDisplay);
 }
 }
}

Some remarks:

	The action name is ViewSource.

	The listener class name = the action name + “ActionListener” (so it
is ViewSourceActionListener).

	In this example, the listener extends the
MoreContainerActionListener class. As a result, the action will
be added to the More menu in the Wiki portlet. There are some choices
that will be introduced later.

	At the ComponentConfig annotation, you see a gtmpl file is given.
Here you re-use the
templates/wiki/webui/control/action/AbstractActionComponent.gtmpl
file that is already packaged in wiki.war.

Registering new action with UIExtensionManager service

Edit the configuration.xml file as below:

<configuration xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>add.action</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 <init-params>
 <object-param>
 <name>ViewSource</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"><string>org.exoplatform.wiki.webui.control.MoreExtensionContainer</string></field>
 <field name="rank"><int>1000</int></field>
 <field name="name"><string>ViewSource</string></field>
 <field name="component"><string>com.acme.ViewSourceActionComponent</string></field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Pay attention to the action name (ViewSource) and the component name
(com.acme.ViewSourceActionComponent).

The configuration for UIExtension is explained
here.

As noticed before, your action listener extends the
MoreExtensionContainer class. Here you see it is passed to the
type field. You can decide which menu your action is plugged in, by
choosing one of types below:

	Type

	Description

	org.exoplatform.wiki.webui.control.UIPageToolB
ar

	Actions will be placed
in Toolbar in the View
mode.

	org.exoplatform.wiki.webui.control.AddExtensio
nContainer

	Actions will be plugged
in the Add Page menu in
the View mode.

	org.exoplatform.wiki.webui.control.MoreExtensi
onContainer

	Actions will be plugged
in the More menu in the
View mode.

	org.exoplatform.wiki.webui.control.UISubmitToo
lBar

	Actions will be placed
in Toolbar in the Edit
mode.

	org.exoplatform.wiki.webui.control.UIEditorTab
s

	Actions will be placed
in the Editor tabs.

	org.exoplatform.wiki.webui.control.BrowseExten
sionContainer

	Actions will be plugged
in the Browse menu in
the View mode.

	org.exoplatform.wiki.webui.popup.UIWikiSetting
Container

	Actions will be placed
in the Setting tabs.

Registering localized resources with ResourceBundle service

In this example, you have a resource file, that is
ViewSource_en.properties. The _en suffix means English. You can
write many resources for other languages.

	Edit the ViewSource_en.properties file as below:

MoreExtensionContainer.action.ViewSource=View Source

This indicates that the label of your action will be View Source.

Name of the MoreExtensionContainer.action.ViewSource property must
be changed if you use another type. It is dependent on the gtmpl
file you use in your Java class. See this code in
wiki.war!/templates/wiki/webui/control/action/AbstractActionComponent.gtmpl:

String labelName = _ctx.appRes(uicomponent.getParent().getName() + ".action." + actionName);

	Configure the ResourceBundle service in the configuration.xml
file as below:

<external-component-plugins>
 <target-component>org.exoplatform.services.resources.ResourceBundleService</target-component>
 <component-plugin>
 <name>UI Extension</name>
 <set-method>addResourceBundle</set-method>
 <type>org.exoplatform.services.resources.impl.BaseResourceBundlePlugin</type>
 <init-params>
 <values-param>
 <name>init.resources</name>
 <value>locale.com.acme.ViewSource</value>
 </values-param>
 <values-param>
 <name>portal.resource.names</name>
 <value>locale.com.acme.ViewSource</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Pay attention to the resource name: locale.com.acme.ViewSource. It
is a translation of the locale/com/acme/ViewSource_en.properties
file path (relative to the Jar archive), with the _en suffix and the
.properties extension is eliminated.

See
here
for the ResourceBundle configuration.

Deploying new action extension

Follow these steps to deploy and test your new action extension:

	Build the project by the command: mvn clean install

	Copy the target/example-1.0.jar file into the
$PLATFORM_TOMCAT_HOME/lib directory.

	Start eXo Platform and go to the Wiki portlet. You will see your
action in the More menu as below:

[image: image77]

Notification

	Extending notification system
Steps to create an extension which plugs a new notification type and
channel into current notification system in eXo Platform.

	Overriding email notification
Steps to create an extension which overrides the email notification
templates following your own style.

Extending notification system

eXo Platform provides you with a notification system that allows you to
extend in 2 mechanisms:

	The extensibility of notification channels, such as by email,
directly on-site or through pushing.

	The extensibility of notification types, such as connection
invitation, space activities.

This section will walk you through a complete sample extension [https://github.com/exo-samples/docs-samples/tree/master/console-notification]
that instructs you how to:

	create a new notification channel that pushes notification
information to the console panel.

	create a new notification type that informs when one user in your
network changes her/his profile.

First you need to create a new Maven project with the overall structure:

[image: image44]

And now, continue with the detailed steps:

Under pom.xml

Add the following dependencies to the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.acme.samples</groupId>
 <artifactId>console-notification</artifactId>
 <version>1.0.0</version>
 <packaging>pom</packaging>
 <modules>
 <module>lib</module>
 <module>config</module>
 <module>webapp</module>
 </modules>
 <properties>
 <org.exoplatform.depmgt.version>10-SNAPSHOT</org.exoplatform.depmgt.version>
 <org.exoplatform.kernel.version>2.4.9-GA</org.exoplatform.kernel.version>
 <org.exoplatform.core.version>2.5.9-GA</org.exoplatform.core.version>
 <!--GateIn project's dependencies-->
 <org.gatein.portal.version>3.5.10.Final</org.gatein.portal.version>
 <!--Platform project's dependencies-->
 <org.exoplatform.social.version>4.2.x-SNAPSHOT</org.exoplatform.social.version>
 </properties>
 <dependencyManagement>
 <dependencies>
 <!-- Import versions from platform project -->
 <dependency>
 <groupId>org.exoplatform</groupId>
 <artifactId>maven-depmgt-pom</artifactId>
 <version>${org.exoplatform.depmgt.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social</artifactId>
 <version>${org.exoplatform.social.version}</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <!-- To be replaced by an import of GateIn Portal parent POM -->
 <dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.component.portal</artifactId>
 <version>${org.gatein.portal.version}</version>
 </dependency>
 </dependencies>
 </dependencyManagement>
 </project>

Under config folder

	Create a pom.xml file and two configuration.xml files under
config folder as below:

[image: image45]

	Add the following information to config/pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.acme.samples</groupId>
 <artifactId>console-notification</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>console-notification-config</artifactId>
 <packaging>jar</packaging>
 <build>
 <finalName>console-notification-config</finalName>
 </build>
</project>

	Add the below configuration to conf/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <!-- The full qualified name of the PortalContainerConfig -->
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>Add PortalContainer Definitions</name>
 <!-- The name of the method to call on the PortalContainerConfig in order to register the PortalContainerDefinitions -->
 <set-method>registerChangePlugin</set-method>
 <!-- The full qualified name of the PortalContainerDefinitionPlugin -->
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>102</priority>
 <init-params>
 <values-param>
 <name>apply.specific</name>
 <value>portal</value>
 </values-param>
 <object-param>
 <name>addDependencies</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependencies">
 <!-- The name of the portal container -->
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <!--The context name of the portal extension-->
 <string>console-notification-webapp</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Add the following configuration to portal/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
 <configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <target-component>org.exoplatform.social.core.manager.IdentityManager</target-component>
 <component-plugin>
 <name>SocialProfileListener</name>
 <set-method>registerProfileListener</set-method>
 <type>com.acme.samples.notification.SocialProfileListener</type>
 </component-plugin>
 </external-component-plugins>

 <external-component-plugins>
 <target-component>org.exoplatform.commons.api.notification.channel.ChannelManager</target-component>
 <component-plugin profiles="all">
 <name>console.channel</name>
 <set-method>register</set-method>
 <type>com.acme.samples.notification.ConsoleChannel</type>
 <description>Register the console channel to manager.</description>
 </component-plugin>
 </external-component-plugins>

 <external-component-plugins>
 <target-component>org.exoplatform.commons.api.notification.service.setting.PluginContainer</target-component>
 <component-plugin>
 <name>notification.plugins</name>
 <set-method>addPlugin</set-method>
 <type>com.acme.samples.notification.plugin.UpdateProfilePlugin</type>
 <description>Initial information for plugin.</description>
 <init-params>
 <object-param>
 <name>template.UpdateProfilePlugin</name>
 <description>The template of UpdateProfilePlugin</description>
 <object
 type="org.exoplatform.commons.api.notification.plugin.config.PluginConfig">
 <field name="pluginId">
 <string>UpdateProfilePlugin</string>
 </field>
 <field name="resourceBundleKey">
 <string>UINotification.label.UpdateProfilePlugin</string>
 </field>
 <field name="order">
 <string>11</string>
 </field>
 <field name="defaultConfig">
 <collection type="java.util.ArrayList">
 <value>
 <string>Instantly</string>
 </value>
 </collection>
 </field>
 <field name="groupId">
 <string>general</string>
 </field>
 <field name="bundlePath">
 <string>locale.notification.template.Notification</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
 </configuration>

	Register SocialProfileListener as a profile listener plugin to
the IdentityManager component. This plugin listens to user
profile updating events.

	Register new plugin console.channel to the ChannelManager
component. This plugin pushes notifications to console panel.

	Register new plugin UpdateProfilePlugin to the PluginContainer
component. This plugin declares and initializes parameters for the
new notification type. The initial parameters include:

	template.UpdateProfilePlugin - the template of
UpdateProfilePlugin.

	pluginId - the Id of plugin which was defined in the class
UpdateProfilePlugin.

	resourceBundleKey - the key which will be provided in resource
bundle files of each locale.

	order - the order to display the new type in notification group.

	groupId - the Id of group that this notification type belongs to.

	bundlePath - the path to the locale resource.

	defaultConfig - the default settings for this notification type
at first startup.

Under lib folder

	Create another project under lib folder with the pom.xml file
as below:

[image: image46]

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.acme.samples</groupId>
 <artifactId>console-notification</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>console-notification-lib</artifactId>
 <packaging>jar</packaging>
 <dependencies>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-core</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.core</groupId>
 <artifactId>exo.core.component.organization.api</artifactId>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-common</artifactId>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <build>
 <finalName>console-notification-lib</finalName>
 </build>
</project>

	Implement the class UpdateProfilePlugin.java as follows:

package com.acme.samples.notification.plugin;

 import java.util.ArrayList;
 import java.util.HashSet;
 import java.util.Set;

 import org.exoplatform.commons.api.notification.NotificationContext;
 import org.exoplatform.commons.api.notification.model.ArgumentLiteral;
 import org.exoplatform.commons.api.notification.model.NotificationInfo;
 import org.exoplatform.commons.api.notification.plugin.BaseNotificationPlugin;
 import org.exoplatform.commons.utils.CommonsUtils;
 import org.exoplatform.commons.utils.ListAccess;
 import org.exoplatform.container.xml.InitParams;
 import org.exoplatform.services.log.ExoLogger;
 import org.exoplatform.services.log.Log;
 import org.exoplatform.social.core.identity.model.Identity;
 import org.exoplatform.social.core.identity.model.Profile;
 import org.exoplatform.social.core.manager.RelationshipManager;

 public class UpdateProfilePlugin extends BaseNotificationPlugin {
 public final static ArgumentLiteral<Profile> PROFILE = new ArgumentLiteral<Profile>(Profile.class, "profile");
 private static final Log LOG = ExoLogger.getLogger(UpdateProfilePlugin.class);
 public final static String ID = "UpdateProfilePlugin";

 public UpdateProfilePlugin(InitParams initParams) {
 super(initParams);
 }

 @Override
 public String getId() {
 return ID;
 }

 @Override
 public boolean isValid(NotificationContext ctx) {
 return true;
 }

 @Override
 protected NotificationInfo makeNotification(NotificationContext ctx) {
 Profile profile = ctx.value(PROFILE);
 Set<String> receivers = new HashSet<String>();

 RelationshipManager relationshipManager = CommonsUtils.getService(RelationshipManager.class);
 Identity updatedIdentity = profile.getIdentity();
 ListAccess<Identity> listAccess = relationshipManager.getConnections(updatedIdentity);
 try {
 Identity[] relationships = relationshipManager.getConnections(updatedIdentity).load(0, listAccess.getSize());
 for(Identity i : relationships) {
 receivers.add(i.getRemoteId());
 }
 } catch (Exception ex) {
 LOG.error(ex.getMessage(), ex);
 }

 return NotificationInfo.instance()
 .setFrom(updatedIdentity.getRemoteId())
 .to(new ArrayList<String>(receivers))
 .setTitle(updatedIdentity.getProfile().getFullName() + " updated his/her profile.
")
 .key(getId());
 }

 }

This class extends BaseNotificationPlugin that retrieves information
for new notification type of user profile updating event.

The makeNotification() method was overriden to generate essential
information for a notification.

	Implement the class SocialProfileListener.java as below:

package com.acme.samples.notification;

 import org.exoplatform.commons.api.notification.NotificationContext;
 import org.exoplatform.commons.api.notification.model.PluginKey;
 import org.exoplatform.commons.notification.impl.NotificationContextImpl;
 import org.exoplatform.social.core.identity.model.Profile;
 import org.exoplatform.social.core.profile.ProfileLifeCycleEvent;
 import org.exoplatform.social.core.profile.ProfileListenerPlugin;
 import com.acme.samples.notification.plugin.UpdateProfilePlugin;

 public class SocialProfileListener extends ProfileListenerPlugin {

 @Override
 public void avatarUpdated(ProfileLifeCycleEvent event) {
 Profile profile = event.getProfile();
 NotificationContext ctx = NotificationContextImpl.cloneInstance().append(UpdateProfilePlugin.PROFILE, profile);
 ctx.getNotificationExecutor().with(ctx.makeCommand(PluginKey.key(UpdateProfilePlugin.ID))).execute(ctx);
 }

 @Override
 public void experienceSectionUpdated(ProfileLifeCycleEvent event) {
 Profile profile = event.getProfile();
 NotificationContext ctx = NotificationContextImpl.cloneInstance().append(UpdateProfilePlugin.PROFILE, profile);
 ctx.getNotificationExecutor().with(ctx.makeCommand(PluginKey.key(UpdateProfilePlugin.ID))).execute(ctx);
 }

 @Override
 public void contactSectionUpdated(ProfileLifeCycleEvent event) {
 Profile profile = event.getProfile();
 NotificationContext ctx = NotificationContextImpl.cloneInstance().append(UpdateProfilePlugin.PROFILE, profile);
 ctx.getNotificationExecutor().with(ctx.makeCommand(PluginKey.key(UpdateProfilePlugin.ID))).execute(ctx);
 }

 @Override
 public void createProfile(ProfileLifeCycleEvent event) {
 Profile profile = event.getProfile();
 NotificationContext ctx = NotificationContextImpl.cloneInstance().append(UpdateProfilePlugin.PROFILE, profile);
 ctx.getNotificationExecutor().with(ctx.makeCommand(PluginKey.key(UpdateProfilePlugin.ID))).execute(ctx);
 }

 }

This class extends ProfileListenerPlugin to trigger user profile
updating events and plug them into UpdateProfilePlugin as
notifications. The instance of UpdateProfilePlugin will be used to
generate and send messages to all notification channels.

	avatarUpdated() - trigger avatar updating event.

	experienceSectionUpdated() - trigger user experience updating
event.

	contactSectionUpdated() - trigger user contact updating event.

	createProfile() - trigger user profile creating event.

	Implement the class ConsoleChannel.java to have the following code:

package com.acme.samples.notification;

 import java.io.Writer;
 import org.exoplatform.commons.api.notification.NotificationContext;
 import org.exoplatform.commons.api.notification.channel.AbstractChannel;
 import org.exoplatform.commons.api.notification.channel.template.AbstractTemplateBuilder;
 import org.exoplatform.commons.api.notification.channel.template.TemplateProvider;
 import org.exoplatform.commons.api.notification.model.ChannelKey;
 import org.exoplatform.commons.api.notification.model.MessageInfo;
 import org.exoplatform.commons.api.notification.model.NotificationInfo;
 import org.exoplatform.commons.api.notification.model.PluginKey;
 import org.exoplatform.commons.notification.lifecycle.SimpleLifecycle;
 import org.exoplatform.services.log.ExoLogger;
 import org.exoplatform.services.log.Log;

 public class ConsoleChannel extends AbstractChannel {

 private static final Log LOG = ExoLogger.getLogger(ConsoleChannel.class);
 private final static String ID = "CONSOLE_CHANNEL";
 private final ChannelKey key = ChannelKey.key(ID);

 public ConsoleChannel() {
 super(new SimpleLifecycle());
 }

 @Override
 public String getId() {
 return ID;
 }

 @Override
 public ChannelKey getKey() {
 return key;
 }

 @Override
 public void dispatch(NotificationContext ctx, String userId) {
 LOG.info(String.format("CONSOLE:: %s will receive the message from pluginId: %s",
 userId,
 ctx.getNotificationInfo().getKey().getId()));
 }

 @Override
 public void registerTemplateProvider(TemplateProvider provider) {}

 @Override
 protected AbstractTemplateBuilder getTemplateBuilderInChannel(PluginKey key) {
 return new AbstractTemplateBuilder() {
 @Override
 protected MessageInfo makeMessage(NotificationContext ctx) {
 return null;
 }
 @Override
 protected boolean makeDigest(NotificationContext ctx, Writer writer) {
 return false;
 }
 };
 }
 }

This concrete class extends AbstractChannel to define a new
notification channel which sends messages to console panel. Any new
channel must implement this interface and use an
external-component-plugin configuration to be registered in the
ChannelManager.

The dispatch() method was overriden to write notification contents
to console panel.

Under webapp folder

	Create a new Maven project inside webapp folder with the
following pom.xml file:

[image: image47]

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.acme.samples</groupId>
 <artifactId>console-notification</artifactId>
 <version>1.0.0</version>
 </parent>
 <artifactId>console-notification-webapp</artifactId>
 <packaging>war</packaging>
 <build>
 <finalName>console-notification-webapp</finalName>
 </build>
</project>

	Add the following configurations to WEB-INF/web.xml:

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
metadata-complete="true"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <display-name>console-notification-webapp</display-name>
 <filter>
 <filter-name>ResourceRequestFilter</filter-name>
 <filter-class>org.exoplatform.portal.application.ResourceRequestFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>ResourceRequestFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
</web-app>

	display-name - should be the same as the context name of the
portal extension.

	Open Notification_en.properties file to add this text:

###
UpdateProfilePlugin
###
For UI
UINotification.title.UpdateProfilePlugin= Someone updates profile
UINotification.label.UpdateProfilePlugin= Someone updates profile

This is a resource bundle for English language. The value of
UINotification.title.UpdateProfilePlugin and
UINotification.label.UpdateProfilePlugin will be used to display as
English name of the new notification type through user interface.

Testing

	Go up to the parent project’s folder and build it with the command:
mvn clean install.

	Copy the generated jar and war files into the corresponding
deployment folders where you unpacked the eXo Platform installation.

	Start eXo Platform and you will see your new functions appear in
Notification Settings:

[image: image48]

	Log in as a user and update avatar or experience (remember to enable
notification plugins first by an administrator).

Now, a message informing about this activity will be pushed to all
notification channels, for instance:

	directly on-site:

[image: image49]

	or on the console, there will be a message for each user who is
connecting with the above user, such as:

James will receive the message from pluginId: UpdateProfilePlugin

Overriding email notification

In eXo Platform, all email notification templates are defined in the
social-notification-extension.war package under
WEB-INF/notification/templates/. Each of these templates corresponds
to a specific notification type. It is obvious that you can change all
of them as your desire.

To do this, there are 2 ways as follows:

	Modifying the template layout, such as header, body or footer.

	Adding or removing notification properties.

This tutorial selects to customize the ActivityMentionPlugin.gtmpl
file, which is the template for Mention Notification
by email. Note that you can download all the source code used in this
section
here [https://github.com/exo-samples/docs-samples/tree/master/overriding-email-notification].

First you need to create a new Maven project with the overall structure:

[image: image50]

And now, continue with the detailed steps:

Under pom.xml

Add the following dependencies to the pom.xml file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.exoplatform</groupId>
 <version>1.0.0</version>
 <artifactId>email-notification-extension</artifactId>
 <name>Email Notification Extension</name>
 <packaging>pom</packaging>
 <description>Email Notification Extension</description>
 <dependencyManagement>
 <dependencies>
 <!-- Import versions from platform project -->
 <dependency>
 <groupId>org.exoplatform.platform</groupId>
 <artifactId>platform</artifactId>
 <version>4.2.x-SNAPSHOT</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <modules>
 <module>config</module>
 <module>webapp</module>
 </modules>
</project>

Under config folder

	Create a pom.xml and a configuration.xml file as below:

[image: image51]

	Add the following information to config/pom.xml:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <parent>
 <groupId>org.exoplatform</groupId>
 <artifactId>email-notification-extension</artifactId>
 <version>1.0.0</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>email-notification-extension-config</artifactId>
 <name>Email Notification Extension Configuration</name>
 <packaging>jar</packaging>
 <description>Email Notification Extension Configuration</description>
</project>

	Add the below configuration to conf/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <!-- The full qualified name of the PortalContainerConfig -->
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>Change PortalContainer Definitions</name>
 <!-- The name of the method to call on the PortalContainerConfig in order to register the changes on the PortalContainerDefinitions -->
 <set-method>registerChangePlugin</set-method>
 <!-- The full qualified name of the PortalContainerDefinitionChangePlugin -->
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>102</priority>
 <init-params>
 <value-param>
 <name>apply.default</name>
 <value>true</value>
 </value-param>
 <object-param>
 <name>change</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependenciesAfter">
 <!-- The list of name of the dependencies to add -->
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>email-notification-webapp</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Under webapp folder

In the below steps, you will modify layout, add and remove several
properties of this ActivityMentionPlugin template. Note that when
you add a new property to a notification template, it is required that
you declare it in all Notification_xx.properties files (xx is the
language code, fr for French, for instance). In this tutorial, assume
that there are only 2 languages available which are English (en) and
French (fr).

	Create a new Maven project inside webapp folder as follows:

[image: image52]

In which, the Notification_en.properties,
Notification_fr.properties and ActivityMentionPlugin.gtmpl
files are copied from $PLATFORM_HOME/webapps/social-notification-extension.war!/WEB-INF/classes/locale/notification/template
and $PLATFORM_HOME/webapps/social-notification-extension.war!/WEB-INF/notification/templates
respectively.

	Configure the pom.xml file as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <parent>
 <groupId>org.exoplatform</groupId>
 <artifactId>email-notification-extension</artifactId>
 <version>1.0.0</version>
 </parent>
 <modelVersion>4.0.0</modelVersion>
 <artifactId>email-notification-webapp</artifactId>
 <packaging>war</packaging>
 <name>Email Notification Extension Webapp</name>
 <description>Email Notification Extension Webapp</description>
 <build>
 <finalName>email-notification-webapp</finalName>
 </build>
</project>

	Add the following configurations to WEB-INF/web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>email-notification-webapp</display-name>
 <!-- Resource filter to cache merged javascript and css -->
 <filter>
 <filter-name>ResourceRequestFilter</filter-name>
 <filter-class>org.exoplatform.portal.application.ResourceRequestFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>ResourceRequestFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <!-- Listener -->
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>
</web-app>

	display-name - should be the same as the context name of the
portal extension.

	Modify the ActivityMentionPlugin.gtmpl file as below:

<table border="0" cellpadding="0" cellspacing="0" width="500" bgcolor="#ffffff" align="center" style="background-color: #ffffff; font-size: 13px;color:#333333;line-height: 18px;font-family: HelveticaNeue, Helvetica, Arial, sans-serif;">
 <tr><!--start header area-->
 <td align="center" valign="middle" bgcolor="#ffffff" style="background-color: #ffffff;">
 <table cellpadding="0" cellspacing="0" width="100%" bgcolor="#ffffff" align="center" style="border:1px solid #d8d8d8;">
 <tr>
 <!-- insert company logo and link-->
 <td style="width: 20%;margin:0;height:45px;vertical-align:middle;background-color:#efefef;text-align:center">

 </td>
 <!--pass a link through a property-->
 <td style="margin:0;height:45px;vertical-align:middle;background-color:#efefef;font-family:'HelveticaNeue Bold',Helvetica,Arial,sans-serif;color:grey;font-size:14px;text-align:left" height="45" valign="middle">
 <%=_ctx.appRes("Notification.label.header", FOOTER_LINK)%>
 </td>
 </tr>
 </table>
 </td>
 </tr><!--end header area-->
 <tr><!--start content area-->
 <td bgcolor="#ffffff" style="background-color: #ffffff;">
 <table cellpadding="0" cellspacing="0" width="100%" bgcolor="#ffffff" style="background-color: #ffffff; border-left:1px solid #d8d8d8;border-right:1px solid #d8d8d8;">
 <tr>
 <td>
 <table border="0" cellpadding="0" cellspacing="0" width="92%" bgcolor="#ffffff" align="center" style="background-color: #ffffff; color:#333333;line-height:20px;">
 <tr>
 <td align="left" bgcolor="#ffffff" style="background-color: #ffffff; padding: 10px 0;">
 <p style="margin:20, 20;font-weight:bold;vertical-align:middle; font-family: 'HelveticaNeue Bold', Helvetica, Arial, sans-serif;color:#2f5e92;font-size:18px;">
 <!--new property-->
 <%=_ctx.appRes("Notification.label.Type")%> <%=_ctx.appRes("Notification.title.ActivityMentionPlugin")%>
 </p>
 <table border="0" cellpadding="0" cellspacing="0" >
 <tr>
 <td valign="top" style="margin-top: 0px;">
 <p style="margin: 0 0 10px 0; line-height: 22px; color: #333333; font-size:13px; font-family:'HelveticaNeue bold',verdana,arial,tahoma">
 <%
 String profileUrl = "" + USER + "";
 %>
 <%=_ctx.appRes("Notification.message.ActivityMentionPlugin", profileUrl)%>:
 </p>
 <!--main content of the mentioned activity-->
 <table border="0" cellpadding="0" cellspacing="0" width="460" bgcolor="#ffffff" align="center" style="background-color: #ffffff; font-size: 12px;color:#333333;line-height: 18px; margin-bottom: 15px;">
 <tbody>
 <tr>
 <td align="left" bgcolor="#ffffff" style="background-color: #f9f9f9; padding: 5px 0;">
 $ACTIVITY
 </td>
 </tr>
 </tbody>
 </table>
 </td>
 </tr>
 </table>
 <!--insert Reply button-->
 <p style="margin: 0 0 20px;text-align:center">
 <a target="_blank" style="
 display: inline-block;
 text-decoration: none;
 font-size: 11px;
 font-family: 'HelveticaNeue Bold', Helvetica, Arial, sans-serif;
 color: #ffffff;
 text-shadow: 0 -1px 0 rgba(23, 33, 37, .25);
 background-color: #567ab6;
 background-image: -moz-linear-gradient(top, #638acd, #426393);
 background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#638acd), to(#426393));
 background-image: -webkit-linear-gradient(top, #638acd, #426393);
 background-image: -o-linear-gradient(top, #638acd, #426393);
 background-image: linear-gradient(to bottom, #638acd, #426393);
 background-repeat: repeat-x;
 border-radius: 4px;
 -moz-border-radius: 4px;
 padding: 4px 8px;
 height: 11px;
 line-height: 11px;
 max-height: 11px;
 text-align: center;
 border: 1px solid #224886;
 font-weight: bold;
 -webkit-box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 -moz-box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 vertical-align: middle;
 " href="$REPLY_ACTION_URL"><%=_ctx.appRes("Notification.label.Reply")%>
 <!--insert View full discussion button-->
 <a target="_blank" style="
 display: inline-block;
 text-decoration: none;
 font-size: 11px;
 font-family: HelveticaNeue, Helvetica, Arial, sans-serif,serif;
 color: #333333;
 background-color: #f1f1f1;
 background-image: -moz-linear-gradient(top, #ffffff, #f1f1f1);
 background-image: -webkit-gradient(linear, 0 0, 0 100%, from(#ffffff), to(#f1f1f1));
 background-image: -webkit-linear-gradient(top, #ffffff, #f1f1f1);
 background-image: -o-linear-gradient(top, #ffffff, #f1f1f1);
 background-image: linear-gradient(to bottom, #ffffff, #f1f1f1);
 background-repeat: repeat-x;
 border-radius: 4px;
 -moz-border-radius: 4px;
 padding: 4px 8px;
 height: 11px;
 line-height: 12px;
 max-height: 11px;
 text-align: center;
 border: 1px solid #c7c7c7;
 -webkit-box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 -moz-box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 box-shadow: inset 0 1px 0 rgba(255,255,255,.2), 0 1px 2px rgba(0,0,0,.05);
 vertical-align: middle;
 margin-left: 3px;
 " href="$VIEW_FULL_DISCUSSION_ACTION_URL" target="_blank"><%=_ctx.appRes("Notification.label.ViewFullDiscussion")%>
 </p>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr><!--end content area-->
</table>

You can replace with your company logo and link here.

A message at header. This property will be declared in the
Notification_xx.properties files later.

A new label before the title of the mentioned activity, which will be
declared in the Notification_xx.properties files later.

A message corresponding to the mentioned activity.

The detailed content of the mentioned activity.

A Reply button, helping user to quickly make answer on the mentioned
activity stream.

A View full discussion button, helping user to jump directly to the
mentioned activity stream.

In this script, we have added 2 new properties
(Notification.label.header and Notification.label.Type) and
remove several ones (for example, Notification.label.footer) in
comparison with the old script in the
social-notification-extension.war package. The next steps will
declare the new ones in two property files.

	Declare Notification.label.header and Notification.label.Type
as 2 new properties as follows:

	In Notification_en.properties:

Notification.label.Type=Notification type:
Notification.label.header=You has been successfully subscribed to our newsletter.
To unsubscribe, click here.

	In Notification_fr.properties:

Notification.label.Type=Type de notification:
Notification.label.header=Vous avez \u00E9t\u00E9 abonn\u00E9 \u00E0 notre bulletin avec succès.
 Pour d\u00E9sinscription cliquez ici.

Testing

	Go up to the parent project’s folder and build it with the command:
mvn clean install.

	Copy the generated jar and war files into the corresponding deployment
folders where you unpacked the eXo Platform installation.

	Follow this guide to configure email
service for eXo Platform.

	Start eXo Platform and create 2 new users: john and marry, with
real emails. Notice that you need to turn on the email notification,
not only on john and marry sides but also on the administrator
side as stated here.

	Log in as marry user and post an activity that mentions john, for
example.

Now, log in john’s email account, you will see a new notification
email with layout as follows:

	if john user is in English language:

[image: image53]

	if john user is in French language:

[image: image54]

By comparing with the below old template, you will see changes between
them:

[image: image55]

Overriding user profile design

eXo Platform provides you with an extensible user profile design. With this
extensibility, you can override portlets on the user profile page with
your own templates.

To do this, there are 2 ways as follows:

	Overriding existing html content by changing or adding more html
elements, such as div tags.

	Overriding existing groovy script by changing or adding more
operations, such as for loops or if conditions.

This guide will walk you through both by overriding Profile Portlet,
Experience Profile Portlet, Connections User Portlet and Recent
Activities Portlet on the user profile page. You can download the source
code used in this guide
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/user-profile-design].

Overriding user profile

	Create a webapp user-profile-extension.war as follows:

[image: image56]

	The user folder contains your new profile portlet templates.

	Add these configurations to web.xml:

<?xml version="1.0" encoding="ISO-8859-1" ?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
"http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>
 <display-name>user-profile-extension</display-name>
 <!-- Resource filter to cache merged javascript and css -->
 <filter>
 <filter-name>ResourceRequestFilter</filter-name>
 <filter-class>org.exoplatform.portal.application.ResourceRequestFilter</filter-class>
 </filter>
 <filter-mapping>
 <filter-name>ResourceRequestFilter</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>
 <!-- Listener -->
 <listener>
 <listener-class>org.exoplatform.container.web.PortalContainerConfigOwner</listener-class>
 </listener>
</web-app>

	Override UIBasicProfilePortlet.gtmpl with the following code:

 <%
 import org.exoplatform.social.user.portlet.UserProfileHelper;
 import org.exoplatform.social.webui.Utils;

 //Retrieve the basic information of the user
 def profile = uicomponent.getProfileInfo();
 def keys = profile.keySet();
 %>

 <!-- showing and hiding control buttons -->
 <button onclick="showFullContact()" id="btn_show_contact">Show full contact information</button>
 <button onclick="hideFullContact()" id="btn_hide_contact" style="display: none">Hide full contact information</button>

 <!-- javascript to show and hide full contact information -->
 <script type="text/javascript">
 function showFullContact(){
 document.getElementById("$uicomponent.id").style.display = "block";
 document.getElementById("btn_show_contact").style.display = "none";
 document.getElementById("btn_hide_contact").style.display = "block";
 }
 function hideFullContact(){
 document.getElementById("$uicomponent.id").style.display = "none";
 document.getElementById("btn_show_contact").style.display = "block";
 document.getElementById("btn_hide_contact").style.display = "none";
 }
 </script>

 <div class="uiSocApplication uiBasicProfilePortlet" id="$uicomponent.id" style="display: none">
 <h4 class="head-container"><%=_ctx.appRes("UIBasicProfile.label.ContactInformation")%></h4>
 <div class="uiBasicInfoSection">

 <%
 //Loop through to print out all information
 for(key in keys) {
 def values = profile.get(key);
 String clzz = key.substring(0, 1).toUpperCase() + key.substring(1);
 System.out.println(key);

 //If the user is not the owner, do not print out email
 if (!Utils.isOwner() && key.toString().equals("email")) continue;
 %>
 <div class="group-user-info">
 <div class="label-user-info"><%=_ctx.appRes("UIBasicProfile.label." + key)%>:</div>
 <div class="value-user-info">
 <%
 if(UserProfileHelper.isString(values)) {
 %>
 <div class="ui<%=clzz%> ellipsis" rel="tooltip" data-placement="top" title="" data-original-title="<%=values%>"><%=values%></div>
 <%} else {
 for(subKey in values.keySet()) {
 def isIms = UserProfileHelper.isIMs(key);
 def typeIconClzz = "";
 if (isIms) {
 typeIconClzz = UserProfileHelper.getIconCss(subKey);
 }

 def listVal = values.get(subKey);
 int valueNum = 0;
 if (UserProfileHelper.isURL(key)) {
 for (url in listVal) { %>
 <div class="ui<%=clzz%> ellipsis"><a href="<%=UserProfileHelper.toAbsoluteURL(url)%>" target="_blank"
 rel="tooltip" data-placement="top" title="" data-original-title="<%=url%>"><%=url%></div>
 <%}
 } else {
 if (typeIconClzz.length() > 0) {
 typeIconClzz = typeIconClzz + " uiIconSocLightGray";
 }
 for (val in listVal) {
 %>
 <div class="listContent">
 <%
 if (valueNum == 0) {
 %>
 <%if(isIms) {%>
 <div><i class="<%=typeIconClzz%>"></i> <%=_ctx.appRes("UIBasicProfile.label." + subKey)%>: </div>
 <%} else { %>
 <div><%=_ctx.appRes("UIBasicProfile.label." + subKey)%>: </div>
 <%}%>
 <%} else { %>
 <div></div>
 <%}
 valueNum++;
 %>
 <div class="ellipsis" rel="tooltip" data-placement="top" title="" data-original-title="<%=val%>"><%=val%></div>
 </div>
 <%
 }
 }
 }
 }
 %>
 </div>
 </div>
 <%}%>
 <div class="line-bottom"></div>
 </div>
 </div>

This template overrides the Profile Portlet by adding:

- ``btn_show_contact``: a button to show the portlet's content.

- ``btn_hide_contact``: a button to hide the portlet's content.

- ``showFullContact()``: a Javascript function to handle when user
 clicks on the ``btn_show_contact`` button.

- ``hideFullContact()``: a Javascript function to handle when user
 clicks on the ``btn_hide_contact`` button.

- the code:

 ::

 if (!Utils.isOwner() && key.toString().equals("email")) continue;

to check if the viewer is not the profile page owner, then the email
information will not be displayed.

	Override UIMiniConnectionsPortlet.gtmpl as follows:

 <%
 import org.exoplatform.social.core.service.LinkProvider;
 import org.exoplatform.portal.webui.util.Util;
 import org.exoplatform.social.webui.Utils;
 import org.exoplatform.social.user.portlet.UserProfileHelper;

 //Load current connections of the user
 List profiles = uicomponent.loadPeoples();
 int size = uicomponent.getAllSize();
 uicomponent.initProfilePopup();
 %>

 <!-- showing and hiding control buttons -->
 <button onclick="showConnection()" id="btn_show_connection">Show connections</button>
 <button onclick="hideConnection()" id="btn_hide_connection" style="display: none">Hide connections</button>

 <!-- javascript to show and hide user's connections -->
 <script type="text/javascript">
 function showConnection(){
 document.getElementById("$uicomponent.id").style.display = "block";
 document.getElementById("btn_show_connection").style.display = "none";
 document.getElementById("btn_hide_connection").style.display = "block";
 }
 function hideConnection(){
 document.getElementById("$uicomponent.id").style.display = "none";
 document.getElementById("btn_show_connection").style.display = "block";
 document.getElementById("btn_hide_connection").style.display = "none";
 }
 </script>

 <div class="uiSocApplication uiMiniConnectionsPortlet" id="$uicomponent.id" style="display: none">
 <h4 class="head-container"><%=_ctx.appRes("UIBasicProfile.label.Connections")%></h4>
 <% if(size > 0) { %>

 <!-- if having connections, loop through to print out -->
 <div class="borderContainer" id="borderMiniConnectionsPortlet">
 <% for(profile in profiles) { %>
 <a href="<%=profile.getProfileURL()%>" class="avatarXSmall">
 <img alt="<%=profile.getDisplayName()%>" src="<%=profile.getAvatarURL()%>">

 <% } %>

 <!-- Provide View all connections feature -->
 <div class="viewAllConnection"><a href="<%=LinkProvider.getBaseUri(null, null)%>/connections/network/<%=uicomponent.getCurrentRemoteId()%>"><%=_ctx.appRes("UIBasicProfile.label.ViewAll")%> (<%=size%>)</div>
 </div>
 <% } else {

 //if no connection and the user is the owner, provide Find new connection feature
 //if the user is not the owner, just print out the message
 String keyNoConnection = Utils.isOwner() ? "YouHaveNotConnections" : "UserHaveNotConnections";
 String noConnectionCSS = Utils.isOwner() ? "noConnection" : "";
 %>
 <div class="borderContainer $noConnectionCSS center">
 <%=_ctx.appRes("UIBasicProfile.info." + keyNoConnection)%>
 <%if (Utils.isOwner()) { %>
 <div class="findConnection"><a href="<%=LinkProvider.getBaseUri(null, null)%>/connections/all-people/"><%=_ctx.appRes("UIBasicProfile.label.FindConnections")%></div>
 <%} %>
 </div>
 <% } %>
 </div>

This template overrides the Connections User Portlet by adding:

- ``btn_show_connection``: a button to show the portlet's content.

- ``btn_hide_connection``: a button to hide the portlet's content.

- ``showConnection()``: a Javascript function to handle when user
 clicks on the ``btn_show_connection`` button.

- ``hideConnection()``: a Javascript function to handle when user
 clicks on the ``btn_hide_connection`` button.

	Override UIExperienceProfilePortlet.gtmpl with:

 <%
 import org.exoplatform.social.core.service.LinkProvider;

 //Retrieve the user's information and check whether the user is the owner or not
 String aboutMe = uicomponent.getAboutMe();
 boolean isOwner = uicomponent.isOwner();
 List experienceData = uicomponent.getExperience();
 def uiSocApplicationClzz = !isOwner && (experienceData.size() == 0) ? "" : "uiSocApplication";
 %>
 <div class="<%=uiSocApplicationClzz%> uiExperienceProfilePortlet" id="$uicomponent.id">
 <%
 //if the About me information of the user is not empty, print out
 if(aboutMe.length() > 0) { %>
 <h4 class="head-container"><%=_ctx.appRes("UIBasicProfile.label.AboutMe")%></h4>

 <!-- Add more description here -->
 <p>Quick description of the user</p>
 <div class="simpleBox aboutMe"><%=aboutMe%></div>

 <!-- if empty and the user is the owner, print out a message and provide Edit profile feature -->
 <% } else if(isOwner) { %>
 <div class="no-content center">
 <div><%=_ctx.appRes("UIBasicProfile.info.HaveNotAbout")%></div>
 <button class="btn btn-primary" onclick="window.location.href=window.location.origin + '<%=LinkProvider.getBaseUri(null, null)%>/edit-profile/'">
 <i class="uiIconEdit uiIconLightGray"></i> <%=_ctx.appRes("UIBasicProfile.action.EditProfile")%></button>
 </div>
 <% }

 //if having experience information, loop through to print out
 if(experienceData.size() > 0) {
 print("<h4 class=\"head-container\">" + _ctx.appRes("UIBasicProfile.label.Experience") + "</h4>");
 print("<div class=\"simpleBox\"> ");
 for(experience in experienceData) {
 print("<div class=\"experience-container\"> ");
 String utilNow = experience.get(uicomponent.EXPERIENCES_IS_CURRENT);
 for(key in experience.keySet()) {
 if(uicomponent.EXPERIENCES_IS_CURRENT.equals(key)) {
 continue;
 }
 String label = _ctx.appRes("UIBasicProfile.label." + key);
 %>
 <div class="<%=key%> clearfix"><div class="labelName pull-left"><%=label%>:</div>
 <div rel="tooltip" data-placement="top" title="" data-original-title="<%=experience.get(key)%>"
 class="pull-left ellipsis"><%=experience.get(key)%>
 <%=(utilNow != null && "startDate".equals(key)) ? (" "+_ctx.appRes("UIBasicProfile.label.untilNow")) : "" %></div>
 </div>
 <%
 }
 print("</div>");
 }
 print("</div>");
 }
 %>
 </div>

- This template overrides the Experience Profile Portlet with more
 description in the code:

 ::

 <p>Quick description of the user</p>

	Override UIRecentActivitiesPortlet.gtmpl as follows:

 <%
 import org.exoplatform.social.webui.Utils;
 import org.exoplatform.portal.webui.util.Util;
 import org.exoplatform.social.core.service.LinkProvider;
 import org.exoplatform.social.user.portlet.UserProfileHelper;
 import org.exoplatform.social.user.portlet.RecentActivitiesHelper;

 //Retrieve the most recent activities of the user
 List activities = uicomponent.getRecentActivities();
 %>
 <div class="uiSocApplication uiRecentActivitiesPortlet" id="$uicomponent.id">
 <h4 class="head-container"><%=_ctx.appRes("UIBasicProfile.label.RecentActivities")%></h4>

 <!-- Additional description -->
 <p>The most recent activities of the user</p>

 <!-- Main content of the recent activities -->
 <div class="activityCont">
 <%

 //no activity
 if(activities.size() == 0) {
 String keyNoActivities = Utils.isOwner() ? "YouHaveNotActivities" : "UserHaveNotActivities";
 %>
 <div class="simpleBox noActivity center"><%=_ctx.appRes("UIBasicProfile.info." + keyNoActivities)%></div>
 <%

 //if having activities, loop through to print out
 } else {
 String activityURL = LinkProvider.getBaseUri(null, null) + "/activity?id=";
 for (activity in activities) {
 def profile = RecentActivitiesHelper.getOwnerActivityProfile(activity);
 String avatarURL = profile.getAvatarUrl();
 String profileURL = profile.getUrl();
 String displayName = profile.getFullName();
 String activityTypeIcon = RecentActivitiesHelper.getActivityTypeIcon(activity);
 String link = RecentActivitiesHelper.getLink(activity);
 String linkTitle = RecentActivitiesHelper.getLinkTitle(activity);
 %>

 <!-- Build an activity stream for each activity-->
 <div class="activityStream uiDefaultActivity clearfix" id="Activity<%=activity.id%>">
 <div class="activityTimeLine pull-left">
 <div class="activityAvatar avatarCircle">
 <a href="<%=profileURL%>">
 <img alt="<%=displayName%>" src="
 <%=((avatarURL == null || avatarURL.length() == 0) ? LinkProvider.PROFILE_DEFAULT_AVATAR_URL : avatarURL)%>">

 </div>
 <% if (activityTypeIcon != null && activityTypeIcon.length() > 0) { %>
 <div class="activityType"><i class="<%=activityTypeIcon%> uiIconSocWhite"></i></div>
 <% } %>
 </div>
 <!--end activityTimeLine-->

 <div class="boxContainer" id="boxContainer" onclick="window.open('<%=(activityURL + activity.id)%>', '_self')">
 <div id="Content<%=activity.id%>" class="content">
 <%if (link != null) {
 if (linkTitle != null) {
 %>
 <div class="status"><%=linkTitle%></div>
 <div class="link"><a href="javascript:void(0);" onclick="(function(evt){ evt.stopPropagation(); window.open('<%=link%>', '_blank');})(event)"><%=activity.getTitle()%></div>
 <%
 } else {
 %>
 <div><a href="javascript:void(0);" onclick="(function(evt){ evt.stopPropagation(); window.open('<%=link%>', '_self');})(event)">
 <%=activity.getTitle()%></div>
 <% }
 } else {%>
 <div class="status"><%=activity.getTitle()%></div>
 <%} %>
 </div>
 </div>
 <!-- end boxContainer-->
 </div>
 <!-- end activityStream -->
 <%
 }

 //Provide view all activities feature
 String activityStreamURL = LinkProvider.getUserActivityUri(Utils.getOwnerIdentity(false).getRemoteId());
 print("<div style=\"display: block;\" class=\"boxLoadMore\">"+
 "<button class=\"btn\" style=\"width:100%;\" onclick=\"window.location.href='" + activityStreamURL + "'\">" +
 _ctx.appRes("UIBasicProfile.action.ViewAll") +
 "</button></div>");
 uicomponent.initProfilePopup();
 }
 %>
 </div>
 <%
 if (uicomponent.hasActivityBottomIcon && activities.size() != 0) {
 %>
 <div class="activityBottom" style="display: block;"></div>
 <%
 }
 %>
 </div>

- This template overrides the Recent Activities Portlet with more
 description in the code:

 ::

 <p>The most recent activities of the user</p>

	Create a jar file to register this user-profile-extension.war to
portal container as in Portal extension.
Then, edit the configuration.xml file as follows:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <!-- The full qualified name of the PortalContainerConfig -->
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>Change PortalContainer Definitions</name>
 <!-- The name of the method to call on the PortalContainerConfig in order to register the changes on the PortalContainerDefinitions -->
 <set-method>registerChangePlugin</set-method>
 <!-- The full qualified name of the PortalContainerDefinitionChangePlugin -->
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>102</priority>
 <init-params>
 <value-param>
 <name>apply.default</name>
 <value>true</value>
 </value-param>
 <object-param>
 <name>change</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependenciesAfter">
 <!-- The list of name of the dependencies to add -->
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <!--The context name of the portal extension-->
 <string>user-profile-extension</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Copy these jar and war files into the corresponding deployment
folders where you unpacked the eXo Platform installation.

Testing what you have customized

Start eXo Platform and you will see your new profile appear as follows:

[image: image57]

Clicking on Show full contact information or Show connections button
will expand the corresponding information panel. Note that if you are
not this user, the email will not be displayed:

[image: image58]

Wiki macro

eXo Platform uses XWiki as a Wiki engine, so you can develop and use macros
in eXo Wiki completely following the XWiki approach.

If you have never tried using a macro before, you can quickly try eXo
video-wiki-macro [https://github.com/exo-addons/video-wiki-macro].
Follow the project’s README and it will help you build, deploy and use
the macro.

As said, the macro completely follows XWiki approach, so you can refer
to their
documentation [http://rendering.xwiki.org/xwiki/bin/view/Main/ExtendingMacro]
for a start. In this tutorial, you write a new macro called “mailto”.
When a user inserts the macro, he inputs a username from that your macro
that retrieves an email contact and adds it inline. The source code can
be found
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/exo-xwiki-macro-samples].

	The project structure

Create a Maven project with the structure like this:

[image: image59]

Alternatively, you can generate a project and modify it using the
XWiki’s macro-archetype
5.4.2 [http://mvnrepository.com/artifact/org.xwiki.rendering/xwiki-rendering-archetype-macro/5.4.2].

	The dependencies

In pom.xml, you need dependencies of XWiki (version 5.4.2 for strong
compatibility) and eXo Social:

<dependency>
 <groupId>org.xwiki.rendering</groupId>
 <artifactId>xwiki-rendering-syntax-xwiki21</artifactId>
</dependency>
<dependency>
 <groupId>org.xwiki.rendering</groupId>
 <artifactId>xwiki-rendering-syntax-xhtml</artifactId>
</dependency>
<dependency>
 <groupId>org.xwiki.rendering</groupId>
 <artifactId>xwiki-rendering-transformation-macro</artifactId>
</dependency>
<dependency>
 <groupId>org.exoplatform.social</groupId>
 <artifactId>social-component-core</artifactId>
</dependency>

	The MailtoMacro class

The macro class should extend
org.xwiki.rendering.macro.AbstractMacro and implement the
execute method. It must declare a parameter type so that XWiki takes
care the interface with users to get a username and passes it to your
method.

@Component("mailto")
public class MailtoMacro extends AbstractMacro<MailtoMacroParams> {

 public MailtoMacro() {
 super("mailto", "Add an email contact inline.", MailtoMacroParams.class);
 }

 public boolean supportsInlineMode() {
 return true;
 }

 public List<Block> execute(MailtoMacroParams parameters,
 String content,
 MacroTransformationContext context) throws MacroExecutionException {
 IdentityManager identityManager = (IdentityManager) PortalContainer.getInstance().getComponentInstanceOfType(IdentityManager.class);
 try {
 // Get user info.
 Identity identity = identityManager.getOrCreateIdentity(OrganizationIdentityProvider.NAME, parameters.getUsername(), false);
 Profile profile = identity.getProfile();
 String displayName = profile.getFullName(); //to be displayed.
 String email = profile.getEmail(); //to be linked.

 // Build the blocks.
 RawBlock rawblock = new RawBlock(displayName, Syntax.XHTML_1_0);
 LinkBlock linkblock = new LinkBlock(Arrays.<Block>asList(rawblock), new ResourceReference(email, ResourceType.MAILTO), true);
 return Arrays.<Block>asList(linkblock);
 } catch (Exception e) {

 // In case the parameter is not a valid user id.
 RawBlock rawblock = new RawBlock(parameters.getUsername()+"(?)", Syntax.XHTML_1_0);
 return Arrays.<Block>asList(rawblock);
 }
 }
}

You provide the macro name, a description (users will see it) by the
annotation and the constructor. You can also categorize your macro, see
a code sample in the video-macro’s source code.

	The MailtoMacroParams class

You need only one parameter - username that is mandatory. In the
execute method, you use it to get a user profile (if it is invalid, the
macro simply shows its raw value with a question (?) sign).

Pay attention to the annotations:

public class MailtoMacroParams {

 /**
 * The MailtoMacro expects a user name. If the user name is not valid, it appends a question sign to the user name.
 */

 private String username;

 public String getUsername() {
 return username;
 }

 @PropertyDescription("Somebody's ID. His email will be added inline.")
 @PropertyMandatory
 public void setUsername(String username) {
 this.username = username;
 }
}

	The components file

Finally, you declare the macro’s class name in
src/main/resources/META-INF/components.txt, just with one line:

org.exoplatform.samples.xwiki.macro.MailtoMacro

Here is the picture of a Wiki page that uses the macros:

[image: image60]

ExtensibleFilter mechanism

eXo Platform provides you with the ExtensibleFilter mechanism that allows you
to insert more filters from your own extension without touching the
web.xml file.

In this section, you will be introduced how to create a filter that
requires users to change password at the first login and when it is
expired. The source code used in this tutorial is available
here [https://github.com/exo-addons/change-password] so that you can
clone.

Our general project will be structured as below:

[image: image61]

In which, the sub-projects include:

	config: creates a jar file that declares the extension (war) as a
portal dependency.

	services: creates services that check if this is the first login
of the current user or their current password has expired, and update
their new password.

	war: creates a war file that provides filter configuration files,
locale resources as well as a form for changing password.

Now, follow the detailed steps:

Under pom.xml

Add the following dependencies to the pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <artifactId>change-password-extension</artifactId>
 <groupId>org.exoplatform.addons.change-password</groupId>
 <version>1.1.x-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>Change Password Extension</name>
 <description>Change Password Extension</description>
 <modules>
 <module>config</module>
 <module>war</module>
 <module>services</module>
 </modules>
 <dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.platform</groupId>
 <artifactId>platform</artifactId>
 <version>4.2.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
</project>

Under config folder

	Create a pom.xml and a configuration.xml file as below:

[image: image62]

	Add the following information to config/pom.xml:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <artifactId>change-password-extension</artifactId>
 <groupId>org.exoplatform.addons.change-password</groupId>
 <version>1.1.x-SNAPSHOT</version>
 </parent>
 <artifactId>change-password-extension-config</artifactId>
 <packaging>jar</packaging>
 <name>Change Password Extension Configuration</name>
 <description>Change Password Extension Configuration</description>
</project>

	Add the below configuration to conf/configuration.xml:

<?xml version="1.0" encoding="UTF-8"?>
<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <external-component-plugins>
 <!-- The full qualified name of the PortalContainerConfig -->
 <target-component>org.exoplatform.container.definition.PortalContainerConfig</target-component>
 <component-plugin>
 <!-- The name of the plugin -->
 <name>Change PortalContainer Definitions</name>
 <!-- The name of the method to call on the PortalContainerConfig in order to register the changes on the PortalContainerDefinitions -->
 <set-method>registerChangePlugin</set-method>
 <!-- The full qualified name of the PortalContainerDefinitionChangePlugin -->
 <type>org.exoplatform.container.definition.PortalContainerDefinitionChangePlugin</type>
 <priority>102</priority>
 <init-params>
 <value-param>
 <name>apply.default</name>
 <value>true</value>
 </value-param>
 <object-param>
 <name>change</name>
 <object type="org.exoplatform.container.definition.PortalContainerDefinitionChange$AddDependenciesAfter">
 <!-- The list of name of the dependencies to add -->
 <field name="dependencies">
 <collection type="java.util.ArrayList">
 <value>
 <string>change-password-extension</string>
 </value>
 </collection>
 </field>
 <!-- The name of the target dependency -->
 <field name="target">
 <string>welcome-screens</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

Under services folder

This project structure is as follows:

[image: image63]

	Implement the class ChangePasswordFilter.java as follows:

package org.exoplatform.changePassword;

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Date;

import javax.servlet.FilterChain;
import javax.servlet.ServletContext;
import javax.servlet.ServletException;
import javax.servlet.ServletRequest;
import javax.servlet.ServletResponse;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.exoplatform.container.ExoContainerContext;
import org.exoplatform.container.PortalContainer;
import org.exoplatform.services.log.ExoLogger;
import org.exoplatform.services.log.Log;
import org.exoplatform.services.organization.OrganizationService;
import org.exoplatform.services.organization.UserProfile;
import org.exoplatform.services.organization.UserProfileHandler;
import org.exoplatform.services.security.ConversationState;
import org.exoplatform.services.security.Identity;
import org.exoplatform.web.filter.Filter;

public class ChangePasswordFilter implements Filter {
 private static Log logger = ExoLogger.getLogger(ChangePasswordFilter.class);
 private static final String CHANGE_PASSWORD_SERVLET_CTX = "/change-password-extension";
 private static final String CHANGE_PASSWORD_SERVLET_URL = "/changePasswordView";
 private static final String INITIAL_URI_PARAM_NAME = "initialURI";
 private static final String REST_URI = ExoContainerContext.getCurrentContainer().getContext().getRestContextName();

 public void doFilter(ServletRequest servletRequest, ServletResponse servletResponse, FilterChain filterChain) throws IOException, ServletException {
 HttpServletRequest httpServletRequest = (HttpServletRequest)servletRequest;
 HttpServletResponse httpServletResponse = (HttpServletResponse)servletResponse;
 OrganizationService organizationService = (OrganizationService)PortalContainer.getInstance().getComponentInstanceOfType(OrganizationService.class);
 //get current user
 Identity identity = ConversationState.getCurrent().getIdentity();
 String userId = identity.getUserId();
 boolean logged = false;
 boolean passwordChanged = false;
 boolean passwordExpired = false;
 if (!userId.equals("__anonim")) {
 logged = true;
 UserProfileHandler userProfileHandler = organizationService.getUserProfileHandler();
 try {
 //get current user profile
 UserProfile userProfile = userProfileHandler.findUserProfileByName(userId);
 //get password changing status
 String changePassword = userProfile.getAttribute("changePassword");
 //get expire password date
 String expirePasswordDate = userProfile.getAttribute("expirePasswordDate");
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("dd/MMM/yyyy");
 Date today = new Date();
 //check if the password has been changed
 if (changePassword != null && changePassword.equals("true")) {
 passwordChanged = true;
 }
 //check if the password has expired
 passwordExpired = today.after(simpleDateFormat.parse(expirePasswordDate));
 } catch (Exception exception) {
 logger.error("User profile not found");
 }
 }
 String requestUri = httpServletRequest.getRequestURI();
 boolean isRestUri = requestUri.contains(REST_URI);
 if (!isRestUri && logged && (!passwordChanged || passwordExpired)) {
 String requestURI = httpServletRequest.getRequestURI();
 String queryString = httpServletRequest.getQueryString();
 if (queryString != null) {
 requestURI += "?" + queryString;
 }
 //get context for changing password and forward to password changing view servlet
 ServletContext servletContext = httpServletRequest.getSession().getServletContext().getContext(CHANGE_PASSWORD_SERVLET_CTX);
 String targetURI = (new StringBuilder()).append(CHANGE_PASSWORD_SERVLET_URL + "?" + INITIAL_URI_PARAM_NAME + "=").append(requestURI).toString();
 servletContext.getRequestDispatcher(targetURI).forward(httpServletRequest, httpServletResponse);
 return;
 }
 filterChain.doFilter(servletRequest, servletResponse);
 }
}

This filter checks the changePassword attribute from the current
user profile as well as the date when his password will expire. If one
of these conditions is met, this user will be forwarded to the password
changing view servlet in the next step.

	Implement the class ChangePasswordViewServlet.java as below:

package org.exoplatform.changePassword;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class ChangePasswordViewServlet extends HttpServlet {
 private static final String CHANGE_PASSWORD_JSP_RESOURCE = "/WEB-INF/jsp/changePassword.jsp";
 private static final long serialVersionUID = 1L;

 @Override
 protected void doGet(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse) throws ServletException, IOException {
 doPost(httpServletRequest, httpServletResponse);
 }

 @Override
 protected void doPost(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse) throws ServletException, IOException {
 getServletContext().getRequestDispatcher(CHANGE_PASSWORD_JSP_RESOURCE).include(httpServletRequest, httpServletResponse);
 }
}

This servlet simply calls the interface for changing password which is
created in this step.
After that, when user sends a post request from that interface, the
ChangePasswordActionServlet servlet will be initialized. Go to next
step to implement this servlet.

	Implement the class ChangePasswordActionServlet.java as below:

package org.exoplatform.changePassword;

import java.io.IOException;
import java.text.SimpleDateFormat;
import java.util.Calendar;

import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

import org.exoplatform.container.PortalContainer;
import org.exoplatform.container.component.RequestLifeCycle;
import org.exoplatform.services.log.ExoLogger;
import org.exoplatform.services.log.Log;
import org.exoplatform.services.organization.OrganizationService;
import org.exoplatform.services.organization.User;
import org.exoplatform.services.organization.UserProfile;
import org.exoplatform.services.organization.UserProfileHandler;

public class ChangePasswordActionServlet extends HttpServlet {
 private static Log logger = ExoLogger.getLogger(ChangePasswordActionServlet.class);
 private static final long serialVersionUID = 1L;
 private static final String CHANGE_PASSWORD_JSP_RESOURCE = "/WEB-INF/jsp/changePassword.jsp";
 //define the duration (in month) when user password will expire
 private static final int PASSWORD_EXPIRATION_MONTHS_NUMBER = 6;

 @Override
 protected void doGet(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse) throws ServletException, IOException {
 //get the new password entered
 String newPassword = httpServletRequest.getParameter("newPassword");
 //get the confirmation password
 String reNewPassword = httpServletRequest.getParameter("reNewPassword");
 OrganizationService organizationService = (OrganizationService)PortalContainer.getInstance().getComponentInstanceOfType(OrganizationService.class);
 String userId = httpServletRequest.getRemoteUser();
 try {
 RequestLifeCycle.begin(PortalContainer.getInstance());
 User user = organizationService.getUserHandler().findUserByName(userId);
 //check if the two passwords entered are the same, if not redirect the current user to the password changing view
 if (!newPassword.equals(reNewPassword)) {
 httpServletRequest.setAttribute("notValidNewPassword", "true");
 getServletContext().getRequestDispatcher(CHANGE_PASSWORD_JSP_RESOURCE).include(httpServletRequest, httpServletResponse);
 }
 else if (newPassword.length() < 6 || newPassword.length() > 30) {
 //check if the new password does not meet the requirement
 httpServletRequest.setAttribute("notCorrectNewPassword", "true");
 getServletContext().getRequestDispatcher(CHANGE_PASSWORD_JSP_RESOURCE).include(httpServletRequest, httpServletResponse);
 }
 else {
 //do changing the current password into the new one and reset the related attributes
 UserProfileHandler userProfileHandler = organizationService.getUserProfileHandler();
 UserProfile userProfile = userProfileHandler.findUserProfileByName(userId);
 userProfile.setAttribute("changePassword", "true");
 Calendar calendar = Calendar.getInstance();
 String passwordExpirationMonthsNumber = System.getProperty("password.expiration.months.number");
 calendar.add(Calendar.MONTH, passwordExpirationMonthsNumber != null ? Integer.parseInt(passwordExpirationMonthsNumber) : PASSWORD_EXPIRATION_MONTHS_NUMBER);
 SimpleDateFormat simpleDateFormat = new SimpleDateFormat("dd/MMM/yyyy");
 userProfile.setAttribute("expirePasswordDate", simpleDateFormat.format(calendar.getTime()));
 userProfileHandler.saveUserProfile(userProfile, true);
 user.setPassword(newPassword);
 organizationService.getUserHandler().saveUser(user, true);
 //Redirect to the home page
 String redirectURI = "/portal/";
 httpServletResponse.sendRedirect(redirectURI);
 }
 }
 catch (Exception exception) {
 logger.error("Password not changed");
 } finally {
 RequestLifeCycle.end();
 }
 }

 @Override
 protected void doPost(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse) throws ServletException, IOException {
 doGet(httpServletRequest, httpServletResponse);
 }
}

This servlet verifies the new password whether it meets the minimum and
maximum length or not. If yes, the current password will be updated and
the related attributes including changePassword and
expirePasswordDate will also be reset. Note that the
expirePasswordDate attribute will be calculated based on the
PASSWORD_EXPIRATION_MONTHS_NUMBER constant.

Under war folder

This war folder will have the following structure:

[image: image64]

In which, you will have locale resources in the
resources/locale/portal folder, css rules for password changing view
in the css/changePassword.css file and other configuration files. In
this section, you are going to look at the filter-configuration.xml
and changePassword.jsp files. For the other files, you can check
from the cloned source code.

	Add the below configuration to the filter-configuration.xml file:

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.web.filter.ExtensibleFilter</target-component>
 <component-plugin profiles="all">
 <name>ChangePassword Filter</name>
 <set-method>addFilterDefinitions</set-method>
 <type>org.exoplatform.web.filter.FilterDefinitionPlugin</type>
 <init-params>
 <object-param>
 <name>Change Password Filter</name>
 <object type="org.exoplatform.web.filter.FilterDefinition">
 <field name="filter">
 <object type="org.exoplatform.changePassword.ChangePasswordFilter"/>
 </field>
 <field name="patterns">
 <collection type="java.util.ArrayList" item-type="java.lang.String">
 <value>
 <string>/*</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

In which, the patterns field defines which URLs will be passed
through this filter, in this case /* means that all URLs are
counted.

	Add the following code to the changePassword.jsp file:

<%@ page import="org.exoplatform.container.PortalContainer"%>
<%@ page import="org.exoplatform.services.resources.ResourceBundleService"%>
<%@ page import="java.util.ResourceBundle"%>
<%@ page language="java" %>
<%
 String contextPath = request.getContextPath() ;
 //get locale properties from the locale resource
 ResourceBundleService service = (ResourceBundleService) PortalContainer.getCurrentInstance(session.getServletContext())
 .getComponentInstanceOfType(ResourceBundleService.class);
 ResourceBundle resourceBundle = service.getResourceBundle(service.getSharedResourceBundleNames(), request.getLocale()) ;
 String changePassword = resourceBundle.getString("changePassword.title");
 String newPassword = resourceBundle.getString("changePassword.newPassword");
 String reNewPassword = resourceBundle.getString("changePassword.reNewPassword");
 String send = resourceBundle.getString("changePassword.send");
 String notValidNewPasswordError = resourceBundle.getString("changePassword.notValidNewPasswordError");
 String notCorrectNewPasswordError = resourceBundle.getString("changePassword.notCorrectNewPasswordError");
 //get the password validation status
 String notValidNewPassword = (String) request.getAttribute("notValidNewPassword");
 String notCorrectNewPassword = (String) request.getAttribute("notCorrectNewPassword");
 response.setCharacterEncoding("UTF-8");
 response.setContentType("text/html; charset=UTF-8");
%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>Change password</title>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <link href="<%=contextPath%>/css/changePassword.css" rel="stylesheet" type="text/css"/>
 </head>
 <body class="change-password">
 <div class="bg-light"></div>
 <div class="ui-change-password">
 <div class="change-password-container">
 <div class="change-password-header intro-box">
 <div class="change-password-icon"><%=changePassword%></div>
 </div>
 <div class="change-password-content">
 <div class="change-password-title">
 <%
 //check if the new password is not valid
 if(notValidNewPassword == "true") {
 %>
 <div class="new-password-error"><i class="change-password-icon-error"></i><%=notValidNewPasswordError%></div>
 <%
 }
 //check if the password confirmation is not successful
 else if(notCorrectNewPassword == "true") {
 %>
 <div class="new-password-error"><i class="change-password-icon-error"></i><%=notCorrectNewPasswordError%></div>
 <%
 }
 %>
 </div>
 <div class="center-change-password-content">
 <form id="changePasswordForm" name="changePasswordForm" action="<%=contextPath%>/changePassword" method="post">
 <input id="newPassword" name="newPassword" type="password" placeholder="<%=newPassword%>" onblur="this.placeholder = <%=newPassword%>" onfocus="this.placeholder = ''"/>
 <input id="reNewPassword" name="reNewPassword" type="password" placeholder="<%=reNewPassword%>" onblur="this.placeholder = <%=reNewPassword%>" onfocus="this.placeholder = ''"/>
 <div id="changePasswordFormAction" class="change-password-button" onclick="submit();">
 <button class="button" href="#"><%=send%></button>
 </div>
 </form>
 </div>
 </div>
 </div>
 </div>
 </body>
</html>

Testing

	Build your project with the mvn clean install command.

	Copy the generated jar and war files into the corresponding
deployment folders and start eXo Platform.

	Sign in with the root account and create a new user such as john.

	Sign in with the john account, you will be required to change
password at the first login.

[image: image65]

	Enter a new password and validate it, then click Send. If your new
password is valid, you will be automatically redirected to the
homepage, otherwise a message that says “The new password is not
valid” will appear.

Developing JavaScript

This chapter discusses the right way to write your JavaScript code
and include libraries in eXo Platform. How the code can be
modularized to share and re-use, and how to avoid conflict as well
is the main topic.

The topic will be developed from the JavaScript primitive module
patterns to the GateIn approach. You will walk through it by
examples, from simple inline scripts to portlet applications. In
this chapter:

	JavaScript module patterns

	AMD and RequireJS

	Shim configuration and Non-AMD modules

	GateIn Module Definition

	JQuery versions and plugins

A little knowledge of JavaScript is required, so if necessary, you
should learn JavaScript, W3 Schools [http://www.w3schools.com/js/] first.

JavaScript module patterns

Why module patterns?

As you might experience before, some problems that you often have to
deal with in JavaScript are:

	Global variables are modified by not your code.

	Your code invokes a method of a library that is not loaded yet.

	Other code uses the same library but different versions.

In eXo Platform, your application is not a whole page. Your portlet and
gadget can be added to a page containing many other applications. That
emphasizes the importance of modularity. You need to understand the
module patterns to write JavaScript safely, even if you are writing only
one script file that will use JQuery.

Closure and self-invoking

Let’s see an example of global variables. In the page you have a button
that counts the number of clicks on it:

<!DOCTYPE html>
<html>
<head>
<script>
 var counter = 0;
 function count(){
 counter++;
 document.getElementById("result").innerHTML = counter;
 }
</script>
</head>
<body>
 <p>You've clicked 0 times!</p>
 <button onclick="count();">Click me</button>
</body>
</html>

Here you maintain a global variable that increases each time users click
on the button. The code should work, but the problem is the variable can
be modified by any other code of the page.

If you make the variable a function-scoped one that can only be changed
by the function, it will not work as expected because the variable is
reset (to zero) every time the function is invoked.

The problem can be solved if you have a way to define a variable at
function scope but is initialized only one time. The closure pattern
is a JavaScript feature that makes it possible:

<script>
 var counter = (function(){
 var privateCounter = 0;
 return function(){ return privateCounter++; };
 })();
 function count(){
 document.getElementById("result").innerHTML = counter();
 }
</script>

Focus on the function declaration first:

function(){...}

It is an anonymous function that cannot be invoked by later code, but
you make it invoke itself immediately - and only this time - by adding
parentheses after the declaration:

(function(){...})();

By that way, the private variable is created only one time, but is
accessible by any child function under the scope. The next thing is to
return that child function to a variable that becomes the only access
holder.

<script>
 var counter = (function(){
 var privateCounter = 0; //this runs only one time in self-invocation
 return function(){ return privateCounter++; }; //this keeps the access to the private variable
 })();
</script>

The module pattern

From the self-invoking function you can return not only a function but
an object that contains many properties and functions. It makes the
ability to create a namespace, or in other words, a module. The idea is
to return an object with only things that you want to expose to the
world, and keep the other things private.

Let’s see how the code is built step by step before it completes the
module pattern:

// create a new scope
(function (){

})();

// give it a name
var module = (function (){

})();

// private method and property
var module = (function (){
 var privateProperty = "smth";
 var privateMethod = function () {};
})();

// public method and property
var module = (function (){
 return {
 publicPropertyyy: "smth";
 publicMeeethod: function() { //some code };
 }
})();

// the complete form
var module = (function (){
 // private properties and functions
 return {
 // public properties and functions
 }
})();

// access it from outside
module.publicPropertyyy;
module.publicMeeethod();

The module extension pattern

You can add properties and functions to an existing module, by passing
it as a parameter to a new self-invoking function:

var module2 = (function(module){
 module.extension = function() {};
 return module;
}(module || {});

A Java-like example

To ones who are more familiar with Java, this variation of the pattern
is easy to understand because it imitates a simple Java class:

var module = (function(){
 //private
 var name = "default";
 var getName = function(){
 return name;
 };
 var setName = function(newName){
 name = newName;
 };

 //public
 var obj = {
 getName: getName,
 setName: setName
 };
 return obj;
})();

References

At this point you touch a JavaScript core feature which is the base for
many libraries that support modularity. Next, you are introduced to AMD
and RequireJS. But you
may break to read some other references:

	JavaScript Function Closures, W3 Schools

	Module Patterns In-Depth, Ben Cherry

	Mastering the Module Pattern, Todd Motto

AMD and RequireJS

What is AMD?

The module pattern gives you a way to create your namespace to protect
private things inside. What if your module depends on other libraries,
and the libraries use each other in chain? What if different versions of
a library are used by other applications in the same page? Is there a
way to always have the right libraries loaded in the right order?

The answer is to modularize the libraries themselves. The AMD
(Asynchronous Module Definition) standard defines the way that a library
is loaded as a module - as opposite to a global object, and that module
is available for only the other module that “requires” it.

How it works?

Let’s say there are three companions in an AMD system: the library as a
dependency, an AMD loader, and a consumer - the module that wishes to
use the library. To avoid confusion, all are JavaScript. Here is how
they work:

	The library defines itself as a module, by writing a function named
define:

define(function(){});

This is one of the signatures of define, which has only one
parameter. The parameter, often documented as factory, is a
function that returns a global(?) object, similarly as you see in the
module pattern. Picking up the “counter” example, the code looks like
that:

define(function(){
 var counter = 0;
 count = function(){
 return (++counter);
 }
 return {
 count: count
 };
});

	The returned object will be global if you declare the library as an
external script file, that is not AMD. In AMD, you “register” the
library with the loader. The returned object then is wrapped under a
new scope (so it is not global actually) created by the loader. As
indicated by AMD specification, the scope is named require.
RequireJS - an AMD implementation - defines the alias requirejs,
both are the same object.

The only way for the consumer to access the library is via the
require() function given by the loader:

require(["dependency1"], function("dependency1"){
 // here is your code that "consume" the dependency1
});

Next, you will learn it via examples with RequireJS and jQuery.

RequireJS

RequireJS is an AMD loader. To download it, check out Get
RequireJS [http://requirejs.org/docs/start.html#get] page.

As said, you do not declare a library directly in script tags, but
register it to the loader instead. How registration is done depends on
the loader. Here you write an example of RequireJS in which you use
jQuery and one module of your own.

Note

The code sample can be found at eXo Samples repository [https://github.com/exo-samples/docs-samples/tree/master/js/requirejs].

It is built up from the previous example. Now “count” function is
wrapped into an AMD module, called util. The consumer is my.js
that contains onclick function. The html file simply gives a button to
test the function.

Look at the html file first:

<!DOCTYPE html>
<meta charset="utf-8" />
<html>
<head>
<script data-main="js/my" src="js/require.js"></script>
</head>
<body>
 <p>You've clicked 0 times.</p>
 <button onclick="myClick();">Click me</button>
</body>
</html>

So here it is RequireJS that is loaded in script tag. my.js is not
loaded traditionally, instead it is the data-main source of RequireJS.
my.js registers the dependencies by calling
require.config({...}):

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 }
});

This is a conventional configuration of RequireJS. You may omit the
configuration for “util”, because RequireJS can auto-load scripts that
are located right under the baseUrl directory. In that case the module
name will be the file name without extension.

The util.js module is re-written from the “count” example. You
define an anonymous AMD module:

define(function(){
 var counter = 0;
 var count = function(){
 if (counter > 10) {
 alert("Stop! You're too excited!");
 }
 return (++counter);
 }
 return {
 count: count
 };
});

JQuery accompanies AMD specification, though it also produces global
variables. The following code is much more than a define() function,
because it tries detecting if there is an AMD loader.

if (typeof define === "function" && define.amd && define.amd.jQuery) {
 define("jquery", [], function () { return jQuery; });
}

The last gap is how the consumer uses the libararies. In my.js:

function myClick(){
 require(["util", "jquery"], function(util, $){
 $("#result").text(util.count());
 });
}

Next, you will learn how to use non-AMD libraries with RequireJS.

References

This tutorial helps you understand the gist of JavaScript modularity, by
walking through the patterns from basic to advance. It does not cover
everything, indeed it avoids explaining a lot of things. So do not limit
yourself. Go ahead and read other references.

At this point you should read:

	AMD Specification

	RequireJS Usage

Shim configuration and Non-AMD modules

In this section you learn uses of shim configuration. Basically shim
configuration is something you add in requirejs.config() when you
need:

	Synchronous dependencies loading.

	Non-AMD libraries.

RequireJS documentation introduces shim configuration in one
example [http://requirejs.org/docs/api.html#config-shim]. Here it
breaks into three simpler samples: deps, exports and init.

Synchronous dependencies loading

Remember “A” in AMD stands for “Asynchronous”? It aims at optimizing
performance. However when you need two libraries and one of them depends
on the other, you use shim deps configuration to load them in order.

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 },
 shim: {
 // util depends on jquery.
 // util is non-AMD.
 "util": {
 deps: ["jquery"]
 }
 }
});

The idea is as simple as you see it. Only one thing that needs
explanation: “util” in this example is non-AMD, because shim will not
work on AMD libraries. If “util” complies AMD, it should declare its
dependencies using this form of define():

define(["jquery"], function(jquery){...});

Non-AMD with exports

With the following shim configuration, the util module will hold a
local (in require scope) reference to the global count variable.

shim: {
 "util": {
 exports: "count"
 }
}

To see it in action, let’s modify the previous example [https://github.com/exo-samples/docs-samples/tree/4.3.x/js]
to make “util” a non-AMD module.

	Edit util.js to be a closure which declares a global variable:

(function (){
 var counter = 0;
 // count is global
 count = function(){
 return ++counter;
 };
})();

	In my.js, “count” is exported and referenced by the name “util”,
in the scope of “require”:

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 },
 shim: {
 "util": {
 exports: "count"
 }
 }
});

function myClick(){
 require(["util", "jquery"], function(util, $){
 $("#result").text(util);
 });
}

As you may ask, the global “count” is still available (after require()
execution finishes).

Non-AMD with init

The init function can be used to do some tweaks with non-AMD library,
for example to remove a global variable.

The simplest use of init function can be considered as an alternative of
exports. In the below example, you return “count” in init function, it
is equivalent to exporting “count”.

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 },
 shim: {
 "util": {
 //exports: "count"
 init: function() {
 return count;
 }
 }
 }
});

If you need to use dependencies in init function, write it with
parameters as below:

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 },
 shim: {
 "util": {
 deps: ["jquery"],
 init: function (jquery) {
 //
 }
 }
 }
});

References

This section explains uses of shim configuration and how Non-AMD modules
can be used with RequireJS. Please do not miss the important notes in
RequireJS documentation:

	Shim configuration [http://requirejs.org/docs/api.html#config-shim]

GateIn Module Definition

As you understood the module pattern explained in previous sections, now
you are convinced to stick with it when developing in eXo Platform. The
Platform is built on top of GateIn that introduces the GMD as a standard
for writing and packaging JavaScript modules as portal resources.

The counter example as a portlet

For easily starting with GMD (GateIn Module Definition), you will turn
the single html page in “counter” example into a portlet.

Note

Please get the source code at eXo Samples Repository [https://github.com/exo-samples/docs-samples/tree/4.3.x/js/counter-portlet].

Though you still can write inline scripts into your portlet JSP, in this
example you turn all into modules, so the first thing is to re-write
my.js. In the single html example it was:

require.config({
 baseUrl: "js",
 paths: {
 jquery: "jquery-3.2.1",
 util: "util"
 }
});

function myClick(){
 require(["util", "jquery"], function(util, $){
 $("#result").text(util.count());
 });
}

The require.config() will be replaced by GMD configuration (later in
gatein-resources.xml). Wrap any other code in a closure:

(function(util, $){
 $(document).ready(function(){
 $("body").on("click", ".counter-portlet button", function(){
 $("#result").text(util.count());
 });
 });
})(util, jq);

It changes much because you no longer write a global named function
(myClick) and attach it to a button directly in HTML. Instead you use
jQuery and a CSS selector. The selector should point to the right HTML
element that you write in your portlet template, in this example it is
counter.jsp:

<div class='counter-portlet'>
<h2>The Counter Portlet</h2>
<p>You've clicked 0 times.</p>
<button>Click me</button>
</div>

The last thing is to declare your GMD modules. It is done in
gatein-resources.xml:

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <module>
 <name>util</name>
 <script>
 <path>/js/util.js</path>
 </script>
 </module>
 <portlet>
 <name>Counter</name>
 <module>
 <script>
 <path>/js/my.js</path>
 </script>
 <depends>
 <module>jquery</module>
 <as>jq</as>
 </depends>
 <depends>
 <module>util</module>
 </depends>
 </module>
 </portlet>
</gatein-resources>

The both dependencies - jQuery and util - are AMD modules. Simply
declare “util” as a shared module. There is already a shared module
named “jquery”, and its version does not matter for now, so you use it
without packaging a jQuery file. You do not need to package
require.js too.

Now you can build, deploy and test the counter portlet before you look
deeper into GMD.

Understanding GMD

So what happens to your modules then?

First, your js files are treated as GateIn resources, that means
GateIn manages their lifecycle. They are deployed to the server, thus
they are available all the time, but only loaded in the pages that use
them.

To a JS resource, basically GateIn tweaks it into AMD modules, deploys
it then loads it in the right pages. Here you see what happens to the
my.js module:

	The code is wrapped in an AMD define():

define('PORTLET/counter-portlet/Counter', ["SHARED/jquery","SHARED/util"], function(jq,util) {
 var require = eXo.require, requirejs = eXo.require,define = eXo.define;
 eXo.define.names=["jq","util"];
 eXo.define.deps=[jq,util];
 return (function(util, $){
 $(document).ready(function(){
 $("body").on("click", ".counter-portlet button", function(){
 $("#result").text(util.count());
 });
 });
 })(util, jq);
});

It is a normal AMD named module. The AMD name is formed with scope
(PORTLET), the name of the app where the resource is registered
(counter-portlet) and the module name configured in
gatein-resources.xml (Counter).

	The module then is minified and deployed as a web resource that can
be accessed by a URL like this:

http://localhost:8080/portal/scripts/4.3.0/PORTLET/counter-portlet:COUNTER-min.js

It mimics the following RequireJS paths configuration:

baseUrl: "http://localhost:8080",
paths: {
 "PORTLET/counter-portlet/Counter": "/portal/scripts/4.3.0/PORTLET/counter-portlet:COUNTER-min"
}

The minified version is the one that takes effect, but you can view the
unminified version by eliminating the “-min” part in the URL.

	Finally in the pages that contain your portlet, the modules (name and
path) are added to the “require” object. This is a page object
defined by eXo.

<html>
<head>
<script type="text/javascript">
 var require = {
 "shim": {...},
 "paths": {...
 "SHARED/util": "/portal/scripts/4.3.0/SHARED/util-min",
 "PORTLET/counter-portlet/Counter": "/portal/scripts/4.3.0/PORTLET/counter-portlet:Counter-min",
 ...}
 };
</script>
</head>
</html>

GMD and Non-AMD libraries

Now assume the library util is not compatible with AMD. For example, it
is the following plain old JavaScript:

var counter = 0;
var count = function(){
 return (++counter);
}

You will use the adapter script in gatein-resources.xml
configuration to make its AMD compatible:

<module>
 <name>util</name>
 <script>
 <adapter>
 (function() {
 <include>/js/util.js</include>
 return {
 count: count
 };
 })();
 </adapter>
 </script>
</module>

This adapter code wraps the original script (pay attention to
include tag) in a closure, and returns the function count() that
will be accessed by util.count(). The final code that is loaded in the
page will be:

define('SHARED/util', [], function() {
 var require = eXo.require, requirejs = eXo.require,define = eXo.define;
 eXo.define.names=[];
 eXo.define.deps=[];
 return (function() {
 var counter = 0;
 var count = function(){
 return (++counter);
 }
 return {
 count: count
 };
 })();
});

JQuery versions and plugins

Because of JQuery’s popularity, it is necessary to have this guideline
that helps you use JQuery safely, especially if its versions and
extensions matter to your application.

The built-in SHARED module jquery

As in the counter portlet example, you can use the default “jquery”
shared module. It is packaged and declared in eXoResources.war.

<module>
 <name>jquery</name>
 <as>$</as>
 <script>
 <adapter>
 (function() {
 <include>/javascript/jquery-3.2.1.js</include>
 return jQuery.noConflict(true);
 })();
 </adapter>
 </script>
</module>

So the version is 3.2.1 at the time this document is written. To check
it in your eXo instance, use this URL when PRODUCT PLF_VERSION is
starting locally:

http://localhost:8080/portal/scripts/5.0.0/SHARED/jquery.js

N.B: The URL cited above is for a 5.0.0 PRODUCT instance, you should
replace it by the correct version of your server.

Using a different version of JQuery

In case you want to use a different version of JQuery, for example
1.8.3, declare it as a GMD module with another name than “jquery”.

<module>
 <name>jquery-1.8.3</name>
 <script>
 <adapter>
 (function() {
 <include>/js/jquery-1.8.3.js</include>
 return jQuery.noConflict(true);
 })();
 </adapter>
 </script>
</module>

Using JQuery plugins

Using JQuery plugins/extensions probably causes conflict over global
variables. The problems vary, but usually you can deal with it by using
GMD adapter pattern. A simple and useful method is to save the current
global one at first and restore it at last. Here is an example:

<module>
 <name>bootstrap_tooltip</name>
 <script>
 <adapter>
 (function() {
 var oldJQuery = window.jQuery;
 window.jQuery = $;
 <include>/WEB-INF/classes/org/exoplatform/task/management/assets/javascripts/bootstrap/bootstrap-tooltip.js</include>
 window.jQuery = oldJQuery;
 return $;
 })();
 </adapter>
 </script>
 <depends>
 <module>jquery</module>
 </depends>
</module>

See some other examples in Task Management Addon
project [https://github.com/exo-addons/task/blob/develop/task-management/src/main/webapp/WEB-INF/gatein-resources.xml].

Developing REST services

eXo Platform has a REST API to expose some of data. But you may sometimes
want to expose data in a different way or even expose data from
another external system. In this case, eXo lets you create your own
REST service.

This chapter will outline the process of developing a REST service,
deploying it into eXo Platform and testing it, via 3 ways:

	Using Jax-RS

	Using Groovy REST service

Note

See Chapter 3. eXo Web Services for more information about REST and its main benefits.

Using Jax-RS

Jax-RS (JSR
311 [https://jcp.org/aboutJava/communityprocess/final/jsr311/index.html])
is a Java API for developing applications using the REST architecture.

Assume that you want to create a demo REST service using Jax-RS that
requires the followings:

	This REST service shows a list of usernames.

	To run this REST service, you should belong to a defined group.

	The list of usernames will be under the JSON responses format.

	Create a Maven project named rest with the following structure:

[image: image0]

	Declare the dependencies needed for the demo REST service in the
pom.xml of the Java project (you can go to the eXo Platform repository [http://repository.exoplatform.org/index.html]
to check the artifact versions).

	exo.ws.rest.core: Used for REST service.

	jsr250-api: Used for annotation.

	json-rpc: Used for JSON.

	exo.core.component.organization.api: Used for retrieving data.

The pom.xml file now looks like:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>exo.rest.service</groupId>
 <artifactId>rest</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>maven</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.ws</groupId>
 <artifactId>exo.ws.rest.core</artifactId>
 <version>2.3.7-GA</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.exoplatform.core</groupId>
 <artifactId>exo.core.component.organization.api</artifactId>
 <version>2.6.0-GA</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.annotation</groupId>
 <artifactId>jsr250-api</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.metaparadigm</groupId>
 <artifactId>json-rpc</artifactId>
 <version>1.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

	Edit the java/exo/rest/service/RestUserService.java file.

package exo.rest.service;

import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.CacheControl;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.SecurityContext;

import javax.annotation.security.RolesAllowed;

import org.exoplatform.commons.utils.ListAccess;
import org.exoplatform.container.ExoContainer;
import org.exoplatform.container.ExoContainerContext;
import org.exoplatform.services.organization.OrganizationService;
import org.exoplatform.services.organization.User;
import org.exoplatform.services.organization.UserHandler;
import org.exoplatform.services.rest.resource.ResourceContainer;
import org.exoplatform.services.security.Identity;
import org.exoplatform.services.security.IdentityRegistry;
import org.json.JSONArray;
import org.json.JSONObject;

/**
 * Rest User Service!
 */
@Path("/demo")
@Produces("application/json")
public class RestUserService implements ResourceContainer {

 @GET
 @Path("/hello/{name}")
 @RolesAllowed({"administrators"})
 public String hello(@PathParam("name")
 String name) {
 return "Hello " + name;
 }

 @GET
 @Path("/listusers/{offset}")
 public Response getListUserName(@Context SecurityContext sc,@PathParam("offset") Integer offset) {
 JSONArray list = new JSONArray();
 JSONObject jsonObject = new JSONObject();
 String groupToCheck = "/platform/administrators";
CacheControl cacheControl = new CacheControl(); cacheControl.setNoCache(true);
 cacheControl.setNoStore(true);

 if (sc.getUserPrincipal() == null || !this.isMemberOf(sc.getUserPrincipal().getName(), groupToCheck)) {

 jsonObject.put("rights","NOT-ALLOWED");
 list.put(jsonObject);

 } else {

 OrganizationService organizationService = (OrganizationService) ExoContainerContext.getCurrentContainer()
 .getComponentInstanceOfType(OrganizationService.class);
 UserHandler userHandler = organizationService.getUserHandler();
 try {
 ListAccess<User> allUsers = userHandler.findAllUsers();

 if(offset == null || offset < 0)
 offset = 0;
 int limit = 1000;
 int total = limit + offset;
 int totalUsers = allUsers.getSize();

 if(offset < totalUsers && total > totalUsers){
 total = totalUsers;
 }
 User[] users = null;

 for (int i = offset; i < total; i++) {
 users = allUsers.load(i,1);
 jsonObject = new JSONObject();
 jsonObject.put("username", users[0].getUserName());
 list.put(jsonObject);
 }
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 return Response.ok(list.toString(), MediaType.APPLICATION_JSON).cacheControl(cacheControl).build();

 }

 private boolean isMemberOf(String username, String role) {
 ExoContainer container = ExoContainerContext.getCurrentContainer();
 IdentityRegistry identityRegistry = (IdentityRegistry) container.getComponentInstanceOfType(IdentityRegistry.class);
 Identity identity = identityRegistry.getIdentity(username);
 return identity.isMemberOf(role);
 }

}

In the above code, ResourceContainer needs to be implemented. This
is used to make eXo services (for example, the components deployed
inside eXo Container) simply and transparently accessible via HTTP in a
RESTful manner. In other words, these services should be viewed as a set
of REST Resources-endpoints of the HTTP request-response chain. Those
services are called ResourceContainers.

	The SecurityContext class is used to get the user information via
the UserPrincipal method.

	The following 2 methods are used to check authorization:

	The isMemberOf(String username, String role) function that
checks if a user belongs to a group (for example,
/platform/administrator). As a result, the user can see the
list of users via
http://mycompany.com:8080/portal/rest/demo/listusers/0.

	The @RolesAllowed({"administrators"}) annotation that allows
administrators only to execute
http://mycompany.com:8080/portal/rest/demo/hello/eXo.

	Edit the resources/conf/portal/configuration.xml file that
declares the REST service component in the portal container.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>
 <component>
 <type>exo.rest.service.RestUserService</type>
 </component>
</configuration>

	Build the Maven project using the command: mvn clean install.

	Put the .jar file into the eXo Platform package.

	$PLATFORM_TOMCAT_HOME/lib (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib
(in JBoss).

	Restart the server, then open
http://mycompany.com:8080/portal/rest/demo/listusers/0 in your browser.

	If you are not logged in as an admin yet, the
[{“rights”:”NOT-ALLOWED”}] text will be displayed. This means you
do not have right to see the users list.

	If you are logged in as an admin, the list of users will be shown,
for example:
[{“username”:”david”},{“username”:”james”},{“username”:”john”},{“username”:”mary”},{“username”:”admin”},{“username”:”paris”}].

Using Groovy REST service

Besides using Jax-RS, you can also develop a REST service as a Groovy
script in your own
extension that will be
loaded at startup by the REST engine.

To do this, you first need to have your own extension project as
described in Creating your extension project.
The below process will instruct how to write a simple Groovy REST script
in your own extension and make it work in eXo Platform.

	Create a Groovy script named
custom-extension.war!/WEB-INF/groovy/demo/GroovyRest.groovy with
the simple content:

// simple groovy script
import javax.ws.rs.Path
import javax.ws.rs.GET
import javax.ws.rs.PathParam

@Path("/groovyrest")
public class GroovyRest {
 @GET
 @Path("helloworld/{name}")
 public String hello(@PathParam("name") String name) {
 return "Hello " + name
 }
}

	Declare the Groovy file in the custom-extension.war!/WEB-INF/conf/configuration.xml
file.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration>
 <external-component-plugins>
 <target-component>org.exoplatform.platform.gadget.services.GroovyScript2RestLoader.GroovyScript2RestLoaderExt</target-component>
 <component-plugin>
 <name>test</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.ext.script.groovy.GroovyScript2RestLoaderPlugin</type>
 <init-params>
 <value-param>
 <name>workspace</name>
 <value>portal-system</value>
 </value-param>
 <value-param>
 <name>node</name>
 <value>/exo:gadget-groovy</value>
 </value-param>
 <properties-param>
 <name>GroovyRest.groovy</name>
 <property name="autoload" value="true" />
 <property name="path" value="war:/groovy/demo/GroovyRest.groovy" />
 </properties-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

The war custom-extension now looks like:

[image: image1]

	Deploy your custom-extension into eXo Platform by putting
custom-extension.war in the webapps folder and
custom-extension-config.jar in the lib folder. See How to
for both Tomcat and JBoss.

	Start eXo Platform, then go to
http://mycompany.com:8080/portal/rest/groovyrest/helloworld/eXo. The
output (Hello eXo) will be shown.

Tip

To change your Groovy script, follow a good practice that allows
you to update it from a local file onto remote server so that
you do not need to redeploy your entire package. First, make
your needed changes in the GroovyRest.groovy file, for
example, by putting an additional string as below:

// simple groovy script
import javax.ws.rs.Path
import javax.ws.rs.GET
import javax.ws.rs.PathParam

@Path("/groovyrest")
public class GroovyRest {
 @GET
 @Path("/helloworld/{name}")
 public String hello(@PathParam("name") String name) {
 return "Hello " + name + ". Nice to meet you!"
 }
}

Then, use this following curl command to load your script via HTTP requests:

$curl -uroot:gtn \
-X POST \
-H 'Content-type:script/groovy' \
--data-binary @GroovyRest.groovy \
http://mycompany.com:8080/rest/private/script/groovy/update/repository/portal-system/exo:gadget-groovy/GroovyRest.groovy

Now you can go to http://mycompany.com:8080/portal/rest/groovyrest/helloworld/eXo.
You will see the message “Hello eXo. Nice to meet you!” printed out.

To read more about curl command, refer here [http://curl.haxx.se/docs/manpage.html].

Managing Authentication and Identity

In this chapter:

	Initializing organization by XML configuration
Introduction to the OrganizationService component, PicketLink,
LDAP and instructions on how to initialize entities via XML
configuration.

	Working with organization API
Instructions on how to work with organization API to implement
some works related to entities, including Managing users,
Managing groups, Assigning users to a group, and Setting
auto-membership for users.

	Organization listeners
General knowledge of Organization Service, and step-by-step
instructions on how to write Organization listeners, pack them
into a .jar, and deploy them into eXo Platform.

	OAuth providers integration
A tutorial to integrate with external OAuth providers like
GitHub.

	Developing your own validator
A tutorial about how to customize a data validator.

Initializing organization by XML configuration

The OrganizationService component is used to manage entities in
eXo Platform. It is responsible for creating/retrieving/updating/deleting
them.

PicketLink

The default implementation of the OrganizationService component is
the PicketLink. This implementation uses the PicketLink OpenSource
project [http://www.jboss.org/picketlink]. PicketLink allows
aggregating entities from multiple repositories (LDAPs, databases) by
configuration. For example, it supports the following topologies:

	Users, groups and roles in a database.

	Users, groups and roles in a LDAP directory.

	Users in a LDAP directory, groups and roles in a database.

	Users in multiple LDAPS, groups and roles in a database.

LDAP

The default configuration of PicketLink in eXo Platform manages everything in
a database. eXo Platform comes with some examples to manage the Organization
entities in a LDAP. You can find these examples in
portal.war/WEB-INF/conf/organization/picketlink-idm/examples. Refer
to LDAP integration using PicketLink for more
details about LDAP.

Initializing entities for Organization Service via the XML
configuration

To specify the initial Organization configuration, you first need to
declare the
org.exoplatform.services.organization.OrganizationDatabaseInitializer
plugin in the configuration of your custom-extension.war. This
plugin is used to specify a list of membership types, groups and users
to be created.

The following snippet allows creating a membership, a group and a user
via the
org.exoplatform.services.organization.OrganizationDatabaseInitializer
plugin.

<external-component-plugins>
 <target-component>org.exoplatform.services.organization.OrganizationService</target-component>
 <component-plugin>
 <name>init.service.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.services.organization.OrganizationDatabaseInitializer</type>
 <description>this listener populate organization data for the first launch</description>
 <init-params>
 <value-param>
 <name>checkDatabaseAlgorithm</name>
 <description>check database</description>
 <value>entry</value>
 </value-param>
 <value-param>
 <name>printInformation</name>
 <description>Print information init database</description>
 <value>false</value>
 </value-param>
 <object-param>
 <name>configuration</name>
 <description>description</description>
 <object
 type="org.exoplatform.services.organization.OrganizationConfig">
 <field name="membershipType">
 <collection type="java.util.ArrayList">
 ...
 <!-- Custom membership -->
 <value>
 <object
 type="org.exoplatform.services.organization.OrganizationConfig$MembershipType">
 <field name="type">
 <string>custom-membership</string>
 </field>
 <field name="description">
 <string>the custom membership type</string>
 </field>
 </object>
 </value>
 ...
 </collection>
 </field>
 <field name="group">
 <collection type="java.util.ArrayList">
 ...
 <!-- Custom group -->
 <value>
 <object
 type="org.exoplatform.services.organization.OrganizationConfig$Group">
 <field name="name">
 <string>custom</string>
 </field>
 <field name="parentId">
 <string>/platform</string>
 </field>
 <field name="description">
 <string>the /platform/custom group</string>
 </field>
 <field name="label">
 <string>Custom</string>
 </field>
 </object>
 </value>
 ...

 </collection>
 </field>
 <field name="user">
 <collection type="java.util.ArrayList">
 ...
 <value>
 <object
 type="org.exoplatform.services.organization.OrganizationConfig$User">
 <field name="userName">
 <string>custom</string>
 </field>
 <field name="password">
 <string>gtn</string>
 </field>
 <field name="firstName">
 <string>Custom-firstName</string>
 </field>
 <field name="lastName">
 <string>Custom-lastName</string>
 </field>
 <field name="email">
 <string>custom@localhost.com</string>
 </field>
 <field name="groups">
 <string>
 custom-membership:/organization/custom,
 member:/platform/users
 </string>
 </field>
 </object>
 </value>
 ...
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Note

	eXo Platform must predefine memberships, groups and a super user to make it work properly. You can find them in

platform-extension.war!/WEB-INF/conf/organization/organization-configuration.xml.

	You need to pay attention to the object type to know which attributes can be declared in the field tags.

Working with organization API

	Managing users
How to create/remove a user and remove membership of a user.

	Managing groups
How to create/update/remove a group.

	Assigning users to a group
How to assign a user to an existing group.

	Setting auto-membership for users
How to set a membership for a newly created user.

Prerequisites

To use the OrganizationService API, you need to:

	Create a Maven portlet project to follow the snippets in the next
sub-sections.

	Use two dependencies below:

<dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.container</artifactId>
 <scope>provided</scope>
</dependency>
<dependency>
 <groupId>org.gatein.portal</groupId>
 <artifactId>exo.portal.component.application-registry</artifactId>
 <scope>provided</scope>
</dependency>

PRODUCT manages identification and authorization with the entities
packaged in org.exoplatform.services.organization, including
user, user profile, group, membership type (also known
as “role”), and membership. See more about these entities in the
Organization
API.

You can take handlers corresponding to the entities by using
OrganizationService as follows:

/** .*/
 private UserHandler userHandler;

 /** .*/
 private UserProfileHandler profileHandler;

 /** .*/
 private GroupHandler groupHandler;

 /** .*/
 private MembershipHandler membershipHandler;

 /** .*/
 private MembershipTypeHandler membershipTypeHandler;

 @Override
 public void init(PortletConfig config) throws PortletException{
 super.init(config);

 PortalContainer container = PortalContainer.getInstance();
 OrganizationService orgService = (OrganizationService)container.getComponentInstanceOfType(OrganizationService.class);
 userHandler = orgService.getUserHandler();
 profileHandler = orgService.getUserProfileHandler();
 groupHandler = orgService.getGroupHandler();
 membershipHandler = orgService.getMembershipHandler();
 membershipTypeHandler = orgService.getMembershipTypeHandler();
 }

Managing users

This section shows you how to create, update, and remove users from the
portal via two ways:

	Directly inline, via the UI of eXo Platform.

	To create a user, see the Adding a user
section for more details.

	To update and remove a user from the portal, see the Managing users
section for more details.

	In your extension,
via the configuration file as below:

You can follow the snippet below to list users and some information of
the users:

try {
 ListAccess<User> users = userHandler.findAllUsers();

 for (User user : users.load(0, users.getSize())) {
 writer.append("<dl class='dl-horizontal'>");

 //Print username and email
 writer.append("<dt>Username:</dt>");
 writer.append("<dd>" + user.getUserName() + "</dd>");
 writer.append("<dt>Email:</dt>");
 writer.append("<dd>" + user.getEmail() + "</dd>");

 //Print user profile
 UserProfile profile = profileHandler.findUserProfileByName(user.getUserName());

 for (Iterator<Map.Entry<String, String>> i =profile.getUserInfoMap().entrySet().iterator(); i.hasNext();) {
 Map.Entry<String, String> entry = i.next();
 writer.append("<dt>" + entry.getKey() + "</dt>");
 writer.append("<dd>" + entry.getValue() + "</dd>");
 }

 //Print group and membership of user
 Collection<Group> groups = groupHandler.findGroupsOfUser(user.getUserName());
 writer.append("<dt>Roles:</dt>");
 for (Group group : groups) {
 Collection<Membership> memberships = membershipHandler.findMembershipsByUserAndGroup(user.getUserName(), group.getId());
 StringBuilder sb = new StringBuilder();
 for (Iterator<Membership> i = memberships.iterator(); i.hasNext();) {
 sb.append(i.next().getMembershipType());
 if (i.hasNext()) sb.append(',');
 }
 writer.append("<dd>" + sb.toString() + " in group <i>" + group.getId() + "</i></dd>");
 }
 writer.append("</dl>");
 }

 } catch (Exception e) {
 e.printStackTrace();
 }

The users list is displayed like this in your product:

[image: image0]

Creating a user

Create a portlet action, then add the snippet below to it.

User newUser = userHandler.createUserInstance("newuser");
newUser.setPassword("exo");
newUser.setOrganizationId("/platform/users");
newUser.setDisplayName("New User");
newUser.setEmail("user@exoplatform.com");
userHandler.createUser(newUser, false);

Group group = groupHandler.findGroupById("/platform/users");
membershipHandler.linkMembership(newUser, group, membershipTypeHandler.findMembershipType("member"), false);

Executing the portlet action allows creating a user called newuser
whose role is member:/platform/users.

Removing a user

Create a portlet action which executes the snippet below to remove an
initialized user, for example, newuser.

userHandler.removeUser("newuser", false);

Removing a membership

Create a portlet action which executes the snippet below to remove a
membership of the custom user:

Membership membership = membershipHandler.findMembershipByUserGroupAndType("custom", "/organization/custom", "custom-membership");
 membershipHandler.removeMembership(membership.getId(), false);

Managing groups

This section shows you how to create, update, and remove groups from the
portal via two ways:

	Directly inline, via the UI of eXo Platform. See the Managing groups
section for more details.

	In your extension,
via the configuration file as below:

You can follow the snippet below to list groups which are children of
the platform group:

try {
 Group platformGroup = groupHandler.findGroupById("/platform");
 Collection<Group> groups = groupHandler.findGroups(platformGroup);
 for (Group group : groups) {
 writer.append("<dl class='dl-horizontal'>");
 writer.append("<dt>Id:</dt>");
 writer.append("<dd>" + group.getId() + "</dd>");
 writer.append("<dt>Name:</dt>");
 writer.append("<dd>" + group.getGroupName() + "</dd>");
 writer.append("<dt>Label:</dt>");
 writer.append("<dd>" + group.getLabel() + "</dd>");
 writer.append("</dl>");
 }

The groups list is displayed like this in your product:

[image: image1]

Creating a group

Create a portlet action, then add the snippet below to it.

Group group = groupHandler.createGroupInstance();
group.setGroupName("newgroup");
group.setLabel("New Group");
Group platformGroup = groupHandler.findGroupById("/platform");
groupHandler.addChild(platformGroup, group, false);

Executing the portlet action allows creating a group called newgroup
which is the child of the platform group.

Updating a group

After creating a group, you should update a label for it as its display
name.

Group newGroup = groupHandler.findGroupById("/platform/newgroup");
newGroup.setLabel("New Group Updated");
groupHandler.saveGroup(newGroup, false);

The snippet above allows setting the New Group Updated label for the
newgroup group.

Removing a group

Create a portlet action which executes the snippet below to remove a
group, for example newgroup:

Group newGroup = groupHandler.findGroupById("/platform/newgroup");
 groupHandler.removeGroup(newGroup, false);

Assigning users to a group

This section shows you how to assign users to existing groups available
in the portal via two ways:

	Directly inline, via the UI of eXo Platform. See the Adding a user to a group
section for more details.

	In your extension,
via the configuration. In Creating a user,
you can see that while creating the newuser user, the user is
assigned to the /platform/users group and the member
membership.

Group group = groupHandler.findGroupById("/platform/users");
membershipHandler.linkMembership(newUser, group, membershipTypeHandler.findMembershipType("member"), false);

Setting auto-membership for users

In eXo Platform, when a new user is registered, the membership:
member:/platform/users will be automatically granted to him/her. See
Predefined users, groups and memberships
to futher understand the membership concept.

With the extension mechanism
provided by eXo Platform, you can set another auto-membership for users.

It is assumed that you want to auto-assign 2 memberships:
member:/platform/users and member:platform/web-contributors to any
registered user, do as follows:

	1 Create a file named organization-configuration.xml under

	custom-extension.war!/WEB-INF/conf/organization. See the sample
content of complete configuration in the
platform-extension.war!/WEB-INF/conf/organization/organization-configuration.xml
file.

	Add the following plugin for the new user event listener in
custom-extension.war!/WEB-INF/conf/organization/organization-configuration.xml:

<component-plugin>
 <name>new.user.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.services.organization.impl.NewUserEventListener</type>
 <description>this listener assign group and membership to a new created user</description>
 <init-params>
 ...
 </init-params>
</component-plugin>

	Add the NewUserConfig object, which holds the value of group and
membership, in custom-extension.war!/WEB-INF/conf/organization/organization-configuration.xml:

<object type="org.exoplatform.services.organization.impl.NewUserConfig">
 <field name="group">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.organization.impl.NewUserConfig$JoinGroup">
 <field name="groupId"><string>/platform/users</string></field>
 <field name="membership"><string>member</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.organization.impl.NewUserConfig$JoinGroup">
 <field name="groupId"><string>/platform/web-contributors</string></field>
 <field name="membership"><string>member</string></field>
 </object>
 </value>
 </collection>
 </field>
</object>

	Restart the server.

	Create a new user,
for example “katie”, without assigning her to any group.

	When invoking the createUser method, you must set the
broadcast parameter to true:

userHandler.createUser(newUser, true);

	Then, userHandler will broadcast an event to
org.exoplatform.services.organization.impl.NewUserEventListener
which will assign the created user to the /platform/users and
/platform/web-contributors groups with the member membership
type.

	Check the membership for the newly created user by selecting [image: image2]
–> Users –> Community –> User Management. Next, click [image: image3]
corresponding to your newly created user (for example, “katie”), then
select User Membership. You will see that 2 memberships are
auto-assigned to “katie”.

[image: image4]

You can modify the attributes and add the name of a special user that
does not use the default membership. Here is an example of this specific
case:

<field name="ignoredUser">
 <collection type="java.util.HashSet">
 <value>
 <string>newuser</string>
 </value>
 </collection>
</field>

Organization listeners

In eXo Platform, whenever an action occurs (for example, login/logout,
content creation/modification), a corresponding event is sent to
Listener Service that dispatches the notification to its listeners.
Listeners then can perform whatever action they want when receiving an
event. See Listener Service
events for more
details.

In this section, you will have opportunity to learn about Organization
listeners, how to write and pack them in a .jar file, then deploy
them into eXo Platform based on the extension mechanism
of eXo Platform.

To write a new organization listener, you first need to know about
Organization Service that provides a
mechanism to receive notifications when:

	A user is created, deleted, modified, enabled or disabled.

	A group is created, deleted or modified.

	A membership is created or removed.

This mechanism is very useful to cascade some actions when the
organization model is modified. For example, it is currently used to
initialize the personal portal pages or to create drives and personal
areas.

In term of working mechanism of Organization listeners, it is quite
similar to that of Listener Service. See Understanding the Listener
Service for how it works
and how to configure a listener in general.

Writing Organization listeners

	Create a JAR project, named my-event-listeners for example, with
the following structure:

[image: image5]

	Declare the dependencies needed for your own listeners in the
pom.xml file (you can go to eXo Platform repository [http://repository.exoplatform.org/index.html]
to check the artifact versions). The pom.xml file now looks like:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>exo.userevent.listener</groupId>
 <artifactId>my-event-listeners</artifactId>
 <packaging>jar</packaging>
 <version>1.0-SNAPSHOT</version>
 <name>maven</name>
 <url>http://maven.apache.org</url>
 <dependencies>
 <dependency>
 <groupId>org.exoplatform.core</groupId>
 <artifactId>exo.core.component.organization.api</artifactId>
 <version>2.6.0-GA</version>
 </dependency>
 <dependency>
 <groupId>javax.jcr</groupId>
 <artifactId>jcr</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>javax.annotation</groupId>
 <artifactId>jsr250-api</artifactId>
 <version>1.0</version>
 </dependency>
 </dependencies>
</project>

	Implement your own listeners by extending some existing listener
classes in src/main/java/org/exoplatform/listener. These classes
define hooks that are invoked before or after operations are
performed on the organization model.

	UserEventListener:

To listen to user changes, you need to extend
org.exoplatform.services.organization.UserEventListener in
MyUserListener.java.

package org.exoplatform.listener;

 import javax.jcr.Node;
 import javax.jcr.Session;
 import org.exoplatform.services.organization.User;
 import org.exoplatform.services.organization.UserEventListener;

 public class MyUserListener extends UserEventListener {
 public void preSave(User user, boolean isNew) throws Exception {
 //do something - customer code is here
 System.out.println("Before user is added into database");
 }
 public void preDelete(User user) throws Exception {
 //do something - customer code is here
 System.out.println("Before user is deleted from database");
 }
 public void postSave(User user, boolean isNew) throws Exception {
 //do something - customer code is here
 System.out.println("After user is added into database");
 }
 public void postDelete(User user) throws Exception {
 //do something - customer code is here
 System.out.println("After user is deleted from database");
 }
 }

See sample
here [https://github.com/exoplatform/ecms/blob/develop/core/services/src/main/java/org/exoplatform/services/cms/drives/impl/NewUserListener.java].

	GroupEventListener:

To listen to group changes, you need to extend
org.exoplatform.services.organization.GroupEventListener in
MyGroupListener.java.

package org.exoplatform.listener;

 import javax.jcr.Session;
 import org.exoplatform.services.organization.Group;
 import org.exoplatform.services.organization.GroupEventListener;

 public class MyGroupListener extends GroupEventListener {
 public void preSave(Group group, boolean isNew) throws Exception {
 //do something - customer code is here
 System.out.println("Before group is added into database");
 }
 public void preDelete(Group group) throws Exception {
 //do something - customer code is here
 System.out.println("Before group is removed from database");
 }
 public void postSave(Group group, boolean isNew) throws Exception {
 //do something - customer code is here
 System.out.println("After group is added into database");
 }
 public void postDelete(Group group) throws Exception {
 //do something - customer code is here
 System.out.println("After group is removed from database");
 }
 }

See sample
here [https://github.com/exoplatform/ecms/blob/develop/core/services/src/main/java/org/exoplatform/services/cms/drives/impl/NewGroupEventListener.java].

	MembershipEventListener:

To listen to membership changes, you need to extend
org.exoplatform.services.organization.MembershipEventListener in
MyMembershipListener.java.

package org.exoplatform.listener;

 import javax.jcr.Session;
 import org.exoplatform.services.organization.Membership;
 import org.exoplatform.services.organization.MembershipEventListener;

 public class MyMembershipListener extends MembershipEventListener {
 public void preSave(Membership m, boolean isNew) throws Exception{
 //do something - customer code is here
 System.out.println("Before membership is added into database");
 }

 public void postSave(Membership m, boolean isNew) throws Exception{
 //do something - customer code is here
 System.out.println("After membership is added into database");
 }

 public void preDelete(Membership m) throws Exception{
 //do something - customer code is here
 System.out.println("Before membership is removed from database");
 }

 public void postDelete(Membership m) throws Exception{
 //do something - customer code is here
 System.out.println("After membership is removed from database");
 }
 }

See sample
here [https://github.com/exoplatform/ecms/blob/develop/core/services/src/main/java/org/exoplatform/services/cms/drives/impl/WCMMembershipUpdateListener.java].

	Register your own listeners in configuration.xml. Registering the
listeners is then achieved by using the ExoContainer plugin mechanism.
See Service configuration for beginners
for more information.

To effectively register Organization listeners, you simply need to use
the addListenerPlugin set-method.

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <external-component-plugins>
 <target-component>org.exoplatform.services.organization.OrganizationService</target-component>
 <component-plugin>
 <name>my.new.user.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.listener.MyUserListener</type>
 <description>description</description>
 </component-plugin>
 <component-plugin>
 <name>my.new.group.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.listener.MyGroupListener</type>
 <description>description</description>
 </component-plugin>
 <component-plugin>
 <name>my.membership.group.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.listener.MyMembershipListener</type>
 <description>description</description>
 </component-plugin>
 </external-component-plugins>
</configuration>

See sample
here [https://github.com/exoplatform/ecms/blob/develop/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/organization-component-plugins-configuration.xml].

	Build your JAR project, then deploy the .jar file (in target/)
under eXo Platform.

	$PLATFORM_TOMCAT_HOME/lib (in Tomcat).

	$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear!/lib (in
JBoss).

	Start eXo Platform. Your own listeners are now ready for testing.

To check if either of your own listeners takes effect, try the case when
creating a new account by selecting [image: image6] –> Users –> Add Users.
Once you have clicked Save, two strings will be printed to the console:
“Before user is added into database” and “After user is added into database”,
as defined in MyUserListener.java.

OAuth providers integration

About OAuth and OAuth providers

The OAuth 2.0 specification, RFC-6749 by
IETF [https://tools.ietf.org/html/rfc6749], is an open standard for
authorization. It allows resource owners to authorize third-party access
to their server resources without sharing their credentials.

To explain this definition, let’s say a GitHub user wants to allow a
third-party application to access their GitHub data like the profile and
repositories. In a traditional way, the user will give the application
his username/password. This approach has some defects. For instance,
there is no way to identify the application, thus impossible to limit
the access. If the user wants to stop using an application, he must
change the password, so other applications will be disallowed as well.

In OAuth approach, the third-party application must be registered to (so
identified by) GitHub. When the app requests the resources for the first
time, GitHub prompts the user so he can allow or refuse the access. On
the allowance, the app receives an access token - not the user
credentials, and uses it to proceed to access the resource.

By this way, the user can revoke the access anytime. Depending on the
OAuth implementation, it can give a policy based on that the user can
choose which resources are accessible.

Note

This example just explains OAuth quickly. Please read RFC-6749 to understand the roles and the flow before you continue.

You can find a list of OAuth providers in http://oauth.net/2/

OAuth integration with eXo

The term “OAuth integration” suggests that you can write applications
that run at eXo, and access resources from another resource server by
getting authorized by an OAuth provider. To avoid a wide topic of data
propagation that it may imply, this tutorial only focuses on how to
allow users to sign up/log into eXo using other Social network accounts.

As of 4.3, eXo supports login by Facebook, Google+, LinkedIn and
Twitter. These four networks are built-in supported.

Behind the scene, there is a framework that resolves the following
challenges:

	The integration can be turned on/off by configuration.

	The login page must adapt to a turned-on provider, for example CSS
and JavaScript are generated automatically.

	When a user logs in using a Social network account, his profile data
is propagated into eXo.

	Access token persists for re-using. Revocation and expiration are
handled.

The great point is, the framework allows extending the provider list. In
this tutorial you write an addon that allows GitHub users to sign in.

GitHub as an OAuth provider

The GitHub OAuth flow and other information you need can be found at
https://developer.github.com/v3/oauth/. You should read it before you
continue.

At the moment, it is not clear which scopes are supported. However, the
addon will need only the (default) user scope, so it does not
matter.

Tip

It is good to know that you can test the flow completely before writing any code. The tip is to use a browser plugin, such as Chrome Advanced Rest client.

For that test, when registering your app, you should set the callback URL to your localhost. You can change it anytime later.
In order to see all things work perfectly, you can set up an Apache/Nginx server to return a default page at port 80.

When you start coding, this tutorial requires you to run an eXo instance
at localhost:8080 for simplification. So at that time, change the
callback URL to this address.

Writing an GitHub addon

So now you have a GitHub application and you tested the flow. From the
test you learned the following aspects that will be variables in your
code:

	Variable

	Description

	authentication endpoint

	https://github.com/login/oauth/authorize

	access token endpoint

	https://github.com/login/oauth/access_token

	profile endpoint

	https://api.github.com/user

	redirect URL (or
callback URL)

	In your test the actual value should be
http://localhost:8080/portal/githubAuth.

In production it depends on the eXo base URL, so
it should be a configuration.

	client_id

	Should be configurable.

	client_secret

	Should be configurable.

To be packaged as an eXo Addon, the project should have three modules:

	service contains Java classes, service configuration and
translation resources. This module is packaged in jar.

	extension is a webapp (war) containing stylesheet configuration and
resources.

	packaging module that packages the jar and the war in a zip to
satisfy the Addon packaging requirement.

For Java code, the framework requires you to write:

	An access token wrapper.

	A processor that handles the interaction with GitHub.

	A servlet filter.

Let’s start your coding.

	Write a class called GithubAccessTokenContext that wraps the
access token in a context. The idea is to provide a
getAccessToken() method, but it might also be able to handle the
custom scopes in the future, so you should extend the abstract class
org.gatein.security.oauth.spi.AccessTokenContext:

public class GithubAccessTokenContext extends AccessTokenContext implements Serializable {

 private static final long serialVersionUID = 42L;

 private final String accessToken;

 public GithubAccessTokenContext(String accessToken) {
 if (accessToken == null) {
 throw new IllegalArgumentException("accessToken must not be null!");
 }
 this.accessToken = accessToken;
 }

 @Override
 public String getAccessToken() {
 return accessToken;
 }

 @Override
 public boolean equals(Object that) {
 if (!(super.equals(that))) {
 return false;
 }
 GithubAccessTokenContext that_ = (GithubAccessTokenContext)that;
 return this.accessToken.equals(that_.getAccessToken()) ;
 }

 public int hashCode() {
 return super.hashCode() * 13 + accessToken.hashCode() * 11;
 }

}

	Write an interface, called GithubProcessor for the major service -
that should indeed implements the general
org.gatein.security.oauth.spi.OAuthProviderProcessor interface. You
need this extended interface for two reasons: 1. to satisfy the
key-type pattern of eXo services, and 2. to add any methods you want
for GitHub in particular.

Now there are no extended methods, so it is simple:

public interface GithubProcessor extends OAuthProviderProcessor<GithubAccessTokenContext> {

}

	Write the implementation GithubProcessorImpl.

public class GithubProcessorImpl implements GithubProcessor {

}

It keeps all the information about the provider and the app:

public static final String AUTHENTICATION_ENDPOINT_URL = "https://github.com/login/oauth/authorize";
public static final String ACCESS_TOKEN_ENDPOINT_URL = "https://github.com/login/oauth/access_token";
public static final String PROFILE_ENDPOINT_URL = "https://api.github.com/user";

private final String redirectURL;
private final String clientID;
private final String clientSecret;
private final int chunkLength;
private final SecureRandomService secureRandomService;

public GithubProcessorImpl(ExoContainerContext context, InitParams params, SecureRandomService secureRandomService) {
 String redirectURL_ = params.getValueParam("redirectURL").getValue();
 redirectURL_ = redirectURL_.replaceAll("@@portal.container.name@@", context.getName());

 String clientID_ = params.getValueParam("clientId").getValue();
 String clientSecret_ = params.getValueParam("clientSecret").getValue();
 if (redirectURL_ == null || redirectURL_.length() == 0 || clientID_ == null
 || clientID_.length() == 0 || clientSecret_ == null || clientSecret_.length() == 0) {
 throw new IllegalArgumentException("redirectURL, clientId and clientSecret must not be empty!");
 }
 this.redirectURL = redirectURL_;
 this.clientID = clientID_;
 this.clientSecret = clientSecret_;
 this.chunkLength = OAuthPersistenceUtils.getChunkLength(params);
 this.secureRandomService = secureRandomService;
}

The framework that manages the interaction with the GitHub servers will
call the following method of the processor through the flow, passing it
the request and response of each phase, and expecting an
InteractionState in return.

@Override
public InteractionState<GithubAccessTokenContext> processOAuthInteraction(HttpServletRequest request,
 HttpServletResponse response) throws IOException, OAuthException {
 HttpSession session = request.getSession();
 String state = (String) session.getAttribute(OAuthConstants.ATTRIBUTE_AUTH_STATE);

 // start the flow
 if (state == null || state.isEmpty()) {
 String verificationState = String.valueOf(secureRandomService.getSecureRandom().nextLong());
 initialInteraction(request, response, verificationState);
 state = InteractionState.State.AUTH.name();
 session.setAttribute(OAuthConstants.ATTRIBUTE_AUTH_STATE, state);
 session.setAttribute(OAuthConstants.ATTRIBUTE_VERIFICATION_STATE, verificationState);
 return new InteractionState<GithubAccessTokenContext>(InteractionState.State.valueOf(state), null);
 }

 // get access token
 if (state.equals(InteractionState.State.AUTH.name())) {
 //
 String accessToken = getAccessToken(request, response);
 GithubAccessTokenContext tokenContext = new GithubAccessTokenContext(accessToken);
 return new InteractionState<GithubAccessTokenContext>(InteractionState.State.FINISH, tokenContext);
 }
 return new InteractionState<GithubAccessTokenContext>(InteractionState.State.valueOf(state), null);
}

The access token persits in the (eXo) user profile. The following
methods are called to save, get and remove an access token:

@Override
public void saveAccessTokenAttributesToUserProfile(UserProfile userProfile, OAuthCodec codec, GithubAccessTokenContext accessToken) {
 String encodedAccessToken = codec.encodeString(accessToken.getAccessToken());
 OAuthPersistenceUtils.saveLongAttribute(encodedAccessToken, userProfile, PROFILE_GITHUB_ACCESS_TOKEN, false, chunkLength);
}

@Override
public GithubAccessTokenContext getAccessTokenFromUserProfile(UserProfile userProfile, OAuthCodec codec) {
 String encodedAccessToken = OAuthPersistenceUtils.getLongAttribute(userProfile, PROFILE_GITHUB_ACCESS_TOKEN, false);
 if (encodedAccessToken == null) {
 return null;
 }
 String accessToken = codec.decodeString(encodedAccessToken);
 return new GithubAccessTokenContext(accessToken);
}

@Override
public void removeAccessTokenFromUserProfile(UserProfile userProfile) {
 OAuthPersistenceUtils.removeLongAttribute(userProfile, PROFILE_GITHUB_ACCESS_TOKEN, true);
}

	Write a Filter, called GithubFilter, that extends the abstract
filter org.gatein.security.oauth.web.OAuthProviderFilter.

public class GithubFilter extends OAuthProviderFilter<GithubAccessTokenContext> {

}

This must implement the following three methods, in which the last one
is called when the authorization is finished. You obtained an access
token to get the GitHub user profile and return the user attributes
wrapped into an OAuthPrincipal object. You can use any preferred
libraries here to get the profile resouces. This tutorial simply uses
java.net.HttpURLConnection and org.json.JSONObject.

@Override
protected OAuthProviderType<GithubAccessTokenContext> getOAuthProvider() {
 return this.getOauthProvider("GITHUB", GithubAccessTokenContext.class);
}

@Override
protected void initInteraction(HttpServletRequest request, HttpServletResponse response) {
 HttpSession session = request.getSession();
 session.removeAttribute(OAuthConstants.ATTRIBUTE_AUTH_STATE);
 session.removeAttribute(OAuthConstants.ATTRIBUTE_VERIFICATION_STATE);
}

@Override
protected OAuthPrincipal<GithubAccessTokenContext> getOAuthPrincipal(HttpServletRequest request, HttpServletResponse response, InteractionState<GithubAccessTokenContext> interactionState) {
 GithubAccessTokenContext accessTokenContext = interactionState.getAccessTokenContext();
 String accessToken = accessTokenContext.getAccessToken();
 Map<String, String> params = new HashMap<String, String>();
 params.put(OAuthConstants.ACCESS_TOKEN_PARAMETER, accessToken);
 String location = new StringBuilder(GithubProcessorImpl.PROFILE_ENDPOINT_URL).append("?").append(OAuthUtils.createQueryString(params)).toString();
 try {
 URL url = new URL(location);
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();
 HttpResponseContext responseContext = OAuthUtils.readUrlContent(connection);
 if (responseContext.getResponseCode() == 200) {
 return parsePrincipal(responseContext.getResponse(), accessTokenContext, this.getOAuthProvider());
 } else {
 String errorMessage = "Unspecified IO error. Http response code: " + responseContext.getResponseCode() + ", details: " + responseContext.getResponse();
 throw new OAuthException(OAuthExceptionCode.IO_ERROR, errorMessage);
 }
 } catch (JSONException e) {
 throw new OAuthException(OAuthExceptionCode.IO_ERROR, e);
 } catch (IOException e) {
 throw new OAuthException(OAuthExceptionCode.IO_ERROR, e);
 }
}

	Configure the service and filter to be loaded by the portal container,
and register new provider as a plugin to the framework. While
typically such configuration is placed in an extension, in this case
it must be configured in a jar to be loaded before portal.war.

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <component>
 <key>org.exoplatform.extension.oauth.github.GithubProcessor</key>
 <type>org.exoplatform.extension.oauth.github.GithubProcessorImpl</type>
 <init-params>
 <value-param>
 <name>clientId</name>
 <value>${exo.oauth.github.clientId}</value>
 </value-param>
 <value-param>
 <name>clientSecret</name>
 <value>${exo.oauth.github.clientSecret}</value>
 </value-param>
 <value-param>
 <name>redirectURL</name>
 <!--
 TODO: Should not expose property for this value.
 user will have hard configure with this value:
 -->
 <value>${exo.base.url:http://localhost:8080}/@@portal.container.name@@/githubAuth</value>
 </value-param>
 <!-- The custom scope is not supported so far, so don't edit the below -->
 <value-param>
 <name>scope</name>
 <value>${exo.oauth.github.scope:user}</value>
 </value-param>
 </init-params>
 </component>
 <component>
 <type>org.exoplatform.extension.oauth.github.GithubFilter</type>
 <init-params>
 <value-param>
 <!-- Value of this key must the same with value of key when configure OauthProviderTypeRegistryPlugin (line 79) -->
 <name>providerKey</name>
 <value>GITHUB</value>
 </value-param>
 </init-params>
 </component>

 <external-component-plugins>
 <target-component>org.gatein.security.oauth.webapi.OAuthFilterIntegrator</target-component>
 <component-plugin>
 <name>GithubFilter</name>
 <set-method>addPlugin</set-method>
 <type>org.gatein.security.oauth.webapi.OAuthFilterIntegratorPlugin</type>
 <init-params>
 <value-param>
 <!-- Value of this key must the same with value of key when configure OauthProviderTypeRegistryPlugin (line 79) -->
 <name>providerKey</name>
 <value>GITHUB</value>
 </value-param>
 <value-param>
 <name>filterClass</name>
 <value>org.exoplatform.extension.oauth.github.GithubFilter</value>
 </value-param>
 <value-param>
 <name>enabled</name>
 <value>${exo.oauth.github.enabled:false}</value>
 </value-param>
 <value-param>
 <name>filterMapping</name>
 <value>/githubAuth</value>
 </value-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

 <external-component-plugins>
 <target-component>org.gatein.security.oauth.spi.OAuthProviderTypeRegistry</target-component>
 <component-plugin>
 <name>GithubOauthProvider</name>
 <set-method>addPlugin</set-method>
 <type>org.gatein.security.oauth.registry.OauthProviderTypeRegistryPlugin</type>
 <init-params>
 <value-param>
 <name>key</name>
 <value>GITHUB</value>
 </value-param>
 <value-param>
 <name>enabled</name>
 <value>${exo.oauth.github.enabled:false}</value>
 </value-param>
 <value-param>
 <name>userNameAttributeName</name>
 <value>user.social-info.github.userName</value>
 </value-param>
 <value-param>
 <name>oauthProviderProcessorClass</name>
 <value>org.exoplatform.extension.oauth.github.GithubProcessor</value>
 </value-param>
 <value-param>
 <name>initOAuthURL</name>
 <value>/githubAuth</value>
 </value-param>
 <value-param>
 <name>friendlyName</name>
 <value>GitHub</value>
 </value-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>
</configuration>

	Finish the service module by adding the language resource in
locale/portal/webui_en.properties:

word.githubUsername=GitHub User Name
Used in AccountPortlet (when registering new user).
UIAccountForm.label.user.social-info.github.userName=#{word.githubUsername}:

Used in OrganizationPortlet (when editting a profile from the Administration menu).
UIUserInfo.label.user.social-info.github.userName=#{word.githubUsername}:

Used when a user edits his profile from Settings menu.
UIAccountSocial.label.user.social-info.github.userName=#{word.githubUsername}:

In UI when viewing a user profile, these keys are used to label the
GitHub account fields. See the inline comment.

	Add the stylesheet in the file login.css under extension module:

.uiLogin .loginContent #social-pane #social-login a .github {
 background-image: url("/github-oauth-extension/skin/githubIcon.png");
 width: 37px;
 height: 35px;
 display: block;
 background-repeat: no-repeat;
}
 .uiLogin .loginContainer .loginContent #social-pane #social-login a .github {
 background-image: url("/github-oauth-extension/skin/githubIcon.png");
 width: 37px;
 height: 35px;
 display: block;
 background-repeat: no-repeat;
 }

This CSS is applied to the login page. The framework automatically
adds elements with class “github” (lowercase) to the page, so the CSS
selectors are fixed.

	Register the stylesheet resource in gatein-resources.xml:

<gatein-resources xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.gatein.org/xml/ns/gatein_resources_1_3 http://www.gatein.org/xml/ns/gatein_resources_1_3"
 xmlns="http://www.gatein.org/xml/ns/gatein_resources_1_3">
 <portlet-skin>
 <application-name>portal</application-name>
 <portlet-name>login</portlet-name>
 <skin-name>Default</skin-name>
 <css-path>/skin/login.css</css-path>
 </portlet-skin>
</gatein-resources>

For the extension configuration and the packaging, refer to eXo Add-ons
chapter.

Testing

Looking at your XML configuration in service module, the processor
initialization requires the clientId and clientSecret. To test your
addon, configure the file exo.properties (see Configuration overview
for this file) like this:

exo.oauth.github.enabled=true
exo.oauth.github.clientId=3c7ca5b983626278703c
exo.oauth.github.clientSecret=6fa09a1e8d662914f80ec1a8389ae054065ceb40

The redirectURL parameter is generated based on
exo.base.url property.
You do not need to configure it while testing localhost:8080.

Developing your own validator

The user-configurable validator is implemented by the
org.exoplatform.webui.form.validator.UserConfigurableValidator
class.

To validate a field using a user-configurable validator, add the
validator to the field like the example below:

addValidator(UserConfigurableValidator.class, validatorName);

where validatorName is a String that must match a validator name
configured in
exo.properties file.

You can see more codes of adding a validator to a field via
UIAccountProfiles.java [https://github.com/gatein/gatein-portal/blob/3.6.x/webui/portal/src/main/java/org/exoplatform/portal/account/UIAccountProfiles.java].

The validator instance can then be configured by adding the relevant
information in
exo.properties file, for
example:

validators
gatein.validators.{validatorName}.length.min=5
gatein.validators.{validatorName}.length.max=10
gatein.validators.{validatorName}.regexp=^u\\d{4,9}$
gatein.validators.{validatorName}.format.message=This value must start with ''u'' and be followed by 4 to 9 digits

Note

The regular expressions used for validation are `Java Regular
Expressions <http://docs.oracle.com/javase/tutorial/essential/regex/index.html>`__.

Alternatively, a resource key can also be passed to the addValidator
method to specify which localized message should be used in case a
validation fails, for example:

addValidator(UserConfigurableValidator.class, validatorName, localizationKey);

In which, localizationKey is defined in a resource bundle.

eXo Platform APIs

This chapter includes introduction to eXo Platform APIs overall, and
tutorials that help you get familiar with some APIs in particular.

	Definitions of API Levels
Information on APIs’ level.

	Platform API
A list of APIs at Platform level:

	Java API

	REST API

	JavaScript API

	Web Services

	Provisional API
A list of API at Provisional level.

	Working with eXo REST APIs
Tutorials that help you develop your eXo REST client in
Java/JavaScript.

	Portal API
Tutorials helping you to retrieving, creating and deleting Portal
Sites and Portal Pages.

Definitions of API Levels

APIs vary according to the maturity level. It is important to understand
the eXo Platform’s general approach to the API change management. The
different levels of API are described in the following table:

	API Level

	Test Suite

	Clients

	Documentation

	Support

	Compatibility X.Y.Z(1)

	Compatibility X.Y(1)

	Platform API

	[image: image22]

	[image: image23]

	[image: image24]

	[image: image25]

	[image: image26]

	[image: image27]

	Provisional API

	[image: image28]

	[image: image29]

	[image: image30]

	[image: image31]

	[image: image32]

	[image: image33]

	Experimental API

	[image: image34]

	[image: image35]

	[image: image36]

	Best effort

	Best effort

	[image: image37]

	Unsupported API

	[image: image38]

	[image: image39]

	[image: image40]

	[image: image41]

	[image: image42]

	[image: image43]

Test Suite: A suite of tests that can be run against the API to
detect changes.

Clients: The API has been used successfully by at least 2 different
teams, using the API Documentation only.

Documentation: The API has a clean JavaDoc and reference
documentation.

Support: The eXo Support team provides help on the code that uses
this API, and fixes any reported bugs.

Compatibility X.Y.Z(1): The compatibility between maintenance
versions (X.Y.Z and X.Y.Z1) is guaranteed. If there is any change
between X.Y and X.Y1, the eXo Support team will help by upgrading the
code.

Compatibility X.Y(1): The compatibility between minor versions (X.Y
and X.Y1) is guaranteed. If there is any change between X and X1, the
eXo Support team will help by upgrading the code.

Best Effort: You will receive assistance, but eXo Platform cannot
guarantee any specific result.

Use Provisional or Experimental API

These APIs are provided to give an “early look” at which will be
available in upcoming versions of eXo Platform. These APIs are not final, but
they can be used to start developing your application.

Provisional API are APIs close to being frozen, but that need a last
look from users. They can be used by third-party developers for their
own apps, with the knowledge that only a limited compatibility guarantee
is offered.

Experimental API are APIs that are likely to change. They are
published to get feedback from the community. These API have been tested
successfully, but have not yet had enough feedback from developers.

Platform API

This section summarizes a list of eXo Platform API which can be
categorized into:

Java API

A Java API documentation is now available in a Javadoc format and
regularly updated to provide developers with in-depth information about
new features in eXo Platform.

See Java API Documentation 5.1 [https://docs.exoplatform.org/PLF50/java-api/]
for more details.

REST API

eXo Platform provides REST APIs and resources to developers who want to
integrate eXo services into their applications.

See REST API Documentation 5.0 for more
details.

JavaScript API

	`OpenSocial 2.5.1 Gadget
Specification: <http://opensocial.github.io/spec/2.5.1/Social-Gadget.xml>`__
A standard that defines how to write gadgets and provide APIs.
Gadgets are particularly useful for integrating external applications
into eXo Platform.

Web Services

	`CMIS: <#eXoAddonsGuide.CMIS>`__ A standard API that gives access
to the content repository via REST and SOAP Web services.

	`FTP: <../../../reference/html/JCR.FTP.html>`__ A standard
protocol for exchanging documents.

	`OpenSocial 2.5.1 REST
Protocol: <http://opensocial.github.io/spec/2.5.1/Social-API-Server.xml>`__
A standard API for accessing the social graph and activity streams.

	`WebDAV: <../../../reference/html/JCR.WebDAV.html>`__ A standard
protocol for exchanging document over HTTP.

Provisional API

Java API

	UI Extensions: An API to plug new UI component to eXo applications.

	UI Extension in Social

	UI Extension in Content

	UI Extension in Wiki

Working with eXo REST APIs

New REST APIs introduced in Platform 4.x

This part of the Developer guide introduced two REST APIs. These “v1”
APIs are at Experimental level.

	/v1/calendar allows developers to work with eXo Calendar, is
available as of 4.2.

	/v1/social allows developers to work with eXo Social, in other
words, with user profile, connection, activity and space objects. It
is new in 4.4.

Base URL and Rest context

Here is an example of the full URL:
http://localhost:8080/rest/private/v1/social/users.

	You should use the URL /rest/private to access the APIs.

While you can also use /portal/rest, notice the /rest context is
designed for secure accesses to the Rest services, so it is recommended.
You can omit /private for an anonymous access, however almost all
methods of the two APIs require authentication.

Note

The paths are case-sensitive. For example, use
/v1/social/usersRelationships, don’t use
/v1/social/usersrelationships.

Useful resources and tools

If you want to start from learning concepts of REST framework, you
should read the Java (Oracle) documentation:

	https://docs.oracle.com/javaee/7/tutorial/jaxrs.htm#GIEPU

If you want to test the two APIs simply, a good way is using a web
browser with plugins for Rest and JSON. For example with Chrome, you can
install Advanced Rest Client and JSON Formatter extensions.

The following tutorials help you develop your eXo REST client in Java
and JavaScript. The sample projects can be found at
GitHub [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api].

	Authentication

	Calendar REST API

	Social REST API

Authentication

Almost all the Rest operations (methods) require authentication. An
authenticated user is used to check the access permission to the
requested resource, but not only for that. For example, a POST to
/rest/private/v1/social/spaces will create a space and set the
authenticated user as the space manager.

At server side, within the method’s code, the authenticated user Id is
typically got via ConversationState:

String currentUserId = ConversationState.getCurrent().getIdentity().getUserId();

From the client, you can use Basic Authentication to have a user
authenticated.

If the user is requesting a resource via your gadget, or just by hitting
the URL in a browser, using /rest/private is the way to make sure
he/she gets prompted to enter username and password, rather than getting
an Unauthorized error.

Via a tool like curl, you can use -u option:
curl -X GET -uroot:gtn http://localhost:8080/rest/private/v1/calendar.

If you are developing a Java application using URLConnection, basically
you have to add “Authorization” header to every request:

URL url = new URL("http://localhost:8080/rest/private/v1/calendar/calendars");
String auth = new sun.misc.BASE64Encoder().encode("root:gtn".getBytes());
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod("GET");
connection.setRequestProperty("Authorization", "Basic " + auth);
connection.connect();

In the Java examples of these tutorials, the application is a standalone
that serves a single user at once. In this case, the procedure above can
be automatically done by setting a default Authenticator:

import java.net.Authenticator;
import java.net.PasswordAuthentication;
//...
@SuppressWarnings("restriction")
 public static void login(String username, String password) {
 final String username_ = username;
 final String password_ = password;
 Authenticator.setDefault(new Authenticator() {
 @Override
 public PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(username_, password_.toCharArray());
 }
 });
 }

Notice with this method, the first signed username is cached (during the
live time of the JVM) and will not be unset by calling login() with
another user. So if you want to switch to another user, you need to
clear the AuthCache first:

sun.net.www.protocol.http.AuthCacheValue.setAuthCache(new sun.net.www.protocol.http.AuthCacheImpl());

Calendar Rest API

Note

The /v1/calendar Rest API, available as of Platform 4.2, is considered Experimental. It is the new substitute of the deprecated /cs/calendar Rest API.

The Calendar Rest API meets the common requirements of new eXo Platform
Rest services. Here are some tips that help you quickly get familiar
with the service:

	CRUD operations: There are four verbs used for CRUD operations:
GET for Read, POST for Create, PUT for Update, and DELETE.

All methods consistently use JSON to transfer data in
requests/reponses.

	Query limit: A GET method can query a single item or a
collection. In case of collection, there is a query limit on the
server side that limits the number of items returned. This is
configurable
for effective performance.

To get the entire collection or implement some kinds of paging in
your client, you rely on the three parameters: returnSize,
limit and offset.

	Queries for Events, Tasks and Occurrences always have finite time
parameters. By default the time range is one week from the current
server time.

In the next tutorials, you will learn the access permission and
Java/JavaScript code samples to use the API:

	Authorization

	Java client samples

	JavaScript client samples

	Service configuration

Authorization

All the methods of the API require an authenticated user, and will
access the resources on behalf of that user.

While a permission can be the ownership or read or write, generally a
user can have permissions to the following resources:

	Calendars: His personal calendars, calendars of the groups that he
belongs (for example, space calendar), and calendars that are shared
to him and his groups.

	Events/Tasks: When the user has access to a calendar, he has access
to its events and tasks. He also has access to an event or task if he
is a participant or delegatee.

	Occurrences: When the user has access to a (recurring) event, he
can read its occurrences. The API does not support the way to edit
individual occurrences.

	Invitations: When the user has access to an event, he has access to
its invitations.

	Attachments: When the user has access to an event or task, he has
access to its attachments.

	Categories: Any user has write access to his personal categories
and read access to common categories.

	Feeds: Feeds are always personal, so any user has access only to
the feeds created by him.

Java client samples

The source of this sample can be found at eXo Docs-samples
Repository [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-calendar-java-client].

The project implements an eXo Calendar Rest Connector that supports some
main CRUD operations for demo, that you can read over the
ExoCalendarConnectorInterface.java:

public interface ExoCalendarConnectorInterface {

 // Calendar : GET, GET, POST, PUT, DELETE.
 public ExoCalendarCollection getCalendars() throws Exception;
 public ExoCalendar getCalendarById(String calendar_id) throws Exception;
 public String createCalendar(ExoCalendar calendar) throws Exception;
 public int updateCalendar(ExoCalendar calendar, String calendar_id) throws Exception;
 public int deleteCalendar(String calendar_id) throws Exception;

 // Event : GET, GET, POST, PUT, DELETE.
 public ExoEventCollection getEventsByCalendarId(String calendar_id) throws Exception;
 public ExoEvent getEventById(String event_id) throws Exception;
 public String createEvent(ExoEvent event, String calendar_id) throws Exception;
 public int updateEvent(ExoEvent event, String event_id) throws Exception;
 public int deleteEvent(String event_id) throws Exception;

 // Task : GET, GET, POST, PUT, DELETE.
 public ExoTaskCollection getTasksByCalendarId(String calendar_id) throws Exception;
 public ExoTask getTaskById(String task_id) throws Exception;
 public String createTask(ExoTask task, String calendar_id) throws Exception;
 public int updateTask(ExoTask task, String task_id) throws Exception;
 public int deleteTask(String task_id) throws Exception;

 // Attachment (of event) : GET, GET, POST, DELETE.
 public AttachmentCollection getAttachmentsByEventId(String event_id) throws Exception;
 public Attachment getAttachmentById(String attachment_id) throws Exception;
 public String createAttachment(List<Path> paths, String event_id) throws Exception;
 public int deleteAttachment(String event_id) throws Exception;

 // Invitation : GET, GET, POST, PUT, DELETE.
 public InvitationCollection getInvitationsByEventId(String event_id) throws Exception;
 public Invitation getInvitationById(String invitation_id) throws Exception;
 public String createInvitation(Invitation invitation, String event_id) throws Exception;
 public int updateInvitation(Invitation invitation, String invitation_id) throws Exception;
 public int deleteInvitation(String invitation_id) throws Exception;
}

The overview of the project:

	ExoCalendarConnector.java (the Connector) implements the above
functions. It also provides a static Gson object.

	org.exoplatform.calendar.client.model.* provides POJO classes
that represent JSON request/response data. The models will be used by
Gson that helps you parse JSON data effectively.

	org.exoplatform.calendar.client.rest.connector.HttpUtils provides
Http Verbs, so the Connector does not need to care about setting up a
Http client and sending requests.

JSON Parsing

You can use
Gson [https://sites.google.com/site/gson/gson-user-guide],
Jackson [http://wiki.fasterxml.com/JacksonDocumentation] or
alternate libraries to parse JSON to Java object and vice versa.

Gson is used in this sample. Its dependency is:

<dependency>
 <groupId>com.google.code.gson</groupId>
 <artifactId>gson</artifactId>
 <version>2.3.1</version>
</dependency>

You should write POJO classes for every object you want to work with.
See the classes in org.exoplatform.calendar.client.model package.
The following is the ExoCalendar POJO:

package org.exoplatform.calendar.client.model;
public class ExoCalendar {

 String editPermission;
 String viewPermission;
 String privateURL;
 String publicURL;
 String icsURL;
 String color;
 String name;
 String type;
 String owner;
 String timeZone;
 String description;
 String[] groups;
 String href;
 String id;

 // Getters and setters.
 // ...
}

To serialize the object to a JSON string, or deserialize:

Gson gson = new Gson();
// serialize object to JSON
String json = gson.toJson(calendar_object);
// parse JSON to an object
ExoCalendar new_calendar_object = gson.fromJson(json, ExoCalendar.class);

The JSON string that is returned from a single calendar query:

{
"editPermission": "",
"viewPermission": "",
"privateURL": null,
"publicURL": null,
"icsURL": "http://localhost:8080/rest/private/v1/calendar/calendars/john-defaultCalendarId/ics",
"description": null,
"color": "asparagus",
"timeZone": "Europe/Brussels",
"groups": null,
"name": "John Smith",
"type": "0",
"owner": "john",
"href": "http://localhost:8080/rest/private/v1/calendar/calendars/john-defaultCalendarId",
"id": "john-defaultCalendarId"
}

A collection query JSON always looks like this:

{
"limit": 10,
"data": [
 {calendar1},
 {calendar2}
],
"size": -1,
"offset": 0
}

The POJO for collection:

public class ExoCalendarCollection {

 int limit;
 int size;
 int offset;
 ExoCalendar[] data;

 // Getters and setters.
 // ...
}

ISO8601 DateTime format

Some key fields require a correct DateFormat to parse/format:

	To query events/tasks of a certain time, you need to send a couple of
start and end time strings in ISO8601 format.

	The fields “from” and “to” in Event/Task JSON are ISO8601 too.

In Java 7, you can use SimpleDateFormat with the following pattern
to parse/format those fields:

DateFormat df = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSXXX");
Date date1 = new Date();
//format
String s = df.format(date1);
//parse
Date date2 = df.parse(s);

However, the pattern may not work in other Platforms. Another approach
is to re-use eXo’s ISO8601 class. It is potentially helpful when you
need to parse ‘Z’ timezone.

The source is
here [https://github.com/exoplatform/kernel/blob/master/exo.kernel.commons/src/main/java/org/exoplatform/commons/utils/ISO8601.java].
You can use the following Maven dependency:

<dependency>
 <groupId>org.exoplatform.kernel</groupId>
 <artifactId>exo.kernel.commons</artifactId>
</dependency>

The code sample of using this util:

import org.exoplatform.commons.utils.ISO8601;
//
String s1 = "2015-01-15T05:00:000Z";
Calendar cal = ISO8601.parse(s1);
System.out.println(cal.getTime());

String s2 = ISO8601.format(cal);
System.out.println(s2);

Using HttpURLConnection for CRUD requests

You need a Http Client to send requests to the Rest service. In the
sample, java.net.HttpURLConnection is used.

Here is the code for sending a GET. The result string then can be
converted to a Calendar or Event or some object accordingly.

import java.net.HttpURLConnection;
import java.net.URL;
import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
 // GET
 public static String get(String url) throws Exception {
 HttpURLConnection connection = (HttpURLConnection) (new URL(url)).openConnection();
 connection.setRequestMethod("GET");
 connection.connect();

 int code = connection.getResponseCode();
 if (code > 300) {
 connection.disconnect();
 return null;
 }
 InputStream in = connection.getInputStream();
 BufferedReader reader = new BufferedReader(new InputStreamReader(in));
 String line = null;
 StringBuilder builder = new StringBuilder();
 while ((line = reader.readLine()) != null) {
 builder.append(line).append("\n");
 }
 in.close();
 reader.close();
 connection.disconnect();
 return builder.toString();
 }

For a POST request, pay attention to set the request method and the
content-type:

import java.io.DataOutputStream;

 // POST
 public static String post(String json, String url) throws Exception {
 HttpURLConnection connection = (HttpURLConnection) (new URL(url)).openConnection();
 connection.setRequestMethod("POST");
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setRequestProperty("Content-Type", "application/JSON");

 // Write to the connection output stream.
 DataOutputStream out = new DataOutputStream(connection.getOutputStream());
 out.writeBytes(json);

 int code = connection.getResponseCode();
 if (code > 300) {
 out.flush();
 out.close();
 connection.disconnect();
 return null;
 }
 String href = connection.getHeaderField("Location");
 out.flush();
 out.close();
 connection.disconnect();
 return href;
 }

Here you see value of the (response) header “Location” is returned. All
the Create operations should return this on success. For example when
you create an Event, the event’s href (a URL to continue to get the
created event) is returned.

See PUT and DELETE code in HttpUtils.java.

CRUD Examples

With the POJO models, CRUD operations are very similar between kinds of
objects. Hereunder is a code sample to do a chain of tasks:

- create a calendar
- create an event
- update the event
- delete the event
- delete the calendar

 ExoCalendarConnector connector = new ExoCalendarConnector("http://localhost:8080");

String created = Long.toString(System.currentTimeMillis());

// Create calendar.
ExoCalendar calendar = new ExoCalendar();
calendar.setType("0");
calendar.setName(created);
connector.createCalendar(calendar);

// Get the list of calendars and search for one.
String calendar_id = null;
ExoCalendar[] calendars = connector.getCalendars().getData();
int len = calendars.length;
for (int i = 0; i < len; i++) {
 if (calendars[i].getName().equals(created)) {
 calendar_id = calendars[i].getId();
 }
}

// Create event.
ExoEvent event = new ExoEvent();
event.setSubject(created);
Date from = new Date((new Date()).getTime() + TimeUnit.DAYS.toMillis(1)); //from = tomorrow
Date to = new Date(from.getTime() + TimeUnit.HOURS.toMillis(4)); //to = from + 4 hours
event.setFrom((new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSZ")).format(from));
event.setTo((new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss.SSSZ")).format(to));
String href = connector.createEvent(event, calendar_id);
System.out.println("Event created, href : " + href);

// Get the list of events then get an event specified by id.
ExoEvent[] events = connector.getEventsByCalendarId(calendar_id).getData();
len = 0; len = events.length; String event_id = null;
for (int i = 0; i < len; i++) {
 if (events[i].getSubject().equals(created)) {
 event_id = events[i].getId();
 }
}
ExoEvent new_event = connector.getEventById(event_id);
System.out.println("Event found, its from is : " + new_event.getFrom());

// Update the event.
new_event.setDescription(created);
System.out.println("Update event, response code : " + connector.updateEvent(new_event, event_id));

// Delete the event.
System.out.println("Delete event, response code : " + connector.deleteEvent(event_id));

// Delete the calendar.
System.out.println("Delete calendar, response code : " + connector.deleteCalendar(calendar_id));

Uploading attachment files

eXo Rest framework uses Apache upload service, then you need to send
files in multipart/form-data in order to create attachments. The
following code shows how to send a POST with multipart content. The
method accepts a list of java.nio.file.Path, for each Path the file data
is written to a content part with boundary.

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;

import java.io.DataOutputStream;
import java.net.HttpURLConnection;
import java.net.URL;

 // UPLOAD
 public static String upload(List<Path> paths, String url) throws Exception {
 // form-data stuffs
 String crlf = "\r\n";
 String twoHyphens = "--";
 String boundary = "*****";
 String attachmentName;
 String attachmentFileName;
 byte[] data;

 // set up the connection
 HttpURLConnection connection = (HttpURLConnection) (new URL(url).openConnection());
 connection.setRequestMethod("POST");
 connection.setDoOutput(true);
 connection.setUseCaches(false);
 connection.setRequestProperty("Cache-Control", "nocache");
 connection.setRequestProperty("Connection", "Keep-Alive");
 connection.setRequestProperty("Content-Type", "multipart/form-data; boundary=" + boundary);

 // write to connection output stream
 DataOutputStream out = new DataOutputStream(connection.getOutputStream());
 int len = paths.size();
 for (int i = 0; i < len; i++) {
 attachmentFileName = paths.get(i).getFileName().toString();
 attachmentName = attachmentFileName;
 data = Files.readAllBytes(paths.get(i));
 out.writeBytes(twoHyphens + boundary + crlf);
 out.writeBytes("Content-Disposition: form-data;"
 + "name=\"" + attachmentName + "\";"
 + "filename=\"" + attachmentFileName + "\"" + crlf);
 out.writeBytes(crlf);
 out.write(data);
 out.writeBytes(crlf);
 }
 out.writeBytes(twoHyphens + boundary + twoHyphens + crlf);

 int code = connection.getResponseCode();
 if (code > 300) {
 out.flush();
 out.close();
 connection.disconnect();
 return null;
 }
 String href = connection.getHeaderField("Location");
 out.flush();
 out.close();
 connection.disconnect();
 return href;
 }

JavaScript client samples

eXo Platform provides a great advance of using REST APIs so that you can use
any web development language to access them. In this section, standard
Ajax GET, PUT, DELETE and POST methods are used. This part instructs you
how to leverage these APIs to work with Calendar objects, including:

	Calendars

	Events

	Tasks

	Others (attachments, occurrences, invitations, categories and feeds) <PLFDevGuide.eXoPlatformAPIs.RestAPIs.Calendar.JavaScript.Others>

See here for more details of
which Calendar APIs are provided. Note that you can download all the
source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/master/rest-api/calendar/rest-calendar-javascript-client].

Refer to thisguide
to create a gadget with the following structure:

[image: image0]

Follow instructions there to set suitable configurations, except the
main body (CalendarHTTPRequestGadget.xml) of the gadget which will
be replaced in each part below.

Calendars

eXo Platform provides APIs to
create [https://docs.exoplatform.org/PLF50/rest-api/calendar/CalendarRestApi.createCalendar.html],
update [https://docs.exoplatform.org/PLF50/rest-api/calendar/CalendarRestApi.updateCalendarById.html],
delete [https://docs.exoplatform.org/PLF50/rest-api/calendar/CalendarRestApi.deleteCalendarById.html]
and get
information [https://docs.exoplatform.org/PLF50/rest-api/calendar/CalendarRestApi.getCalendarById.html]
of a calendar.

Getting information of a calendar

	Replace content of the CalendarHTTPRequestGadget.xml file with
this script:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Calendar HTTP Request Gadget">
 <Require feature="opensocial-0.8" />
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>
 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="calendar-show" style="max-width: 800px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for getting default calendar of the current logged-in user
 <button id="get_default_cal_btn" onclick="getDefaultCalendar()" class="btn btn-primary" >Get default calendar</button>
 //control button for getting a calendar by id
 <button id="get_calid_btn" onclick="getCalendarById()" class="btn btn-primary">Get calendar by id</button><input type="text" id="calid_txt" placeholder="Enter calendar id...">
 </div>
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 //get the current logged-in user via OpenSocial
 var current_user;
 loadViewer();
 function loadViewer() {
 var req = opensocial.newDataRequest();
 req.add(req.newFetchPersonRequest(opensocial.IdSpec.PersonId.VIEWER), 'viewer');
 req.send(onLoadViewer);
 }
 function onLoadViewer(data) {
 var viewer = data.get('viewer').getData();
 //get current user
 current_user = viewer.getId();
 }]]>
 </Content>
</Module>

	Deploy this gadget. You will see what is going next.

[image: image1]

This UI offers 2 functions which are: getting the default calendar or
retrieving other calendars by entering a specified Id.

	Implement the getDefaultCalendar() function by adding the
following source code to the Javascript paragraph of the gadget:

function getDefaultCalendar(){
 //get default calendar of the current logged-in user
 //This function uses AJAX to send GET request to
 //Calendar REST API GET /rest/private/v1/calendar/calendars/
 $.ajax({
 type: "GET",
 url: "/rest/private/v1/calendar/calendars/"+current_user+"-defaultCalendarId",
 success: function (data, status, jqXHR) {
 processGetCalendar(data);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }

The above function uses an Ajax GET request. It calls the REST API
/rest/private/v1/calendar/calendars/ and passes *-defaultCalendarId
which is the default calendar’s Id of the current logged-in user. If
successful, the result will then be passed through the
processGetCalendar() function. This function will be implemented
later.

	Consider how to get and pass the entered calendar Id to this REST API
instead of hard-coding it by adding the source code:

function getCalendarById(){
 //get the entered calendar id
 var cal_id=$('#calid_txt').val();
 //This function uses AJAX to send GET request to
 //Calendar REST API GET /rest/private/v1/calendar/calendars/
 $.ajax({
 type: "GET",
 url: "/rest/private/v1/calendar/calendars/"+cal_id,
 success: function (data, status, jqXHR) {
 //print the result
 processGetCalendar(data);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }

This function uses JQuery to get value of the text box for entering
calendar Id and pass it to url parameter of this call. Now, it’s
time to process returned results!

The data returned from a Calendar GET request is under a JSON object.
Therefore, you could implement the processGetCalendar() as below:

function processGetCalendar(results){
 //clean the old screen
 $("#calendar-result").remove();
 //add calendar object's information
 var obj_content="<div id=\"calendar-result\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th>Properties</th><th>Value</th></tr></thead><tbody>";
 //loop through the calendar object's properties
 $.each(results, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value+"</td></tr>";
 });
 //add closing tag
 obj_content+="<tr><td>Execute functions</td><td><button id=\"submit_cal_btn\" onclick=\"updateCalendar()\">Update</button> <button id=\"delete_cal_btn\" onclick=\"deleteCalendar()\">Delete</button></td></tr></tbody></table></div>";
 //print to screen
 $('#calendar-show').append(obj_content);
 }

	Deploy and test the gadget to see what has been done by clicking Get
default calendar. You will see the default calendar’s information
displayed:

[image: image2]

To test the Get calendar by id function, move to the next part of
creating a new calendar.

Creating a new calendar

	Add a control button in front of others like this:

...
 //control button for creating a new calendar
 <button id="create_cal_btn" onclick="createCalendar()" class="btn btn-primary">Create a new calendar</button>
 //control button for getting default calendar of the current logged-in user
 <button id="get_default_cal_btn" onclick="getDefaultCalendar()" class="btn btn-primary" >Get default calendar</button>
 //control button for getting a calendar by id
 <button id="get_calid_btn" onclick="getCalendarById()" class="btn btn-primary">Get calendar by id</button><input type="text" id="calid_txt" placeholder="Enter calendar id...">
 ...

	Implement the createCalendar() function as below:

function createCalendar(){
 //clean the old screen
 $("#calendar-result").remove();
 //add a simple calendar input form
 $('#calendar-show').append("<div id=\"calendar-result\"><table class=\"uiGrid table table-hover table-striped\">"+
 "<thead><tr><th>Properties</th><th>Value</th></tr></thead><tbody>"+
 "<tr><td>Name</td><td><input type=\"text\" id=\"cal-name\"></td></tr>"
 +"<tr><td>Type</td><td><select id=\"cal-type\"><option value=\"0\">Personal calendar</option></select></td></tr>"
 +"<tr><td>Description</td><td><textarea id=\"cal-description\" rows=\"4\" cols=\"50\"></textarea></td></tr>"
 +"<tr><td>Color</td><td><select id=\"cal-color\"><option value=\"red\">Red</option><option value=\"yellow\">Yellow</option></select></td></tr>"
 +"<tr><td>Execute functions</td><td><button id=\"create_cal_btn\" onclick=\"submitCalendar()\">Submit</button></td></tr>"
 +"</tbody></table></div>");
 }

This UI allows to create a simple calendar with properties, such as
name, type, description and color.

	Create an Ajax POST request to call this API [https://docs.exoplatform.org/PLF50/rest-api/calendar/]
by implementing the submitCalendar() as follows:

function submitCalendar(){
 //get entered cal_json_obj
 var cal_json_obj={
 "name":$("#cal-name").val(),
 "owner": current_user,
 "type":$("#cal-type").val(),
 "description":$("#cal-description").val(),
 "color":$("#cal-color").val()
 };
 $.ajax({
 url: "/rest/private/v1/calendar/calendars",
 contentType: "application/json",
 data: JSON.stringify(cal_json_obj),
 method: "POST"
 }).done(function (data, status, xhr) {
 //clean the old screen
 $("#calendar-result").remove();
 //get the newly created calendar id
 var locat=xhr.getResponseHeader('Location');
 var new_cal = locat.split("calendar/calendars/");
 $('#calendar-show').append("<div id=\"calendar-result\"><i>Created successfully! Calendar id: "+new_cal[1]+"</i></div>");
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

This script passes the user input as a JSON object to the POST request.
If successful, the returned result will be the newly created calendar
Id.

	Deploy this gadget to see the input form for creating a new calendar,
and fill in this form like:

[image: image3]

	Click Submit button to execute this function and see the message
informing that you have successfully created a new calendar. For
example: “Created successfully! Calendar id:
calendard94b0488c0a8043a7f3b0da4a6318abf”.

To check the new calendar, copy the attached Id in this message and
paste it to the input text of the Get calendar by id function. You will
see its information displayed.

[image: image4]

Updating a calendar

It is assumed that you need to update properties of a calendar, for
instance its name and description. To avoid passing local variables too
many times, you will use a global one called “current_cal_obj”
that points to the processing calendar object.

	Add a declaration of this variable to the Javascript paragraph of the
gadget:

var current_cal_obj;

Now, each time you query a calendar, this variable should be updated by
adding the script:

current_cal_obj=results;

to the processGetCalendar() function in getting information of a calendar.

	Implement the updateCalendar() function as follows:

function updateCalendar(){
 //clean the old result
 $("#calendar-result").remove();
 //add new calendar object's information
 var obj_content="<div id=\"calendar-result\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th>Properties</th><th>Value</th></tr></thead><tbody>";
 //loop through the new calendar object's properties
 $.each(current_cal_obj, function(key, value) {
 if((key=="name")||(key=="description")){
 obj_content+="<tr><td>"+key+"</td><td><textarea id=\"cal-"+key+"\">"+value+"</textarea></td></tr>";
 }
 else {
 obj_content+="<tr><td>"+key+"</td><td>"+value+"</td></tr>";
 }
 });
 //add closing tag
 obj_content+="<tr><td>Execute functions</td><td><button id=\"submit_cal_btn\" onclick=\"submitFullCalendar()\">Submit</button> <button id=\"delete_cal_btn\" onclick=\"deleteCalendar()\">Delete</button></td></tr></tbody></table></div>";
 //add to screen
 $('#calendar-show').append(obj_content);
 }

As seen above, you can easily manage the information of the processing
calendar object through the global variable.

	Deploy the gadget and select a specific calendar, for instance the
default one. Then, click the Update button, you will see the name
and description fields enabled for editing mode:

[image: image5]

If you click the Submit button, nothing happens since you have not
implemented the submitFullCalendar() function. To make an update
query, you need to send an Ajax PUT request as follows:

function submitFullCalendar(){
 //get changed properties
 current_cal_obj.name=$("#cal-name").val();
 current_cal_obj.description=$("#cal-description").val();
 $.ajax({
 url: "/rest/private/v1/calendar/calendars/"+current_cal_obj.id,
 contentType: "application/json",
 data: JSON.stringify(current_cal_obj),
 method: "PUT"
 }).done(function (data, status, xhr) {
 $("#calendar-result").remove();
 $('#calendar-show').append("<div id=\"calendar-result\"><i>Updated successfully!</i></div>");
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

	Add this function to the Javascript paragraph of the gadget and
redeploy it. Now, test your update function and see how it works!

Deleting a calendar

To delete a calendar, you need to make an Ajax DELETE request by
implementing the deleteCalendar() function as follows:

function deleteCalendar(){
 $.ajax({
 url: "/rest/private/v1/calendar/calendars/"+current_cal_obj.id,
 method: "DELETE"
 }).done(function () {
 $("#calendar-result").remove();
 $('#calendar-show').append("<div id=\"calendar-result\"><i>Deleted successfully!</i></div>");
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

This function gets the processing calendar Id from the global variable
“current_cal_obj” for passing to the url parameter. And now,
deploy this gadget to test this function.

Events

eXo Platform provides APIs to
create,
update,
delete
and get
information
of an event. An event is represented as a JSON object as follows:

{
 //Where the event is organized
 "location": "",
 //Priority of the event
 "priority": "",
 //Detailed description of the event
 "description": "",
 //Title of the event
 "subject": "",
 //Which calendar the event belongs to
 "calendar": "",
 //Status of the event, for example "busy"
 "availability": "",
 //All attachments of the event
 "attachments": [],
 //Recurrence id of the event
 "recurrenceId": "",
 //Id of the category which the event belongs to
 "categoryId": "",
 //Repetition information of the event
 "repeat": {},
 //Settings for reminding the event
 "reminder": [],
 //Privacy of the event
 "privacy": "",
 //Starting time of the event
 "from": "",
 //Link to the category the event belongs to
 "categories": [],
 //Ending time of the event
 "to": "",
 //Original event if any
 "originalEvent": "",
 //All participants of the event
 "participants": [],
 //Id of the event
 id": "",
 //Link to the event
 "href": ""
 }

Getting information of an event

To retrieve information of an event, you need to send an Ajax GET
request to /rest/private/v1/calendar/events/ by the following script:

function getEventById(){
 $.ajax({
 type: "GET",
 url: "/rest/private/v1/calendar/events/"+event_id,
 success: function (data, status, jqXHR) {
 //process the returned data here
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }

In which, event_id is Id of the event that you want to retrieve
information. This request returns the information under a JSON object as
indicated above.

Creating a new event

Declare a simple event object such as:

var new_event={
 "description": "Welcoming new comers in February",
 "subject": "Welcome event",
 "categoryId": "defaultEventCategoryIdMeeting",
 "privacy": "private",
 "from": "2015-07-30T04:30:00.000Z",
 "to": "2015-07-30T05:30:00.000Z"
 }

Use an Ajax POST request to send this object to
/rest/private/v1/calendar/calendars/{calendarId}/events as the
following script:

function createNewEvent(){
 $.ajax({
 url: "/rest/private/v1/calendar/calendars/"+current_user+"-defaultCalendarId"+"/events",
 contentType: "application/json",
 data: JSON.stringify(new_event),
 method: "POST"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("failed");
 });
 }

In which, the new event will be added to the default calendar of the
current logged-in user.

Updating an event

To update an event, you need to use this PUT request:

function updateEvent(){
 $.ajax({
 url: "/rest/private/v1/calendar/events/"+event_id,
 contentType: "application/json",
 data: JSON.stringify(new_content),
 method: "PUT"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("failed");
 });
 }

In which, event_id is Id of the event that you want to update, and
new_content is a JSON object containing new content of the event, for
example:

var new_content={
 "description": "Welcoming new comers in March",
 "subject": "Monthly welcome event",
 "categoryId": "defaultEventCategoryIdMeeting",
 "privacy": "public",
 "from": "2015-07-30T04:30:00.000Z",
 "to": "2015-07-30T05:30:00.000Z"
 }

Deleting an event

To delete an event, use the following DELETE request:

function deleteEvent(){
 $.ajax({
 url: "/rest/private/v1/calendar/events/"+event_id,
 method: "DELETE"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

In which, event_id is Id of the event that you want to delete.

Tasks

eXo Platform provides APIs to
create,
update,
delete
and get
information
of a task. A task is represented as a JSON object as follows:

{
 //Name of the task
 "name": "",
 //Priority of the task
 "priority": "",
 //Status of the task
 "status": "",
 //Which calendar the task belongs to
 "calendar": "",
 //Detailed note of the task
 "note": "",
 //Settings for reminding the task
 "reminder": [],
 //Which users are assgined
 "delegation": [],
 //Starting time
 "from": "",
 //Id of the category which the task belongs to
 "categoryId": "",
 //Ending time
 "to": "",
 //All attachments of the task
 "attachments": [],
 //Link to the category which the task belongs to
 "categories": [],
 //Id of the task
 "id": "",
 //Link to the task
 "href": ""
}

Getting information of a task

To retrieve information of a task, you can use a GET request as below:

function getTaskById(){
 $.ajax({
 type: "GET",
 url: "/rest/private/v1/calendar/tasks/"+task_id,
 success: function (data, status, jqXHR) {
 //process the returned data here
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }

In which task_id is Id of the task that you want to get information.
This request returns the result under a JSON object as indicated above.

Creating a new task

Declare a simple task object such as:

var new_task={
 "name": "Documentation blog",
 "note": "Writing a documentation blog for the next deployment",
 "from": "2015-07-30T04:30:00.000Z",
 "to": "2015-07-30T05:30:00.000Z",
 "delegation": [current_user, "john"]
 }

where this task will be assigned to current_user and john. Use an
Ajax POST request to send this object to
/rest/private/v1/calendar/calendars/{calendarId}/tasks as the
following script:

function createNewEvent(){
 $.ajax({
 url: "/rest/private/v1/calendar/calendars/"+current_user+"-defaultCalendarId"+"/events",
 contentType: "application/json",
 data: JSON.stringify(new_event),
 method: "POST"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("failed");
 });
 }

In which, the new task will be added to the default calendar of the
current logged-in user.

Updating a task

To update a task, you need to use this PUT request:

function updateTask(){
 $.ajax({
 url: "/rest/private/v1/calendar/tasks/"+task_id,
 contentType: "application/json",
 data: JSON.stringify(new_content),
 method: "PUT"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

In which, task_id is Id of the task that you want to update and
new_content is a JSON object containing new content of the task, for
example:

var new_content={
 "name": "Writing documentation blog",
 "note": "Writing a documentation blog for the next deployment in June",
 "from": "2015-05-30T04:30:00.000Z",
 "to": "2015-05-30T05:30:00.000Z",
 "delegation": ["john"]
 }

Deleting a task

To delete a task, use the following DELETE request:

function deleteTask(){
 $.ajax({
 url: "/rest/private/v1/calendar/tasks/"+task_id,
 method: "DELETE"
 }).done(function (data, status, xhr) {
 //process the returned data here
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
 }

In which, task_id is Id of the task that you want to delete.

Others

To deal with the other objects of Calendar (attachments, occurrences,
invitations, categories and feeds), eXo Platform provides full APIs for GET,
POST, PUT and DELETE requests:

	GET /v1/calendar/events/{id}/attachments: gets all attachments of
an event with a specified Id.

	GET /v1/calendar/attachments/{id}: gets an attachment with a
specified Id.

	POST /v1/calendar/events/{id}/attachments: creates an attachment
for an event with a specified Id.

	DELETE /v1/calendar/attachments/{id}: deletes an attachment with a
specified Id.

	GET /v1/calendar/events/{id}/occurrences: gets all occurrences of a
recurring event with a specified Id.

	GET /v1/calendar/categories: gets all categories of the current
logged-in user.

	GET /v1/calendar/categories/{id}: gets a category with a specified
Id.

	GET /v1/calendar/feeds/{id}: gets a feed with a specified Id.

	PUT /v1/calendar/feeds/{id}: updates a feed with a specified Id.

	DELETE /v1/calendar/feeds/{id}: deletes a feed with a specified Id.

	GET /v1/calendar/feeds/{id}/rss: gets RSS stream of a feed with a
specified Id.

	GET /v1/calendar/invitations/{id}: gets an invitation with a
specified Id.

	PUT /v1/calendar/invitations/{id}: updates an invitation with a
specified Id.

	DELETE /v1/calendar/invitations/{id}: deletes an invitation with a
specified Id.

	GET /v1/calendar/invitations/{id}: gets all invitations of an event
with a specified Id.

	POST /v1/calendar/events/{id}/invitations/: creates an invitation
for an event with a specified Id.

To call these APIs, simply follow the examples of
event,
task
and
calendar
objects. In this section, you will know how to work with sending
multipart/form-data via the POST /v1/calendar/events/{id}/attachments
API.

	Replace content of the CalendarHTTPRequestGadget.xml file with
this script:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Calendar HTTP Request Gadget">
 <Require feature="opensocial-0.8" />
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>
 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="calendar-show" style="max-width: 800px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 <form id="your_form_id" class="form-horizontal">
 <fieldset>
 <!-- Form name -->
 <legend>Add attachment</legend>
 <!-- Text input-->
 <label>Event: </label><input type="text" id="eventid_txt" placeholder="Enter event id...">

 <!-- File button -->
 <label>Attachment: </label><input id="file_attachment" name="pdf" class="input-file" type="file">

 <!-- Submit button -->
 <button id="submit" name="submit" class="btn btn-primary" align="center">Submit</button>
 </fieldset>
 </form>
 </div>
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 $(document).ready(function() {
 $('#your_form_id').submit(function(e) {
 e.preventDefault();
 var form_data = new FormData($(this)[0]);
 $.ajax({
 url : '/rest/private/v1/calendar/events/'+$('#eventid_txt').val()+'/attachments',
 type : 'POST',
 contentType : false,
 data : form_data,
 processData : false,
 success : function(data) {
 // Handle the response on success
 }
 });
 });
 });
 </script>
]]>
 </Content>
</Module>

This script creates a form which allows you to input 2 data fields. The
first one is Id of the event that you want to add an attachment, while
the second one is the attachment of this event.

	Deploy this gadget, you will see the following UI:

[image: image6]

In the POST request, the input event Id is passed to the url
parameter while the attached file is put into a FormData object.

	Enter an available event Id and browse to any local file that you
want to attach, for example a .doc file.

	Click Submit, then check attachments of the event. You will see the
.doc file is created.

Service configuration

Hereunder is the default configuration of the Calendar Rest service:

<component>
 <type>org.exoplatform.calendar.ws.CalendarRestApi</type>
 <init-params>
 <value-param>
 <name>query_limit</name>
 <value>10</value>
 </value-param>
 </init-params>
</component>

The parameter query_limit is used to limit the number of items
returned by a query. This applies on the methods that have query param
limit. If limit is absent or it exceeds query_limit, then
query_limit will be the maximum number of items a query can return.

For example, this query GET /v1/calendar/calendars?limit=20 sends an
exceeding limit, so only 10 or fewer items will be returned.

You can use a portal extension
to override the service configuration. In your custom-extension.war!/WEB-INF/conf/configuration.xml
write this configuration:

<?xml version="1.0" encoding="ISO-8859-1"?>
<configuration
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">
 <component>
 <type>org.exoplatform.calendar.ws.CalendarRestApi</type>
 <init-params>
 <value-param>
 <name>query_limit</name>
 <value>${exo.calendar.rest.query_limit:100}</value>
 </value-param>
 </init-params>
 </component>
</configuration>

This changes query_limit to 100, or to the value of
exo.calendar.rest.query_limit property if that property is set in
exo.properties file.

Social Rest API

Note

The /v1/social Rest API, available as of Platform 4.3, is considered Experimental.

The API aims at giving the ability to work with Social data models via
CRUD operations.

Here are some examples of what your client can feature using the API:

	Create a user, change his/her password, update their profile and
commit a logical deletion.

	Send, cancel or accept a connection (also called relationship)
request, remove a connection.

	Get content of an activity stream, comment or like/unlike an
activity.

	Create a space, update some fields, delete the space.

	Join an open space, leave the space or set a member as the space
manager.

To understand how such tasks can be done by CRUD operations, the next
tutorial will discuss the data models (as JSON entities). By that, you
will get your hand in the abilities and the current limitation of the
API.

Before starting the next tutorials, take a loot at some general
characteristics. In a similar manner as Calendar Rest API, the Social
API:

	Uses four Http verbs: GET for Read, POST for Create, PUT for Update,
and DELETE.

	Uses JSON data format.

	Uses the three parameters returnSize, limit and offset for
paging.

When working with DateTime parameters, Calendar API uses ISO8601 format.
With Social API you should always adjust the local DateTime values into
UTC.

In the next tutorials, you will learn the data models, the access
permission and Java/JavaScript code samples to use the API:

	Social data models as JSON entities

	Authorization

	Java client samples

	JavaScript client samples

Social data models as JSON entities

You might not have been well acknowledged of Social data models, but it
should not block you from writing apps with proper business logics.

As it is a CRUD API, knowing that a method basically targets only one
single entity, you will get into thinking how CRUD functions can be
used. For example, how to “request” to connect with someone and “accept”
a connection request? Here are three questions:

	which data entity you work on?

	which verb will be used to perform “request” and “accept”?

	which fields you want to change if it is an update?

This section is a guideline for these questions. It shows you the
abilities and also the (current) limitation of the API.

Note

You can go to eXo Samples Repository [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/json-samples]
to view JSON samples of these tutorials.

User, username and identity Id

Here is a version of User as JSON entity that is returned by
GET /v1/social/users/{username}:

{
 "id": "13979fcc7f0001016236f7a4a2b1e043",
 "href": "http://localhost:8080/rest/v1/social/users/mary",
 "identity": "http://localhost:8080/rest/v1/social/identities/13979f2b7f0001012c0a9eab6606475f",
 "username": "mary",
 "firstname": "Mary",
 "lastname": "Williams",
 "fullname": "Mary Williams",
 "gender": "female",
 "position": "developer",
 "email": "mary@ex.com",
 "avatar": "/rest/private/jcr/repository/social/production/soc%3Aproviders/soc%3Aorganization/soc%3Amary/soc%3Aprofile/soc%3Aavatar/?upd=1443512489914",
 "phones": [
 {
 "phoneType": "work",
 "phoneNumber": "+849877777777"
 }
],
 "experiences": [
 {
 "company": "eXo cooking zone",
 "description": "Write menu \r\nBuy foods\r\nCook",
 "position": "Talent novice",
 "skills": "Holly dagger",
 "isCurrent": false,
 "startDate": "09/07/2015",
 "endDate": "09/16/2015"
 }
],
 "ims": [
 {
 "imType": "gtalk",
 "imId": "marylovescandies"
 }
],
 "urls": [
 {
 "url": "http://marylovescandies.com"
 },
 {
 "url": "http://maryhatescandies.com"
 }
],
 "deleted": false
}

On Create and Update, only some of those fields are handled. So an
effective version should be:

{
 "username": "mary",
 "firstname": "Mary",
 "lastname": "Williams",
 "fullname": "Mary Williams",
 "email": "mary@ex.com"
}

You cannot update other fields currently. However, password can be
set in Create. It can be updated also:

PUT /v1/social/users/mary
{"password":"new_password"}

On Create and Update, there are some noticeable rules:

	username and email must be unique.

	username, email, firstName and lastName are mandatory.

Note

If you omit password field in Create method, the default password exo is used.

You can delete a user logically. A deleted user will be no longer
returned by GET /v1/social/users but still can be queried by
GET /v1/social/users/{username}.

Username and Identity Id

From a returned User JSON, you can get username and also extract an
Identity Id from the “identity” field. Both have their usage in
particular.

Connection

A connection or a relationship between two users is established first
when one of them sends a request, that actually is a connection with the
status pending. When the receiver accepts the request, its status
changes to confirmed.

This is the full version of a Connection JSON entity:

{
 "id": "1d8661627f0001013e43838b8622206e",
 "href": "http://localhost:8080/rest/v1/social/usersRelationships/1d8661627f0001013e43838b8622206e",
 "sender": "http://localhost:8080/rest/v1/social/users/root",
 "receiver": "http://localhost:8080/rest/v1/social/users/john",
 "status": "CONFIRMED"
}

There are two services that work on this entity. Their functionalities
are basically identical.

	/v1/social/relationships

	/v1/social/usersRelationships

In Create and Update, you can use the exact JSON like above, or a
simpler version. Pay attention to fields “sender” and “receiver” in the
following examples:

	Send a request. “john” is the authenticated user and is the sender.

POST /v1/social/usersRelationships
{
 "sender":"john",
 "receiver":"user1",
 "status":"pending"
}

POST /v1/social/relationships
{
 "sender":"john",
 "receiver":"user1",
 "status":"pending"
}

	Get “pending” requests (you need to handle the paging that is not
described here).

GET /v1/social/usersRelationships?returnSize=true&offset=0&status=pending

GET /v1/social/relationships?returnSize=true&offset=0&status=pending

	Accept a pending request by its Id.

PUT /v1/social/usersRelationships/5a1b9e8b7f0001012bb08188031afa28
{
 "status":"confirmed"
}

PUT /v1/social/relationships/5a1b9e8b7f0001012bb08188031afa28
{
 "status":"confirmed"
}

	Cancel/Remove a connection.

DELETE /v1/social/usersRelationships/5a1b9e8b7f0001012bb08188031afa28

DELETE /v1/social/relationships/5a1b9e8b7f0001012bb08188031afa28

Activity, like and comment

Here is the full version of Activity JSON returned by
GET /v1/social/activities or
GET /v1/social/activities/{activity_id}:

{
 "id": "213a1e3f7f0001014783354eccc0f0c9",
 "title": "123 jump Root Root",
 "body": null,
 "link": null,
 "type": "DEFAULT_ACTIVITY",
 "href": "http://localhost:8080/rest/v1/social/activities/213a1e3f7f0001014783354eccc0f0c9",
 "identity": "http://localhost:8080/rest/v1/social/identities/13aeecb67f00010129539a6cc03b84fe",
 "owner": {
 "id": "13aeecb67f00010129539a6cc03b84fe",
 "href": "http://localhost:8080/rest/v1/social/users/john"
 },
 "mentions": [
 {
 "id": "041e08bb7f000101003098264987225d",
 "href": "http://localhost:8080/rest/v1/social/users/root"
 }
],
 "attachments": [],
 "comments": "http://localhost:8080/rest/v1/social/activities/213a1e3f7f0001014783354eccc0f0c9/comments",
 "likes": "http://localhost:8080//v1/social/activities/213a1e3f7f0001014783354eccc0f0c9/likers",
 "createDate": "2015-10-01T09:27:48.413+07:00",
 "updateDate": "2015-10-01T09:27:48.413+07:00",
 "activityStream": {
 "type": "user",
 "id": "john"
 }
}

The /activities endpoint allows getting activities,
reading/updating/deleting an activity. For Create, you need to use
either /users/{user_id}/activities or
/spaces/{space_id}/activities.

Social allows many types of activities, but via the Rest API it makes
sense to post a simple message. So an effective JSON should contain only
one field “title”. See the following examples:

	Create an activity in authenticated user’s activity stream (though it
has username as a path param, it is not allowed to post to another
user’s stream).

POST /v1/social/users/john/activities
{
 "title":"hey hallo"
}

	Create an activity in a space activity stream by the space Id.

POST /v1/social/spaces/3cb997397f0001012108b43dfecbcf85/activities
{
 "title":"hey hallo"
}

	Edit an activity by its Id:

PUT /v1/social/activities/5f08dee67f00010122e15db3c2d75a31
{
 "title":"hey hallo"
}

	Delete an activity by its Id:

DELETE /v1/social/activities/5f08dee67f00010122e15db3c2d75a31

To like or comment on an activity, use the following endpoints:

	/v1/social/activities/{activity_id}/likes

	/v1/social/activities/{activity_id}/comments

Like

Likes of an activity are indeed a list of users. See the JSON returned
by GET /v1/social/activities/{activity_id}/likes:

{
 "likes": [
 {
 "id": "13aeed257f0001010aaff03a9f71d0a4",
 "href": "http://localhost:8080/rest/v1/social/users/john",
 "identity": "http://localhost:8080/rest/v1/social/identities/13aeecb67f00010129539a6cc03b84fe",
 "username": "john",
 "firstname": "John",
 "lastname": "Smith",
 "fullname": "John Smith",
 "gender": null,
 "position": null,
 "email": "john@gatein.com",
 "avatar": null,
 "phones": [],
 "experiences": [],
 "ims": [],
 "urls": [],
 "deleted": false
 },
 {...}
],
 "offset": 0,
 "limit": 20
}

Therefore, in Create and Delete (Unlike) you do not need to send a JSON,
a username is used instead. There is no Update method for a like.

	To like an activity (as the authenticated user):

POST /v1/social/activities/{activity_id}/likes

	To unlike an activity (An administrator can delete any like. For the
normal user, to delete their like, you need to set the username
parameter to the authenticated user.):

DELETE /v1/social/activities/{activity_id}/likes/{username}

Comment

The Comment(s) JSON is returned by
GET /v1/social/activities/{activity_id}/comments or
GET /v1/social/comments/{comment_id}.

{
 "comments": [
 {
 "id": "3cb99a787f0001014ea5ca7b1e5aa3a2",
 "href": "http://localhost:8080/rest/v1/social/activities/3cb99a787f0001014ea5ca7b1e5aa3a2",
 "identity": "http://localhost:8080/rest/v1/social/identities/041e08bb7f000101003098264987225d",
 "poster": "root",
 "body": "Has joined the space.",
 "mentions": [],
 "createDate": "2015-10-06T17:36:48.120+07:00",
 "updateDate": "2015-10-06T17:36:48.120+07:00"
 },
 {
 "id": "3cd134557f0001012d08eabf33a0cb12",
 "href": "http://localhost:8080/rest/v1/social/activities/3cd134557f0001012d08eabf33a0cb12",
 "identity": "http://localhost:8080/rest/v1/social/identities/13979f2b7f0001012c0a9eab6606475f",
 "poster": "mary",
 "body": "Has joined the space.",
 "mentions": [],
 "createDate": "2015-10-06T18:02:34.834+07:00",
 "updateDate": "2015-10-06T18:02:34.834+07:00"
 },
 {
 "id": "3cf2aefd7f00010109e1ded62fe5102f",
 "href": "http://localhost:8080/rest/v1/social/activities/3cf2aefd7f00010109e1ded62fe5102f",
 "identity": "http://localhost:8080/rest/v1/social/identities/13aeecb67f00010129539a6cc03b84fe",
 "poster": "john",
 "body": "Has joined the space.",
 "mentions": [],
 "createDate": "2015-10-06T18:39:08.922+07:00",
 "updateDate": "2015-10-06T18:39:08.922+07:00"
 }
],
 "offset": 0,
 "limit": 20
}

In Create and Update you can use an effective version that contains only
“body” field. See the following examples:

	Create a comment by the activity Id:

POST /v1/social/activities/{activity_id}/comments
{
 "body":"this is a comment"
}

	Edit a comment by the comment Id:

PUT /v1/social/comments/{comment_id}
{
 "body":"this is a comment"
}

	Delete a comment by the comment Id:

DELETE /v1/social/comments/{comment_id}

Space and space membership

Here is a Space JSON returned by GET /v1/social/spaces/{space_id}:

{
 "id": "1d911fee7f00010116754edd66d77e6c",
 "href": "http://localhost:8080/rest/v1/social/spaces/1d911fee7f00010116754edd66d77e6c",
 "identity": "http://localhost:8080/rest/v1/social/identities/1d9120607f00010103ee7cad5d1ce1ce",
 "groupId": "/spaces/documentation",
 "applications": [
 {
 "id": "ForumPortlet",
 "displayName": "Forums"
 },
 {
 "id": "WikiPortlet",
 "displayName": "wiki"
 },
 {
 "id": "FileExplorerPortlet",
 "displayName": "Documents"
 },
 {
 "id": "CalendarPortlet",
 "displayName": "Agenda"
 },
 {
 "id": "SpaceSettingPortlet",
 "displayName": "Space Settings"
 },
 {
 "id": "MembersPortlet",
 "displayName": "Members"
 }
],
 "managers": "http://localhost:8080/rest/v1/social/spaces/1d911fee7f00010116754edd66d77e6c/users?role=manager",
 "members": "http://localhost:8080/rest/v1/social/spaces/1d911fee7f00010116754edd66d77e6c/users",
 "displayName": "development",
 "description": "abc",
 "url": null,
 "avatarUrl": "/rest/jcr/repository/social/production/soc%3Aproviders/soc%3Aspace/soc%3Adocumentation/soc%3Aprofile/soc%3Aavatar/?upd=1443606140698",
 "visibility": "private",
 "subscription": "open"
}

In Create and Update, you can use an effective version that contains
several fields. See the following examples.

	Create a space:

POST /v1/social/spaces
{
 "displayName":"tomato",
 "description":"vegetable",
 "visibility":"private",
 "subscription":"open"
}

	Update a space by its Id:

PUT /v1/social/spaces/{space_id}
{
 "displayName":"tomato",
 "description":"vegetable",
 "visibility":"hidden",
 "subscription":"validation"
}

	Delete a space by its Id:

DELETE /v1/social/spaces/{space_id}

Visibility can be private or hidden. Subscription can be
open, validation or close.

To get users of a space:

GET /v1/social/spaces/{space_id}/users

To get only the manager, append a query param role=manager:

GET /v1/social/spaces/{space_id}/users?role=manager

Space Membership

A membership can be a “member” or a “manager” role (A manager has both
memberships).

{
 "id": "documentation:john:member",
 "href": "http://localhost:8080/rest/v1/social/spacesMemberships/documentation:john:member",
 "user": "http://localhost:8080/rest/v1/social/users/john",
 "space": "http://localhost:8080/rest/v1/social/spaces/1d911fee7f00010116754edd66d77e6c",
 "role": "member",
 "status": "approved"
}

The endpoint to work with space membership is
/v1/social/spacesMemberships. The following examples show the
abilities of this service:

	Get memberships of a space, using query param
space={space_display_name}:

GET /v1/social/spacesMemberships?space=documentation

	Get memberships of a user, using query param user={username}:

GET /v1/social/spacesMemberships?user=john

	Get memberships filtered by status (all/pending/approved), using
query param status={status}:

GET /v1/social/spacesMemberships?space=documentation&status=pending

	Delete a membership by its Id. The membership Id is formed by space
display name and username and role.

DELETE /v1/social/spacesMemberships/space1:user1:member

In Create, an effective version of the JSON entity can be used. Notice
username and space display name are used.

	Create membership:

POST /v1/social/spacesMemberships
{
 "user":"user1",
 "space":"space1"
}

The use is limited to two cases: a space manager adds a user to the
space, or a user joins an open space. In the second one, the space
(subscription) must be “open” and the “user” (JSON) field must be set to
the authenticated user. In the both cases, the status of created
membership is always “approved”.

For the same logic, it does not make sense to update a space membership
though Update method is available.

Authorization

The API applies an access policy that is common and easy to understand,
so you do not need to learn a complex ACL to handle permissions properly
in your Rest client.

There is just a simple thing to learn: All authenticated users are
regular users, administrators and space managers have some privileges.

Space manager

When a user creates a space, he is the space manager by default. The
space manager has some privileges:

	Add users to the space.

	Remove users from the space.

	Read all memberships of the space.

Regular users can leave spaces and can join open spaces.

You can check who is the manager of a specified space:

GET /v1/social/spaces/{space_id}/users?role=manager

Platform Administrators

Members of /platform/administrators have some privileges:

	Create and (logically) delete users.

	CRUD any relationship (regular users can only do with their own
relationships).

	Read activities of any user.

	Update any space.

	CRUD any space membership.

Currently there is no Rest API to directly check if the authenticated
user is an administrator.

Java client samples

The source code of this tutorial can be found at eXo Samples
Repository [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-java-client].

The project is a data injector that runs as a Java standalone
application and does the followings:

- create 5 users
- connect everyone together
- create 2 spaces and add everyone
- login as user0 and post a message
- everyone else likes and comments

The project consists of the following components:

	A Java “main” class in which the injecting scenario is written.

	A connector that basically takes care of all the work with the API.
It provides basic CRUD functions and some other methods that fit the
requirement in particular.

	Some classes that assist the connector: ServiceInfo provides the
URIs of the API, HttpUtils provides Http GET/POST/PUT/DELETE
methods.

HttpUtils uses HttpURLConnection that is not described in this
tutorial. Read Calendar Rest API tutorial
if necessary.

	The data models that are POJO classes for utilizing Gson.

Login/Logout

See the login() method in the main class:

public static void login(String username, String password) {
 final String username_ = username;
 final String password_ = password;
 // logout first
 sun.net.www.protocol.http.AuthCacheValue.setAuthCache(new sun.net.www.protocol.http.AuthCacheImpl());
 Authenticator.setDefault(new Authenticator() {
 @Override
 public PasswordAuthentication getPasswordAuthentication() {
 return new PasswordAuthentication(username_, password_.toCharArray());
 }
 });
}

The code is explained in
Authentication
section.

Effective JSON

Read Calendar Rest API
tutorial for
utilizing Gson. However, unlike Calendar API, with current Social API
you generally could not re-use a JSON object between methods. For
Create/Update, you need to create “effective” JSON objects that are
described in Social data models as JSON
entities.

In Java, you should always create a new object, set the values for only
“effective” fields before serializing and sending it. Here is an example
of updating User - do not use the current user object, neither blind
copy all its JSON fields:

User current_user;
current_user = connector.getUser(username);
User to_be_updated_user = new User();
to_be_updated_user.setFullname("A new name");
// format new object to JSON and PUT
String json = (new Gson()).toJson(to_be_updated_user);
connector.updateUser(username, json);

DateTime format

When using parameters after and before of
GET /v1/social/users/{username}/activities, you should adjust the
local DateTime to UTC and format it to yyyy-MM-dd HH:mm:ss.

Here is the code sample to request activities of the local “today”:

Calendar cal = Calendar.getInstance();
cal.set(Calendar.HOUR_OF_DAY, 0);
cal.clear(Calendar.MINUTE);
cal.clear(Calendar.SECOND);
cal.clear(Calendar.MILLISECOND);
Date start_of_day = cal.getTime();
Date end_of_day = new Date(cal.getTimeInMillis() + 1000*60*60*24 -1);

// format dates in "yyyy-MM-dd HH:mm:ss" in UTC timezone
DateFormat df = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
df.setTimeZone(TimeZone.getTimeZone("UTC"));
String after = df.format(start_of_day);
String before = df.format(end_of_day);

These query params contain white spaces, so they need to be URL-encoded:

String url = BASE_URL + "/v1/social/users/" + username + "?returnSize=true&offset=" + offset
 + "&after=" + URLEncoder.encode(after, "UTF-8") + "&before=" + URLEncoder.encode(before, "UTF-8");

JavaScript client samples

This part instructs you how to leverage these APIs to work with Social
objects, including:

	User

	User relationship

	Activity and Comment

	Space and Space membership

	Identity

Refer to this guide
to create a gadget with the following structure:

[image: image7]

Follow instructions there to set suitable configurations, except the
file Social-*-APIs.xml which will be created in each part below.

User

The source code used in this section is available
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-javascript-client/social-user-api]
for downloading.

Searching for user

	Create a file named SocialUserAPIs.xml under the
/gadgets/SocialAPIsGadgets/ folder, then add the following script to
this file:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Social User Gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>

 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="main-body" style="max-width: 850px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for searching users
 <button id="get_users_btn" onclick="getUsers()" class="btn btn-primary">Search for user</button>
 <input type="text" id="user_info_txt" placeholder="Enter user information...">
 </div>
 </div>
 <!--js functions-->
 <script type="text/javascript">
 function getUsers(){
 //Search for user
 }
 </script>]]>
 </Content>
</Module>

	Deploy this gadget. You will see a toolbar that allows to search for
user by an input string. To make it work, implement the getUsers()
function as follows:

function getUsers(){
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/users?q="+$("#user_info_txt").val(),
 success: function (data, status, jqXHR) {
 //print the result
 printUsersList(data.users);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

This function sends a GET request which calls the Social REST API
/rest/v1/social/users and passes the input string via the q
parameter. It will return a JSON object containing an array of users
that match the input string.

	Add the following printUsersList() function to print out the
returned result.

function printUsersList(users){
 //print a list of users in a table
 //clean screen
 $('#main-content').remove();
 $('#sub-content').remove();
 //initialize html content to print out the result
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>User name</th><th>First name</th><th>Last name</th><th>Email</th></tr></thead><tbody>";
 //loop through the list of users
 $.each(users, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.username+"</td><td>"+value.firstname+"</td><td>"+value.lastname+"</td><td>"+value.email+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
}

	Deploy this gadget and create some users to test. For example, search
for “john”:

[image: image8]

Besides, leaving the input string blank will return all users of the
platform.

Adding a new user

In addition to adding a new user via AdministrationCommunityAdd Users,
you can use the Social API /rest/v1/social/users for doing this.

	Add a JavaScript function with the following content:

function addNewUserBtn(){
 var obj_content="<button id=\"add_new_user_btn\" onclick=\"addNewUser()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Add new user</button>";
 //add to screen
 $('#main-content').append(obj_content);
}

This function is to add the Add new user button after printing the
search result.

	Make a call to this function from the getUsers() function:

...
printUsersList(data.users);
addNewUserBtn();
...

	Implement the addNewUser() function as follows:

function addNewUser(){
 //clean screen
 $('#sub-content').remove();
 //initialize html content
 var obj_content="<div id=\"sub-content\"><table class=\"uiGrid table table-hover table-striped\"><tr><td>User name: </td><td><input type=\"text\" id=\"username\"></td></tr><tr><td>First name: </td><td><input type=\"text\" id=\"firstname\"></td></tr><tr><td>Last name: </td><td><input type=\"text\" id=\"lastname\"></td></tr><tr><td>Password: </td><td><input type=\"password\" id=\"password\"></td></tr><tr><td>Email: </td><td><input type=\"text\" id=\"email\"></td></tr><tr><td></td><td><button id=\"add_new_user_proc_btn\" onclick=\"addNewUserProcess()\">Submit</button></td></tr></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
}

This function generates a form to enter data when the Add new user
button is clicked.

	Deploy this gadget. You will see this form when clicking the Add new
user button.

[image: image9]

	Call the Social API /rest/v1/social/users and pass the user
information as a JSON object to add a new user. Implement the
addNewUserProcess() as below:

function addNewUserProcess(){
 //check entered data
 if(($("#username").val().trim()=="")||($("#firstname").val().trim()=="")||($("#lastname").val().trim()=="")||($("#password").val().trim()=="")||($("#email").val().trim()=="")) {
 alert("Missing information");
 return;
 }
 //initialize user information as a json object
 var user_json_obj={
 "username":$("#username").val(),
 "email":$("#email").val(),
 "firstname":$("#firstname").val(),
 "lastname":$("#lastname").val(),
 "password":$("#password").val()
 };
 //send http request
 $.ajax({
 url: "/rest/v1/social/users",
 contentType: "application/json",
 data: JSON.stringify(user_json_obj),
 method: "POST"
 }).done(function (data, status, xhr) {
 //reload users list
 getUsers();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

	Deploy this gadget and test the new function.

Getting a user by remote Id

eXo Platform provides the /rest/v1/social/users/{id} API to retrieve
information of a specified user. Note that the remote Id here is the
user identity which in term of portal is the username.

	Add a control button and a text input next to the Search for user
button.

...
<button id="get_users_btn" onclick="getUsers()" class="btn btn-primary">Search for user</button>
<input type="text" id="user_info_txt" placeholder="Enter user information...">
//control button for getting a specified user
<button id="get_user_by_id_btn" onclick="getUserById()" class="btn btn-primary">Get user by remote id</button>
<input type="text" id="get_user_by_id_txt" placeholder="Enter remote id...">
...

	Implement the getUserById() function as follows:

function getUserById(){
 //check user id
 if($("#get_user_by_id_txt").val().trim()==""){
 alert("invalid id!");
 }
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/users/"+$("#get_user_by_id_txt").val().trim(),
 success: function (data, status, jqXHR) {
 //print the result
 var array=new Array(data);
 printUsersList(array);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

	Deploy this gadget, then copy any username in the Username column
of the users table (after searching for user) to test this function.

Deleting a user by remote Id

To delete a specified user, send a DELETE request to call the
/rest/v1/social/users/{id} API.

	Declare a global JavaScript variable named current_user, then add
the following command to the getUserById() function to update
this variable whenever a query on a specified user is executed:

...
//update current user to process
current_user=data;
//print the result
var array=new Array(data);
printUsersList(array);
addUpdateUserBtn();
...

	Add a control button by implementing the addUpdateUserBtn()
function as below:

function addUpdateUserBtn(){
 var obj_content="<button id=\"delete_user_btn\" onclick=\"deleteUser()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Delete this user</button>
 //add to screen
 $('#main-content').append(obj_content);
}

	Implement the deleteUser() function by this script:

function deleteUser(){
 //send http request
 $.ajax({
 url: "/rest/v1/social/users/"+current_user.username,
 method: "DELETE"
 }).done(function () {
 //reload users list
 getUsers();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

In which, the user selected by the Get user by remote id button will
be deleted.

	Deploy this gadget to test the new function.

Updating user information

This section shows you how to update email of a specified user by using
the /rest/v1/social/users/{id} API.

	Add a control button next to the Delete this user button by modifying
the addUpdateUserBtn() function as follows:

function addUpdateUserBtn(){
 var obj_content="<button id=\"delete_user_btn\" onclick=\"deleteUser()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Delete this user</button><button id=\"update_user_btn\" onclick=\"updateUser()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Update your email</button><input type=\"text\" id=\"update_user_txt\" placeholder=\"Enter your new email...\">";
 //add to screen
 $('#main-content').append(obj_content);
}

This function generates a form to enter a new email for the selected
user.

	Implement the updateUser() function as below:

function updateUser(){
 //update email of the current user
 current_user.email=$("#update_user_txt").val();
 //send http request
 $.ajax({
 url: "/rest/v1/social/users/"+current_user.username,
 contentType: "application/json",
 data: JSON.stringify(current_user),
 method: "PUT"
 }).done(function (data, status, xhr) {
 getUserById();
 }).fail(function (jqxhr, textStatus, error) {
 alert("Failed!");
 });
}

Note

Only the currently logged-in user can change their email information.

	Deploy this gadget, then try to change the email of the currently
logged-in user.

[image: image10]

User relationship

You can download all source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-javascript-client/social-user-relationship-api].

Getting relationships of a user

To get all relationships of a specified user, use the
/rest/v1/social/usersRelationships API.

	Create a file named SocialUserRelationshipAPIs.xml under the
/gadgets/SocialAPIsGadgets/ folder, then add the following script
to this file:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Social Relationship Gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>

 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="main-body" style="max-width: 800px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for getting a specified user
 <button id="get_user_by_id_btn" onclick="getUserById()" class="btn btn-primary">Get user by remote id</button>
 <input type="text" id="get_user_by_id_txt" placeholder="Enter remote id...">
 </div>

 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 //current user to process
 var current_user;
 function getUserById(){
 //check user id
 if($("#get_user_by_id_txt").val().trim()==""){
 alert("invalid id!");
 }
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/users/"+$("#get_user_by_id_txt").val().trim(),
 success: function (data, status, jqXHR) {
 //update current user to process
 current_user=data;
 //print the result
 var array=new Array(data);
 printUsersList(array);
 viewRelationshipsBtn();
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function viewRelationshipsBtn(){
 var obj_content="<button id=\"view_relationship_btn\" onclick=\"viewRelationships()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">View relationships of this user</button>";
 //add to screen
 $('#main-content').append(obj_content);
 }
 function viewRelationships(){
 //get all relationships
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/usersRelationships?status=all&user="+current_user.username,
 success: function (data, status, jqXHR) {
 //print the result
 printRelationshipsList(data.usersRelationships);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function printUsersList(users){
 //print a list of users in a table
 //clean screen
 $('#main-content').remove();
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>User name</th><th>First name</th><th>Last name</th><th>Email</th></tr></thead><tbody>";
 //loop through the list
 $.each(users, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.username+"</td><td>"+value.firstname+"</td><td>"+value.lastname+"</td><td>"+value.email+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
 }
 </script>]]>
 </Content>
</Module>

In which, the viewRelationships() function sends a GET request to
call the /rest/v1/social/usersRelationships API that takes two input
parameters including status and user. The status parameter
can have one of 3 values: pending, confirmed and all which are
corresponding to real status of a relationship.

	Implement the printRelationshipsList() to print out the returned
result as follows:

function printRelationshipsList(relationships){
 //print a list of relationships in a table
 //clean screen
 $('#main-content').remove();
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>User name</th><th>Status</th><th>Id</th></tr></thead><tbody>";
 //loop through the list
 $.each(relationships, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.receiver.split("social/users/")[1]+"</td><td>"+value.status+"</td><td>"+value.id+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
}

	Deploy this gadget and test this function. You will see all
relationships of the selected user are listed.

[image: image11]

Getting a relationship by Id

	Add two JavaScript functions as below:

function selectARelationshipBtn(){
 var obj_content="<button id=\"select_relationship_btn\" onclick=\"selectARelationship()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Select a relationship by id</button><input type=\"text\" id=\"select_relationship_txt\" placeholder=\"Enter relationship id...\">";
 //add to screen
 $('#main-content').append(obj_content);
}
function selectARelationship(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/usersRelationships/"+$("#select_relationship_txt").val(),
 success: function (data, status, jqXHR) {
 //print the result
 var array=new Array(data);
 printRelationshipsList(array);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

The selectARelationship() function sends a GET request to the
/rest/v1/social/usersRelationships/{id} API to retrieve a relationship
with a specified Id.

	Make a call to the selectARelationshipBtn() function from the
viewRelationships() function.

...
printRelationshipsList(data.usersRelationships);
selectARelationshipBtn();
...

	Deploy this gadget, then copy any Id in the Id column of the
relationships table (after getting all relationships of the selected
user) to test this function.

Updating a relationship

After selecting a specific relationship, you can change its status by
using the /rest/v1/social/usersRelationships/{id} API.

	Declare a global JavaScript variable named current_relationship
to store the currently selected relationship.

var current_relationship;

	Add the following command to the selectARelationship() function
to update the currently selected relationship.

...
success: function (data, status, jqXHR) {
 //update current relationship to process
 current_relationship=data;
...

	Add two JavaScript functions as follows:

function updateRelationshipBtn(){
 var obj_content="<button id=\"update_relationship_btn\" onclick=\"updateRelationship()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Update relationship status</button><select id=\"selected_status\"><option value=\"PENDING\">PENDING</option><option value=\"CONFIRMED\">CONFIRMED</option></select>";
 //add to screen
 $('#main-content').append(obj_content);
}
function updateRelationship(){
 //update position of the current user
 current_relationship.status=$("#selected_status").val();
 //send http request
 $.ajax({
 url: "/rest/v1/social/usersRelationships/"+current_relationship.id,
 contentType: "application/json",
 data: JSON.stringify(current_relationship),
 method: "PUT"
 }).done(function (data, status, xhr) {
 //print the result
 var array=new Array(current_relationship);
 printRelationshipsList(array);
 }).fail(function (jqxhr, textStatus, error) {
 alert("Fail!");
 });
}

The updateRelationship() function sends a PUT request to the
/rest/v1/social/usersRelationships/{id} API and passes the new
relationship information as a JSON object.

	Deploy this function and test updating any relationship status.

[image: image12]

Deleting a relationship

To delete a relationship, send a DELETE request to the
/rest/v1/social/usersRelationships/{id} API.

	Add the following functions to the JavaScript part:

function deleteRelationshipBtn(){
 var obj_content="<button id=\"delete_relationship_btn\" onclick=\"deleteRelationship()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Delete this relationship</button>";
 //add to screen
 $('#main-content').append(obj_content);
}
function deleteRelationship(){
 //send http request
 $.ajax({
 url: "/rest/v1/social/usersRelationships/"+current_relationship.id,
 method: "DELETE"
 }).done(function () {
 //reload users list
 viewRelationships();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

This will delete the selected relationship.

	Make a call to the deleteRelationshipBtn() function by modifying
the selectARelationship() function.

...
printRelationshipsList(array);
deleteRelationshipBtn();
updateRelationshipBtn();
...

	Deploy this gadget to test the new function.

Creating a relationship

	Add the following functions to the JavaScript part of the gadget:

function createRelationshipBtn(){
 var obj_content="<div><button id=\"create_relationship_btn\" onclick=\"createRelationship()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Create a relationship with</button><input type=\"text\" id=\"selected_user_txt\" placeholder=\"Enter user name...\"><select id=\"selected_status\"><option value=\"PENDING\">PENDING</option><option value=\"CONFIRMED\">CONFIRMED</option></select></div>";
 //add to screen
 $('#main-content').append(obj_content);
}
function createRelationship(){
 //check entered data
 if($("#selected_user_txt").val().trim()=="") {
 alert("Missing information");
 return;
 }
 //initialize user information as a json object
 var relationship_json_obj={
 "sender":current_user.username,
 "receiver":$("#selected_user_txt").val(),
 "status":$("#selected_status").val()
 };
 //send http request
 $.ajax({
 url: "/rest/v1/social/usersRelationships/",
 contentType: "application/json",
 data: JSON.stringify(relationship_json_obj),
 method: "POST"
 }).done(function (data, status, xhr) {
 //reload relationships list
 viewRelationships();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

The createRelationship() function sends a POST request to the
/rest/v1/social/usersRelationships API, in which the information of
the new relationship is passed as a JSON object.

	Deploy this gadget. You will see a form like this:

[image: image13]

This form allows to create a relationship between the currently
logged-in user with another user that is not existed in the
relationships list.

Activity and Comment

The source code used in this section is available
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-javascript-client/social-activity-api]
for downloading.

Getting activities

In this section, you are going to use two REST APIs, including:

	/rest/v1/social/activities: for getting all activities of a user.

	/rest/v1/social/activities/{id}: for getting a specified activity
by the user Id.

	Create a file named SocialActivityAPIs.xml under the
/gadgets/SocialAPIsGadgets/ folder, then add the following script
to this file:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Social Activity Gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>

 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="main-body" style="max-width: 800px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for getting all your activities
 <button id="get_all_activities_btn" onclick="getAllActivities()" class="btn btn-primary">Get all your activities</button>
 <button id="get_activity_by_id_btn" onclick="getActivityById()" class="btn btn-primary">Get an activity by id</button>
 <input type="text" id="activity_id_txt" placeholder="Enter activity id...">
 </div>
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 var current_activity;
 function getActivityById(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/activities/"+$("#activity_id_txt").val(),
 success: function (data, status, jqXHR) {
 //update current activity to be processed
 current_activity=data;
 //print the result
 var array=new Array(data);
 printActivitiesList(array);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function getAllActivities(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/activities/",
 success: function (data, status, jqXHR) {
 //print the result
 printActivitiesList(data.activities);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function printActivitiesList(activities){
 //print a list of activities in a table
 //clean screen
 $('#main-content').remove();
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>Type</th><th>Title</th><th>Id</th></tr></thead><tbody>";
 //loop through the list
 $.each(activities, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.type+"</td><td>"+value.title+"</td><td>"+value.id+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
 }
 </script>]]>
 </Content>
</Module>

	The getAllActivities() function sends a GET request to the
/rest/v1/social/activities API. It will return a JSON object
containing an array of activities which will be printed out in the
printActivitiesList() function.

	The getActivityById() function sends a GET request to the
/rest/v1/social/activities/{id} API. If the query is successful,
only one activity that matches the input id is returned.

	Deploy this gadget and test the Get all activities function. You will
see that all activities of the currently logged-in user are listed.

[image: image14]

	Select any activity Id in the Id column of the activities table
to test the Get an activity by Id function.

Getting likes and comments of an activity

	Add the following functions to the JavaScript part of the gadget:

function getNumOfLikes(activity_id){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/activities/"+activity_id+"/likes",
 success: function (data, status, jqXHR) {
 $('#main-content').append("<i class=\"uiIconThumbUp uiIconLightGray\"></i> "+data.likes.length+" ");
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}
function getNumOfComments(activity_id){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/activities/"+activity_id+"/comments",
 success: function (data, status, jqXHR) {
 $('#main-content').append("<i class=\"uiIconComment uiIconLightGray\"></i> "+data.comments.length+" ");
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

The getNumOfLikes() and getNumOfComments() functions send a GET
request to call the /rest/v1/social/activities/{id}/likes and
/rest/v1/social/activities/{id}/comments APIs. They return the number
of likes and comments of the selected activity.

	Add calls to these functions in the getActivityById() function
like this:

success: function (data, status, jqXHR) {
 ...
 printActivitiesList(array);
 getNumOfLikes($("#activity_id_txt").val());
 getNumOfComments($("#activity_id_txt").val());
 ...

	Deploy this gadget to check these new functions.

Liking and commenting on an activity

In this section, you are going to use the following REST APIs:

	/rest/v1/social/activities/{id}/likes: for liking an activity.

	/rest/v1/social/activities/{id}/comments: for commenting on an
activity.

	Add these below functions to the JavaScript part of the gadget:

function commentBtn(){
 var obj_content="<button id=\"comment_activity_btn\" onclick=\"commentActivity()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Comment on this activity</button><input type=\"text\" id=\"comment_txt\" placeholder=\"Enter comment...\">";
 //add to screen
 $('#main-content').append(obj_content);
}
function commentActivity(){
 var comment_json_obj={
 "title":$("#comment_txt").val()
 };
 //send http request
 $.ajax({
 url: "/rest/v1/social/activities/"+current_activity.id+"/comments",
 contentType: "application/json",
 data: JSON.stringify(comment_json_obj),
 method: "POST"
 }).done(function (data, status, xhr) {
 //reload this activity
 getActivityById();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}
function likeBtn(){
 var obj_content="<button id=\"like_activity_btn\" onclick=\"likeActivity()\" class=\"btn btn-primary\" style=\"margin: 20px 0px 20px 30px\">Like this activity</button>";
 //add to screen
 $('#main-content').append(obj_content);
}
function likeActivity(){
 //send http request
 $.ajax({
 url: "/rest/v1/social/activities/"+current_activity.id+"/likes",
 contentType: "application/json",
 method: "POST"
 }).done(function (data, status, xhr) {
 //reload this activity
 getActivityById();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

	Deploy this gadget. You will see that the new functions are included.

[image: image15]

	Test these functions by:

	Clicking the Like this activity button. The number of likes will
increase if you have not liked it before.

	Entering a comment in the comment box and using the Comment on this
activity button. You will see that the number of comments increases.

Deleting and editing a comment

	Add a control button to expand all comments of the selected activity
by adding this function:

function expandCommentsBtn(){
 var obj_content="<button id=\"expand_comments_btn\" onclick=\"expandComments()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Expand all comments of this activity</button>";
 //add to screen
 $('#main-content').append(obj_content);
}

	Implement the expandComments() and printCommentsList()
functions as below:

function expandComments(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/activities/"+current_activity.id+"/comments",
 success: function (data, status, jqXHR) {
 //print the comment list
 printCommentsList(data.comments);
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}
function printCommentsList(comments){
 //print a list of comments in a table
 //clean screen
 $('#sub-content').remove();
 //initialize html content
 var obj_content="<div id=\"sub-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>Body</th><th>Id</th><th>Edit</th><th>Delete</th></tr></thead><tbody>";
 //loop through the list
 $.each(comments, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.body+"</td><td>"+value.id+"</td><td><i class=\"uiIconEditMini uiIconLightGray\" onclick=\"editComment('"+value.id+"')\"> </i></td><td><i class=\"uiIconTrashMini uiIconLightGray\" onclick=\"deleteComment('"+value.id+"')\"></i></td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
}

	Deploy this gadget and test the new function by clicking the Expand
all comments of this activity button. You will see that all comments
are listed in a table.

[image: image16]

	Implement the editComment() and deleteComment() functions as
follows:

function editComment(comment_id) {
 var content = prompt("Please enter your comment", "Hello");

 if (content != null) {
 //update content of comment
 var comment_json_obj={
 "title":content
 }
 //send http request
 $.ajax({
 url: "/rest/v1/social/comments/"+comment_id,
 contentType: "application/json",
 data: JSON.stringify(comment_json_obj),
 method: "PUT"
 }).done(function (data, status, xhr) {
 //print the result
 var array=new Array(current_relationship);
 expandComments();
 }).fail(function (jqxhr, textStatus, error) {
 alert("Fail!");
 });
 }
}
function deleteComment(comment_id){
 //send http request
 $.ajax({
 url: "/rest/v1/social/comments/"+comment_id,
 method: "DELETE"
 }).done(function () {
 //reload comments list
 expandComments();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

These functions send PUT and DELETE requests to the
/rest/v1/social/comments/{id} API.

	Deploy this gadget and test these functions by:

	Clicking the delete icon to delete the corresponding comment.

	Clicking the edit icon and entering the new content. The
corresponding comment will be updated.

Space and Space membership

You can download all source code used in this section
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-javascript-client/social-space-api].

Searching for space

To search for spaces that match an input string, use a GET request to
call the /rest/v1/social/spaces API and pass this string to the call
via a q parameter.

	Create a file named SocialSpaceAPIs.xml under the
/gadgets/SocialAPIsGadgets/ folder, then add the following script
to this file:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Social Space Gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>

 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="main-body" style="max-width: 850px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for searching for spaces
 <button id="search_space_btn" onclick="searchSpace()" class="btn btn-primary">Search for space</button>
 <input type="text" id="search_space_txt" placeholder="Enter space information...">
 </div>
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 function searchSpace(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/spaces?q="+$("#search_space_txt").val(),
 success: function (data, status, jqXHR) {
 //print the result
 printSpacesList(data.spaces);
 addSpaceBtn();
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function printSpacesList(spaces){
 //clear screen
 $('#main-content').remove();
 $('#sub-content').remove();
 if(spaces.length==0){
 $('#main-body').append("<div id=\"main-content\">No space was found!</div>");
 }
 else {
 //print a list of spaces in a table
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>Name</th><th>Description</th><th>Id</th><th>Edit</th><th>Delete</th></tr></thead><tbody>";
 //loop through the list
 $.each(spaces, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.displayName+"</td><td>"+value.description+"</td><td>"+value.id+"</td><td><i class=\"uiIconEditMini uiIconLightGray\" onclick=\"editSpace('"+value.id+"')\"> </i></td><td><i class=\"uiIconTrashMini uiIconLightGray\" onclick=\"deleteSpace('"+value.id+"')\"></i></td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
 }
 }
 </script>]]>
 </Content>
</Module>

The searchSpace() function returns a JSON object containing an array
of spaces that match the input string. The object will then be printed
out in the printSpacesList() function.

	Deploy this gadget and create some spaces to check this function. For
example, search for “documentation”.

[image: image17]

Editing a space

To edit a space, we use the /rest/v1/social/spaces/{id} API. In this
section, you are going to modify the space description information.

	Implement the editSpace() function as below:

function editSpace(space_id){
 var content = prompt("Please enter your space description", "Space description");

 if (content != null) {
 //update content of comment
 var space_json_obj={
 "description":content
 }
 //send http request
 $.ajax({
 url: "/rest/v1/social/spaces/"+space_id,
 contentType: "application/json",
 data: JSON.stringify(space_json_obj),
 method: "PUT"
 }).done(function (data, status, xhr) {
 alert("Updated successfully!");
 searchSpace();
 }).fail(function (jqxhr, textStatus, error) {
 alert("Fail!");
 });
 }
}

This function generates a form to enter the space description
information, then packages this content in a JSON object. This object
will be passed to a PUT request to call the
/rest/v1/social/spaces/{id} API.

	Deploy this gadget, then click the edit icon and try changing some
space descriptions.

[image: image18]

Deleting a space

To delete a space, use the /rest/v1/social/spaces/{id} API with a
DELETE request.

	Implement the deleteSpace() function as below:

function deleteSpace(space_id){
 //send http request
 $.ajax({
 url: "/rest/v1/social/spaces/"+space_id,
 method: "DELETE"
 }).done(function () {
 alert("Deleted successfully!");
 //reload space list
 searchSpace();
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

	Deploy this gadget, then click the delete icon. The corresponding
space will be deleted.

[image: image19]

Creating a space

In this section, you are going to create a new space using the
/rest/v1/social/spaces API.

	Add the following functions to the JavaScript part of the gadget:

function addSpaceBtn(){
 var obj_content="<button id=\"add_space_btn\" onclick=\"addNewSpace()\" class=\"btn btn-primary\" style=\"margin: 20px 30px 20px 30px\">Add a new space</button>";
 //add to screen
 $('#main-content').append(obj_content);
}
function addNewSpace(){
 //clean screen
 $('#sub-content').remove();
 //initialize html content
 var obj_content="<div id=\"sub-content\"><table class=\"uiGrid table table-hover table-striped\"><tr><td>Space name: </td><td><input type=\"text\" id=\"spacename\"></td></tr><tr><td>Description: </td><td><input type=\"text\" id=\"space_description\"></td></tr><tr><td></td><td><button id=\"add_new_space_proc_btn\" onclick=\"addNewSpaceProc()\">Submit</button></td></tr></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
}
function addNewSpaceProc(){
 //check entered data
 if($("#spacename").val().trim()=="") {
 alert("Missing information");
 return;
 }
 //initialize space information as a json object
 var space_json_obj={
 "displayName":$("#spacename").val(),
 "description":$("#space_description").val()
 };
 //send http request
 $.ajax({
 url: "/rest/v1/social/spaces",
 contentType: "application/json",
 data: JSON.stringify(space_json_obj),
 method: "POST"
 }).done(function (data, status, xhr) {
 //clean screen
 $('#sub-content').remove();
 //print the newly created space id
 $('#main-content').append("Created successfully! Space id: "+data.id);
 }).fail(function (jqxhr, textStatus, error) {
 alert("fail");
 });
}

The Add a new space function generates a form to enter the space
information. The content will then be packaged in a JSON object and
passed to a POST request to call the /rest/v1/social/spaces API.

	Deploy this gadget and test the Add a new space function.

[image: image20]

Getting a space by Id

eXo Platform provides the /rest/v1/social/spaces/{id} API to retrieve
information of a specified space.

	Add a control button and a text box next to the Search for space
button by this script:

//control button for getting a space by id
<button id="get_space_by_id_btn" onclick="getSpaceById()" class="btn btn-primary">Get a space by id</button>
<input type="text" id="space_id_txt" placeholder="Enter space id...">

	Declare a global variable named current_space and implement the
getSpaceById() function as follows:

function getSpaceById(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/spaces/"+$("#space_id_txt").val(),
 success: function (data, status, jqXHR) {
 //update current space
 current_space=data;
 //print the result
 var array=new Array(data);
 printSpacesList(array);
 getUsersList($("#space_id_txt").val());
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

The getUsersList() function will be implemented in the next section.

	Deploy this gadget, then copy any space Id in the Id column of
the spaces table (after searching for space) to test this function.

Getting users and user membership roles of a space

In this section, you are going to deal with two APIs, including:

	/rest/v1/social/spaces/{id}/users: for getting all users of a
space.

	/rest/v1/social/spacesMemberships: for getting memberships of a
user in a space.

	Declare a global array variable named roles to store the
membership roles of all users in a space.

	Add the following functions to the JavaScript part of the gadget:

function getUsersList(space_id){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/spaces/"+space_id+"/users",
 success: function (data, status, jqXHR) {
 //print the result
 getMembershipRole(data.users);
 setTimeout(function(){
 printUsersList(data.users);
 }, 2000);
 },
 error: function(jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}
function printUsersList(users){
 //print a list of users in a table
 //initialize html content
 var obj_content="<div id=\"sub-content\"><h4>Users list</h4><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>User name</th><th>First name</th><th>Last name</th><th>Email</th><th>Edit</th><th>Delete</th></tr></thead><tbody>";
 //loop through the list
 $.each(users, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.username+"</td><td>"+value.firstname+"</td><td>"+value.lastname+"</td><td>"+value.email+"</td><td><i class=\"uiIconEditMini uiIconLightGray\" onclick=\"editMembership('"+value.username+"','"+roles[key]+"')\"> </i></td><td><i class=\"uiIconTrashMini uiIconLightGray\" onclick=\"deleteMembership('"+value.username+"','"+roles[key]+"')\"></i></td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-content').append(obj_content);
}
function getMembershipRole(users_data){
 $.each(users_data, function(key, value) {
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/spacesMemberships?space="+current_space.displayName+"&user="+value.username,
 success: function(data, status, jqXHR){
 if(data.spacesMemberships.length<=1)
 roles[key]=data.spacesMemberships[0].role;
 else
 roles[key]=data.spacesMemberships[1].role;
 },
 error: function (jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 });
}

The /rest/v1/social/spacesMemberships API requires two input
parameters which are space - the display name of space and user
- the username. It returns the membership roles of the user in the
space.

	Deploy this gadget and add some users to a space to test. You will
see the list of users and their memberships as below:

[image: image21]

Editing a user membership in a space

To edit a user membership, send a PUT request to call the
/rest/v1/social/spacesMemberships/{id} API.

	Implement the editMembership() function as follows:

function editMembership(user_name, role){
 var content = prompt("Please enter a membership", "manager");

 if (content != null) {
 //generate membership id
 var membership_id=getSpaceName(current_space.groupId)+":"+user_name+":"+role;
 var new_role_json_obj={
 "role": content
 };
 //send http request
 $.ajax({
 url: "/rest/v1/social/spacesMemberships/"+membership_id,
 contentType: "application/json",
 data: JSON.stringify(new_role_json_obj),
 method: "PUT"
 }).done(function (data, status, xhr) {
 alert("Updated successfully!");
 }).fail(function (jqxhr, textStatus, error) {
 alert("Fail!");
 });
 }
}

This function requires the membership Id in format
spaceName:userName:type, so you need a getSpaceName() function to
get the space name from the current_space variable.

	Implement the getSpaceName() function as below:

function getSpaceName(original_name, new_name){
 //get space name, because the displayName was run through standardizing to generate the spaceName
 var space_name_temp=original_name.split("/");
 return space_name_temp[space_name_temp.length-1];
}

	Deploy this gadget and test the function by clicking the edit icon,
then change the current membership of any user.

[image: image44]

Deleting a user membership in a space

To delete a user membership in a space, send a DELETE request to call
the /rest/v1/social/spacesMemberships/{id} API.

	Implement the deleteMembership() function as follows:

function deleteMembership(user_name, role){
 //generate membership id
 var membership_id=getSpaceName(current_space.groupId)+":"+user_name+":"+role;
 //send http request
 $.ajax({
 url: "/rest/v1/social/spacesMemberships/"+membership_id,
 contentType: "application/json",
 method: "DELETE"
 }).done(function (data, status, xhr) {
 alert("Deleted successfully!");
 }).fail(function (jqxhr, textStatus, error) {
 alert("Fail!");
 });
}

	Deploy this gadget and test the function by clicking the delete icon.
The corresponding membership will be deleted.

[image: image45]

Note

To remove users who are managers from a space, you need to delete both their member and manager memberships.

Identity and Identity relationships

eXo Platform uses 2 built-in types of identities, including user identities
and space identities. An identity is specified by its providerId and
remoteId. For user identities, the providerId is “organization”,
while “space” is for space identities.

You can obviously manage the Social objects via their identities. The
source code used in this section is available
here [https://github.com/exo-samples/docs-samples/tree/4.3.x/rest-api/social/rest-social-javascript-client/social-identity-api]
for downloading.

Getting users and spaces by identity

To retrieve all users and spaces, use the /rest/v1/social/identities
API with a parameter named type that represents the providerId of
the identity.

	Create a file named SocialIdentityAPIs.xml under the
/gadgets/SocialAPIsGadgets/ folder, then add the following script
to this file:

<?xml version="1.0" encoding="UTF-8" ?>
<Module>
 <ModulePrefs title="Social Identity Gadget">
 </ModulePrefs>
 <Content type="html">
 <![CDATA[
 <!--Including platform css-->
 <link href="/eXoSkin/skin/css/Core.css" rel="stylesheet"></link>
 <link href="/eXoSkin/skin/css/sub-core.css" rel="stylesheet"></link>
 <!--Including JQuery library-->
 <script src="jquery-3.2.1.js"></script>

 <!--Gadget's main body which will be added by HTML DOM Object later-->
 <div id="main-body" style="max-width: 850px" class="uiComposer uiGrayLightBox">
 <div class="input-append" style="margin: 20px 30px 20px 30px">
 //control button for choosing identity type
 <button id="choose_identity_type_btn" onclick="viewIdentities()" class="btn btn-primary">View identities</button>
 <select id="identity_type">
 <option value="organization">organization</option>
 <option value="space">space</option>
 </select>
 </div>
 </div>
 <!--Start calling js function-->
 <script type="text/javascript">
 function viewIdentities(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/identities?type="+$("#identity_type").val(),
 success: function (data, status, jqXHR) {
 //print the result
 if($("#identity_type").val()=="organization"){
 printUsersList(data.identities);
 }
 else {
 printSpacesList(data.identities);
 }
 },
 error: function(jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
 }
 function printUsersList(users){
 //print a list of users in a table
 //clean screen
 $('#main-content').remove();
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>Identity</th><th>User name</th><th>First name</th><th>Last name</th><th>Email</th></tr></thead><tbody>";
 //loop through the list
 $.each(users, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.id+"</td><td>"+value.profile.username+"</td><td>"+value.profile.firstname+"</td><td>"+value.profile.lastname+"</td><td>"+value.profile.email+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
 }
 function printSpacesList(spaces){
 //clear screen
 $('#main-content').remove();
 if(spaces.length==0){
 $('#main-body').append("<div id=\"main-content\">No space was found!</div>");
 }
 else {
 //print a list of spaces in a table
 //initialize html content
 var obj_content="<div id=\"main-content\"><table class=\"uiGrid table table-hover table-striped\"><thead><tr><th> </th><th>Name</th><th>Identity</th></tr></thead><tbody>";
 //loop through the list
 $.each(spaces, function(key, value) {
 obj_content+="<tr><td>"+key+"</td><td>"+value.globalId.localId+"</td><td>"+value.id+"</td></tr>";
 });
 //add closing tag
 obj_content+="</tbody></table></div>";
 //add to screen
 $('#main-body').append(obj_content);
 }
 }
 </script>]]>
 </Content>
</Module>

	If the selected type (providerId) is “organization”, the
printUsersList() function prints out user profiles.

	If the selected type (providerId) is “space”, the
printSpacesList() function prints out basic information of
spaces.

	Deploy this gadget and test this function:

	Select the type “organization”.

[image: image46]

	Select the type “space”.

[image: image47]

Getting a specified object by identity

To retrieve an object by its identity, use the
/rest/v1/social/identities/{id} API where id is the identity of the
object. Implement a getIdentityById() function like this:

function getIdentityById(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/identities/"+input_identity,
 success: function (data, status, jqXHR) {
 //print the result
 if(data.providerId=="organization"){
 printUsersList(data);
 }
 else {
 printSpacesList(data);
 }
 },
 error: function(jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

Getting relationships of an identity

You can use the /rest/v1/social/relationships API to retrieve all
relationships of an identity. For example, passing a user identity and a
parameter status=pending to the API call results in connections of
this user who are in the “pending” status.

Implement a function like this:

function getIdentityRelationships(){
 //send http request
 $.ajax({
 type: "GET",
 url: "/rest/v1/social/identities?identityId="+input_identity+"&status=pending",
 success: function (data, status, jqXHR) {
 //print the result data.relationships
 },
 error: function(jqXHR, status) {
 alert("Cannot retrieve data!");
 }
 });
}

Other APIs

The remaining APIs allow to deal with Social objects (Space or User) as
in the sections of
User
and
Space
APIs.

	POST /v1/social/identities: creates an identity.

	DELETE /v1/social/identities/{id}: deletes an identity.

	PUT /v1/social/identities/{id}: updates an identity.

	GET /v1/social/identities/{id}/relationships: gets the relationship
between two identities.

	POST /v1/social/relationships: creates a relationship between two
identities.

	DELETE /v1/social/relationships/{id}: deletes a relationship by Id.

	PUT /v1/social/relationships/{id}: updates a relationship by Id.

	GET /v1/social/relationships/{id}: gets a relationship by Id.

Portal API

The Portal API provides access to retrieving, creating and deleting
Portal Sites and Portal Pages. It also provides full support for the
navigation and nodes associated with a site, which can be very useful
for example creating custom navigation portlets. This section only gives
some basic examples of the API usage. For full documentation of all
features available, please refer to the
Javadoc [http://gatein.github.io/gatein-api-java/].

PortalRequest and Portal

The PortalRequest is the entry point to the API. It provides access to
the Portal, and it also provides access to information associated with
the current request (such as the logged in user and the page being
requested).

The example below shows how to use the PortalRequest to obtain an
instance of the Portal:

Portal portal = PortalRequest.getInstance().getPortal();

This sections contains these parts:

	Site

	Navigation

	Page

	OAuth Provider API

Site

A Site is comprised of a set of pages, navigation definitions, and can
be assigned a unique skin. There are three different types of sites:
standard sites, group spaces and user dashboards.

Retrieving Sites

A specific site can be retrieved by its SiteId. The SiteId is
constructed by passing either the name for a standard site, the group
for a group space or the user for a user dashboard. Alternatively it can
be constructed by passing the SiteType and name.

Example of Retrieving Sites is Shown below:

Site standardSite = portal.getSite(new SiteId("classic"));
Site groupSpace = portal.getSite(new SiteId(new Group("platform", "administrators")));
Site userDashboard = portal.getSite(new SiteId(new User("john")));

It is also possible to query for sites using the SiteQuery. The
SiteQuery supports filtering, sorting and pagination when querying for
sites.

The example below finds standard sites that a user has access
permissions to, limited to the 10 first results:

SiteQuery.Builder qb = new SiteQuery.Builder();

qb.withSiteTypes(SiteType.SITE).withPagination(0, 10).withFilter(new Filter<Site>() {
 public boolean accept(Site site) {
 return portal.hasPermission(user, site.getAccessPermission());
 }
});

List<Site> sites = portal.findSites(qb.build());

Note

The default number of results to return is 15. Which means that if
no pagination is set while building the query, the maximum number of
results will be 15. So be sure to set the correct pagination while
querying.

Creating a Site

To create a site, first create a new site through the Portal, then set
the configuration for the site (such as localized display names and
skin), and finally save it using the Portal.

The example below creates a new standard site with the name mysite and a
non-localized display name:

Site site = portal.createSite(new SiteId("foo"));
site.setDisplayName("My Site");
portal.saveSite(site);

Note

The site is not visible (or persisted) until saveSitesaveSite is invoked.

Setting Attributes for a Site

It is possible to change attributes for the site, supported attributes
are:

	sessionAlive : sets if a session is kept alive or not. Valid values
are “onDemand”, “always”, and “never” with the default being
“onDemand”.

	showPortletInfo : sets if the info bar is shown by default when
adding applications to pages, the default is ‘false’.

The attributes are set by using the associated Key, the example below
changes the sessionAlive attribute:

site.getAttributes().put(Site.AttributeKeys.SESSION_BEHAVIOR, "always");

Setting Permission for a Site

Associated with a site is an access permission and an edit permission,
which controls what users and groups are allowed to access and edit the
site respectively.

The example below makes a site accessible by everyone, but only editable
by users in the /platform/administrators group:

site.setAccessPermission(Permission.everyone());
site.setEditPermission(Permission.any("platform", "administrators"));

portal.saveSite(site);

Note

The changed permissions do not take affect until saveSite is invoked.

Deleting a site

A site is deleted by invoking removeSite on the Portal.

Navigation

A Navigation for a site is retrieved from the Portal and allows
accessing the node tree that represents the navigation entries for the
site. There is a special root node which is not directly part of the
navigation, but it’s the parent of the first level of navigation
entries. As the root node is not meant to be displayed it doesn’t have a
display name.

The example below retrieves the Navigation for the classic site:

Navigation navigation = portal.getNavigation(new SiteId("classic"));

Retrieving Navigation Nodes

When retrieving navigation nodes, it is possible to either retrieve the
root node, or a specific node in the hierarchy. It is also possible to
control which if any of the children are loaded.

This example below shows a very simple navigation portlet that displays
the top level of entries in the navigation menu:

public void doView(RenderRequest request, RenderResponse response) throws IOException {
 PrintWriter pw = response.getWriter();
 Navigation navigation = PortalRequest.getInstance().getNavigation();

 pw.print("");
 for (Node n : navigation.getRootNode(Nodes.visitChildren())) {
 pw.printf("%s", n.getURI(), n.getDisplayName());
 }
 pw.print("");
}

To retrieve a specific node in the tree it’s retrieved by specifying the
NodePath to the node:

Node node = navigation.getNode(NodePath.path("home"));

Note

It is important to note that when you retrieve a node, it actually
represents a tree of nodes and all operations (i.e. save, refresh)
act on that entire tree. So if you retrieve the root node and it’s
children and make modifications to two children but only perform a
save on one child, the other child will be saved since the save
operation acts on the entire node tree.

Node Visitor

When retrieving navigation nodes, especially if there is a large number
of nodes it is important to limit how many levels of nodes are
retrieved. This is controlled by using either one of the built in
NodeVisitor from the Nodes class, or by implementing your own
NodeVisitor. The Nodes class contains the following visitors:

	visitAll : loads all nodes.

	visitChildren : loads the immediate children.

	visitNone : loads only the node.

	visitNodes(int) : loads a specified depth of descendants.

The example below retrieves the root node and 2 levels of nodes:

Node rootNode = navigation.getRootNode(Nodes.visitNodes(2));

To find out if the children for a node is loaded use the
isChildrenLoaded method. For example

navigation.getRootNode(Nodes.visitChildren()).isChildrenLoaded()

returns true while

navigation.getRootNode(Nodes.visitNone()).isChildrenLoaded()

returns false.

Filtering Navigation Nodes

Nodes support a filtering mechanism which makes it simple to display
only nodes that have certain properties. For example when creating a
navigation portlet it is common to only want to display visible nodes
where the user has access to view the page:

Node filtered = node.filter().showDefault();

There is a number of methods available to control what nodes are
displayed, and they all start with show. showDefault is a short-cut for

showVisible().showHasAccess(PortalRequest.getInstance().getUser()).

It is also possible to add a custom filter. The example below displays
uses a custom filter to only nodes with a display name that starts with
“A”:

Node filtered = root.filter().show(new Filter<Node>() {
 public boolean accept(Node node) {
 return node.getDisplayName().startsWith("A");
 }
});

Creating a Navigation Node

To create a node, first retrieve the parent node you want to add it to,
and invoke the addChild method on the parent node. Then set the
configuration for the node (such as the display name and the page it
should link to) and finally save it using saveNode on Navigation.

The example below creates a node as a child of the home node:

Node home = navigation.getNode(NodePath.path("home"));
Node child = home.addChild("mynode");
child.setDisplayName("My Node");
child.setPageId(new PageId("classic", "mypage"));
navigation.saveNode(home);

Note

The node is not visible (or persisted) until saveNode is invoked.

Navigation Node Visibility

Nodes can be visible, hidden or only visible at a specified publication
date. By default a new node is visible.

A node can be hidden with node.setVisibility(false), or only shown until
a specific date with node.setVisibility(PublicationDate.endingOn(date)).
It is also possible to set a starting date, or both. The changes to the
node visiblity is not shown until saveNode is invoked on the Portal.

Localization

The display name for a node supports localization. The example below
sets the display name for a node in English and French:

LocalizedString localizedString = node.getDisplayNames();
localizedString.setLocalizedValue(Locale.ENGLISH, "My node");
localizedString.setLocalizedValue(Locale.FRENCH, "Mon noeud");
node.setDisplayNames(localizedString);

navigation.saveNode(node);

Deleting a Navigation Node

A node is deleted by removing it from the parent node. The example below
removes the child with the name mynode:

node.removeChild("mynode");
navigation.saveNode(node);

Note

The node is not removed until saveNode is invoked.

Moving a Navigation Node

A node can be moved to a different parent, or it can be moved to a
different index in the same parent. When moving to a different parent
the new parent is required to be in the same tree.

The example belows moves a node from one parent to another:

root.getNode("parent1", "child").moveTo(root.getNode("parent2"));
navigation.saveNode(root);

Or to move a node to a different index in the same parent:

root.getNode("parent", "child").moveTo(0);
navigation.saveNode(root);

A more convinient way to sort children for a parent is to use the sort
method on the parent, for example to sort the children of the root node
by their display names:

root.sort(new Comparator<Node>() {
 public int compare(Node o1, Node o2) {
 return o1.getDisplayName().compareTo(o2.getDisplayName());
 }
});
navigation.saveNode(root);

Note

As with creating a node, the changes are not visible (or persisted) until saveNode is invoked.

Page

Portal Page aggregates content from one or more Portlets.

Retrieving Pages

A specific page can be retrieved by its PageId. The PageId is
constructed by passing either the name for a standard site, the group
for a group space or the user for a user dashboard, and the name of the
page. Alternatively it can be constructed by passing the SiteId and name
of the page.

Example of retrieving specific pages is shown below:

Page standardSitePage = portal.getPage("classic", "home");
Page groupSpacePage = portal.getSite(new Group("platform", "administrators"), "grouppage");
Page userDashboardPage = portal.getSite(new User("john", "johnspage"));

It is also possible to query for pages using the PageQuery. The
PageQuery supports filtering, sorting and pagination when querying for
pages.

The example below finds pages with a display name that starts with “A”:

PageQuery.Builder qb = new PageQuery.Builder();

qb.withSiteType(SiteType.SITE).withFilter(new Filter<Page>() {
 public boolean accept(Page page) {
 return page.getDisplayName().startsWith("A");
 }
});

List<Page> pages = portal.findPages(qb.build());

Creating a Page

To create a page, first create a new page through the Portal, then set
the configuration for the page (such as localized display names), and
finally saved it using the Portal.

The example below creates a new page in the classic site with the name
mypage and a non-localized display name:

Page page = portal.createPage(new PageId("classic", "mypage"));
page.setDisplayName("My Page");
portal.savePage(page);

Note

The changed permissions do not take affect until savePage is invoked.

Setting Permissions for a Page

Associated with a page is an access permission and an edit permission,
which controls what users and groups are allowed to access and edit the
page respectively.

The example below makes a page accessible to everyone, but only editable
by users in the /platform/administrators group:

page.setAccessPermission(Permission.everyone());
page.setEditPermission(Permission.any("platform", "administrators"));

portal.savePage(page);

Note

The changed permissions do not take affect until savePage is invoked.

Deleting a Page

A page is deleted by invoking removePage on the Portal.

OAuth Provider API

The interface OAuthProvider is a part of our public API. It is the entry
point to perform operations on OAuth providers (social networks).

Please refer to OAuth section for details
about the configuration of eXo Platform which is necessary to use OAuth
providers (Facebook, Google, Twitter) for authentication of users.
Once a user is logged in (or his account is linked with OAuth provider),
his access token is saved in eXo Platform IDM database as a part of his User
Profile. Then it is possible to retrieve his OAuth access token via
OAuthProvider interface and run its operations. It is also possible to
revoke or validate existing access tokens or send request to obtain new
access tokens with more scopes (privileges).

Tip

Except for the next two sections, where we present some basic use of the the OAuthProvider API, there is also a standalone code example called Social Portlets.

Retrieve an Instance of OAuthProvider

First, you need to retrieve the appropriate instance of OAuthProvider
from Portal:

Portal portal = PortalRequest.getInstance().getPortal();
OAuthProvider facebookProvider = portal.getOAuthProvider(OAuthProvider.FACEBOOK)

Currently eXo Platform supports three OAuth providers:

	OAuthProvider.FACEBOOK for Facebook.

	OAuthProvider.GOOGLE for Google+.

	OAuthProvider.TWITTER for Twitter.

OAuthProvider Operations

The following snippet shows some basic use of OAuthProvider API:

// Retrieve instance of Google OAuth provider
OAuthProvider googleProvider = PortalRequest.getInstance().getPortal().getOAuthProvider(OAuthProvider.GOOGLE);

// Check if Google was enabled in configuration.properties
if (googleProvider == null) {
 renderResp.getWriter().println("Authentication with Google not available. See OAuth section in Reference Guide for how to enable it");
 return;
}

// Retrieve the key and display name of the social network
String key = googleProvider.getKey();
String friendlyName = googleProvider.getFriendlyName();
renderResp.getWriter().println(friendlyName + " is enabled");

// Retrieve access token of the current user
AccessToken accessToken = googleProvider.loadAccessToken(renderReq.getRemoteUser());

// Check if access token is available. It's the case when this user was registered/authenticated into portal
// through Google+ or if he linked his account with Google+
if (accessToken == null) {
 renderResp.getWriter().println("Your account is not linked with Google+. You can link it in 'Social network' tab of " +
 "user settings or you can authenticate through Google into portal");
 return;
}

// Check if access token is valid and refresh it if necessary
try {
 accessToken = googleProvider.validateTokenAndUpdateScopes(accessToken);
} catch (OAuthApiException oauthException) {
 if (oauthException.getExceptionCode().equals(OAuthApiExceptionCode.ACCESS_TOKEN_ERROR)) {
 renderResp.getWriter().println("Your access token is invalid or has been revoked");
 } else if (oauthException.getExceptionCode().equals(OAuthApiExceptionCode.IO_ERROR)) {
 renderResp.getWriter().println("Network error during the communication with Google");
 }
}

// Check all available scopes
String availableScopes = accessToken.getAvailableScopes();

// Check if we have scope to call Google+ operations
if (!availableScopes.contains("https://www.googleapis.com/auth/plus.login")) {
 // Redirect to Google+ and ask for plus.login scope
 googleProvider.startOAuthWorkflow("https://www.googleapis.com/auth/plus.login");
 return;
}

// Obtain Google API object to call Google plus API operations
Plus service = googleProvider.getAuthorizedSocialApiObject(accessToken, Plus.class);

// Retrieve activities from Google+ wall of user
ActivityFeed activityFeed = service.activities().list("me", "public").execute();
for (Activity activity : activityFeed.getItems()) {
 renderResp.getWriter().println(activity.getTitle());
}

// Revoke the access token. It won't be possible to run any operations with it anymore.
// And your application will be cleared from Google applications of current user on page https://plus.google.com/apps
googleProvider.revokeToken(accessToken);

// Remove the token from the UserProfile of the current user
googleProvider.removeAccessToken(request.getRemoteUser());

Access to Provider-Specific Operations

Method

oauthProvider.getAuthorizedSocialApiObject()

is useful for obtaining access to provider-specific operations. This
method usually returns objects from a 3rd party library. Those objects
are always initialized with access token of the current user and can be
used to retrieve data from the related social network.

	Google: There are two supported types usable as arguments of this
method:

	com.google.api.services.plus.Plus : Google Plus API class, which
can be used to call operations on Google Plus. See
GoogleActivitiesPortlet [https://github.com/exo-samples/docs-samples/blob/master/gatein-portal-quickstart/social-portlets/src/main/java/org/jboss/quickstarts/portal/social/oauth/google/GoogleActivitiesPortlet.java]
and
GoogleFriendsPortlet [https://github.com/exo-samples/docs-samples/blob/master/gatein-portal-quickstart/social-portlets/src/main/java/org/jboss/quickstarts/portal/social/oauth/google/GoogleFriendsPortlet.java]
in Social
Portlets [https://github.com/exo-samples/docs-samples/tree/master/gatein-portal-quickstart/social-portlets]
example.

	com.google.api.services.oauth2.Oauth2: Oauth2 class, which
provides operations related to user, such as obtaining his Google
user profile details or obtaining information about his access
token. See
GoogleUserInfoPortlet [https://github.com/exo-samples/docs-samples/blob/master/gatein-portal-quickstart/social-portlets/src/main/java/org/jboss/quickstarts/portal/social/oauth/google/GoogleUserInfoPortlet.java]
in Social
Portlets [https://github.com/exo-samples/docs-samples/tree/master/gatein-portal-quickstart/social-portlets]
example.

	Twitter: There is only one supported type for Twitter:
twitter4j.Twitter. An instance of this class can be used e.g. to
retrieve user details, number of his tweets, number of his friends,
his last tweets, etc. See
TwitterPortlet [https://github.com/exo-samples/docs-samples/blob/master/gatein-portal-quickstart/social-portlets/src/main/java/org/jboss/quickstarts/portal/social/oauth/twitter/TwitterPortlet.java]
in Social
Portlets [https://github.com/exo-samples/docs-samples/tree/master/gatein-portal-quickstart/social-portlets]
example.

	Facebook: There is no supported type for Facebook. In Social
Portlets [https://github.com/exo-samples/docs-samples/tree/master/gatein-portal-quickstart/social-portlets]
example, we are using the 3rd party library
RestFB [http://restfb.com/RestFB] directly to perform operations
against Facebook.

Cookbook

This chapter currently focuses on how to copy a work done on the
eXo Platform server, such as creating navigations, node types and
templates, to another eXo Platform server throughout these topics:

	Copying a site’s content folder with its version history

	Copying navigation nodes of sites

	Copying templates of node types

	Copying the Content template

	Copying a category tree

	Copying metadata templates

	Copying queries

	Copying scripts

	Copying drive configurations

	Copying gadgets

	Restarting the server

The procedure of each step will be detailed as follows:

Step 1. Copying a site’s content folder with its version history

	Go to the Sites Management drive.

	Open the site node, for example “acme”.

	Click Export on the Action bar to export the node with its version
history as below:

[image: image0]

	Select Export and Export Version History to perform the exporting.

	Navigate to the node where you want to import the file, then click
Import to open the Import form.

	Select the exported nodes and version history to be imported.

[image: image1]

One pop-up message will appear to inform that you have imported
successfully.

Step 2. Copying navigation nodes of sites

	Go to the Content Administration page and add a new drive to both
target and source servers.

[image: image2]

	Export the navigation node.

[image: image3]

	Import the nodes navigation.

[image: image4]

Step 3. Copying templates of node types

	Add the System drive to both servers.

[image: image5]

	Open system:/jcr:system/exo:namespaces/{namespace_name}, and
export it.

[image: image6]

	Open system:/jcr:system/exo:namespaces/, and import the exported
file as described in **Step 2**

[image: image7]

	Open system:/jcr:system/jcr:nodetypes/{node_type}, and export it.

[image: image8]

	Open system:/jcr:system/jcr:nodetypes/, and import the exported
file as described in **Step 4**.

[image: image9]

Note

If you have some specific JCR namespaces and node types, you need to import them into the new server.

Step 4. Copying the Content template

	Add the DMS Administration drive to both servers.

[image: image10]

Note

You need to select dms-system for the Workspace field.

	Open the DMS Administration drive.

	Open dms-system:/exo:ecm/templates/{node_type}, and export it.

[image: image11]

	Open dms-system:/exo:ecm/templates/, and import the exported file.

[image: image12]

Also, for the CLV templates, you can find all template views defined in
the dms-system:/exo:ecm/views path with:

	userviews: this folder contains views of Sites Explorer with a set of
actions.

	templates: where you can find all gtmpl templates of:

	Category Navigation Portlet templates.

	Content List Viewer (CLV) templates and its paginator templates.

	ecm-explorer templates define how to display nodes in the Sites
Explorer portlet, such as Content, List and Thumbnails views.

	Search templates is used in the Content Search portlet to define
the form, layout, result and result’s paginator.

If you want to reuse one of the non-predefined templates above, simply
export and import it into the new server at the same place.

Note

If you have some specific Content (CLV) views and/or templates of node types, you will need to import them into the new server.

Step 5. Copying a category tree

By importing the whole site as described in the Copying a site’s content folder with its version history
section, you will also have the category tree imported. The default
location where the site’s category is placed in a sub-folder is named
category. So, you do not need to export or import them because this step
is automatically done. But the category tree definition is still not
fully imported in the new server. What you need to do is to add this
category tree definition by following these steps:

	Open the DMS Administration drive in the new server.

	Go to dms-system:/exo:ecm/exo:taxonomyTrees/definition.

	Add a symlink to the Category Tree Root Node, for example
collaboration:/sites/acme.

[image: image13]

The name of symlink is displayed as “acme”.

[image: image14]

The symlink will be generated as below:

[image: image15]

In some cases, to see changes, you need to clear the cache by
disconnecting or restarting the server.

[image: image16]

Step 6. Copying metadata templates

	Open the DMS Administration drive in the new server.

	Go to /exo:ecm/metadata/{meta_data_name}.

	Export and import it in the same location in the new server again.

Step 7. Copying queries

	Open the DMS Administration drive in the new server.

	Go to /exo:ecm/queries/{query_name}.

	Export and import it in the same location in the new server again.

Step 8. Copying scripts

	Open the DMS Administration drive in the new server.

	Go to /exo:ecm/scripts/ecm-explorer.

You will find three folders referring to the three types of groovy
scripts in eXo Platform, including:

	action: The action scripts are launched when an ECM action triggers
them. For more information, refer to Managing actions.

	interceptor: Interceptor scripts are triggered before and/or after
the JCR node is saved, or when a node is created or edited. They are
used to either validate the value entered in a form or to manipulate
the newly created node, for example, to map the new node with a forum
thread or any other type of discussion areas.

	widget: Widget scripts are used to fill widgets, such as a select box
in a dynamic way.

	Export your customized script in the same location in the new server.

Step 9. Copying drive configurations

	Open the DMS Administration drive in the new server.

	Go to /exo:ecm/exo:drives/{drive_name}.

	Export and import it in the same location in the new server again.

Step 10. Copying gadgets

	Open the drive that points into the Portal-System Workspace.

	Go to your gadget by following the
portal-system:/production/app:gadgets/{gadget_name} path.

	Export and import it in the same location in the new server again.

Step 11. Restarting the server

After importing the site navigation nodes, the site may look quite
broken, so you need to restart the server first. After the server is
restarted, the site will look like:

[image: image17]

eXo Engagement Analytics by Lecko

What is Lecko Analytics?

Lecko Analytics [http://analytics.lecko.fr/] is a partner service
that:

	Allows you to audit the usages of eXo Platform.

	Enables you to track and inspect user engagement within eXo Platform.

	Finds how many people are adopting a social behaviour.

	Offers raw metrics on things such as: likes, comments, uploaded
documents, shared polls, discussions….

	Compares various indicators.

	Allows you to benchmark your organisation’s social engagement
versus other companies in your industry.

[image: image0]

In this chapter:

	Prerequisites:
The needed actions to benefit from the add-on.

	Installing and configuring the eXo Engagement Analytics add-on:
Steps to install and configure the add-on.

	How does it work?:
How the add-on works.

Prerequisites

To benefit from all the previously cited functionalities, you need to
satisfy some prerequisites on both the business and technical side.

Business prerequisites

eXo Engagement Analytics by Lecko is a partnered add-on with Lecko Analytics [http://analytics.lecko.fr/].
It is available only with the commercial editions of eXo Platform
and requires the purchase of a dedicated add-on subscription from eXo
Platform. Please refer to Appendix 4 of the Master Subscription Agreement [https://www.exoplatform.com/terms-conditions/terms-conditions.pdf].

Technical prerequisites

Having satisfied the business prerequisites, you should also cater for
the technical side:

	Install the add-on in your eXo Platform. Check the next section for
more details about the installation phase.

	Have network access to upload data collected from eXo Platform into
Lecko Analytics [http://analytics.lecko.fr/] Cloud Platform.

This has to be factored with your internal security constraints.
eXo Platform uses a secured FTP endpoint to communicate with Lecko’s
Cloud Platform.

	Have a network web access with SSL enabled
to reach Lecko Analytics portal.

Installing and configuring the eXo Engagement Analytics add-on

Installation

eXo Platform has partnered with Lecko [http://analytics.lecko.fr/]
to offer an engagement analytics solution that allows to monitor user
engagement and let you drive end user adoption of eXo Platform.

This solution is presented as an add-on: the eXo Engagement Analytics by Lecko [http://analytics.lecko.fr/]
which can be installed via the addons manager using
this command:

./addon install exo-lecko

eXo Engagement Analytics by Lecko [http://analytics.lecko.fr/]
add-on is used to collect metrics from activity streams via a job and it
dumps them in a flat file on disk.

Having dumped all the needed metrcis, another job uploads the generated
file on Lecko [http://analytics.lecko.fr/] servers to be loaded in
the Analytics server.

Learn more about how eXo Engagement Analytics by
Lecko [http://analytics.lecko.fr/] add-on works in the section
How does it work?.

Configuration

To customize eXo Engagement Analytics by
Lecko [http://analytics.lecko.fr/] add-on, you can configure it
through exo.properties file.

The table below contains all the needed parameters to customize eXo
Engagement Analytics add-on:

	Property

	Description

	Default value

	exo.addons.lecko.job.start.
expression

	Defines the export start
time.

	0 0 21 * * ?

	exo.addons.lecko.job.stop.e
xpression

	Defines the export end
time.

	0 0 6 * * ?

	exo.addons.lecko.job.enable
d

	Allows to
activate/deactivate the
addon. When set to true it
activates eXo Advanced
Analytics add-on.

	true

	exo.addons.lecko.directory.
out.name

	Defines the destination
folder of the analytics
export.

	${java.io.tmpdir
}/lecko

	exo.addons.lecko.out.name

	Defines the name of the
file to be exported.

	dump

	exo.addons.lecko.SftpHost

	Defines the destination FTP
hostname.

	

	exo.addons.lecko.SftpUser

	Defines the destination FTP
username.

	

	exo.addons.lecko.SftpPasswo
rd

	Defines the destination FTP
password.

	

	exo.addons.lecko.SftPortNum
ber

	Defines the destination FTP
port.

	

	exo.addons.lecko.SftpRemote
Path

	Defines the destination FTP
path.

	

	exo.addons.leckoSftp.ProxyA
ddress

	Defines the proxy hostname
or IP.

	

	SftpProxyPort

	Defines the proxy port.

	

How does it work?

While starting the platform and having eXo Engagement Analytics add-on
installed, a job is launched to make the export.

The export ends when all needed information are exported or when the end
time defined in
exo.properties expires.

In case of restarting the platform, the job resumes its work from the
point when it stopped in the last time. In fact, the lecko service job
marks every exported element: space stream or user stream.

When the export is fully done, the service will send the report file to
the configured FTP in exo.properties.

After successful sending of the export file, eXo Engagement Analytics
add-on service restarts its progression to delete the export file and
then stops. In the next occurence, it will start a fresh export.

Monitoring

It is also possible to monitor eXo Engagement Analytics add-on via
JConsole as some Mbeans are available:

	buildLeckoData: This action will start the data export even if
exo.addons.lecko.job.enabled parameter is set to false in
exo.properties.

It does nothing if the export is running.

	stopLeckoExport: If the exoprt is running, it will stop it.

	UploadLeckoData: If the export is finished, it will upload the
dump file to lecko’s ftp. It does nothins if the service is running.

	enableLeckoJob: It is a string Mbean parameter with which you can
set exo.addons.lecko.job.enabled to true or false.

	getEnableLeckoJob: It informs if jobs are activated or not.

	getJobStatus: It displays information about lecko analytics jobs:
the exopt folder, its status (running or not) and the completion
percentage.

	resetExtraction: It helps to start fresh export: it removes the
dump file without sending it and cleans the database.

Single Sign-On

eXo Platform provides an implementation of Single Sign-On (SSO) as an
integration and aggregation platform.

When logging into the portal, users gain access to many systems
throughout portlets using a single identity. In many cases, the portal
infrastructure must be integrated with other SSO enabled systems. There
are many different Identity Management solutions available. In most
cases, each SSO framework provides a unique way to plug into a Java EE
application.

In this chapter:

	Central Authentication Service (CAS)

	OpenAM

	SPNEGO

	SAML2

	Single Sign-On in Cluster mode

Central Authentication Service (CAS)

Normally, when a non-authenticated user navigates to eXo Platform, he will be
redirected to the Login form of eXo Platform for authentication. In eXo Platform,
the CAS add-on enables the seamless integration between eXo Platform and CAS
SSO Framework. So with the enabled CAS integration, the user will be
redirected to the CAS login screen where he provides his credentials
rather than eXo Platform login form. By logging into CAS, he will then be
redirected to eXo Platform without login again. See
here [https://apereo.github.io/cas] for details about CAS.

The integration between eXo Platform and CAS consists of 3 steps:

	Setting up the CAS server.

	Configuring the eXo Platform server
to use the CAS server.

Assumption

	i. CAS is deployed on Tomcat 7 server at localhost:8888.

	ii. eXo Platform (Tomcat or JBoss EAP) is deployed at
localhost:8080.

CAS server setup

Depending on your organization infrastructure, user information
(basically username and password) can be stored in an independent
datastore. When a user logs in eXo Platform that delegates to CAS, CAS in its
turn calls the service of datastore to validate the login. If you store
user information in eXo Platform, you need to configure CAS to call back the
eXo Platform service to validate a login. In this case (called “callback”),
eXo provides solution for user information store - an Authentication
plugin named org.gatein.sso.opensso.plugin.AuthenticationPlugin that
can be set on the CAS server. This plugin makes secure authentication
callbacks to a RESTful service installed on the remote eXo Platform server to
authenticate a user. Meanwhile, if you store user information in another
external datastore rather than eXo Platform (called non-callback), you do not
need to install this Authentication plugin. Instead, you need to have
another Authentication plugin that is compatible with your datastore.

On the CAS server side, the following packages are required:

	$CAS_HOME: The CAS package that you may download from
here [https://github.com/apereo/cas/releases]. For eXo Platform
integration, eXo Platform supports CAS 3.5 and CAS 4.0. This
documentation is based on testing results of CAS 3.5.2 and CAS 4.0.0
integration. However, the integration can still work with all
versions.

Note

The downloaded CAS release is a Maven-based project source (CAS does not release binaries officially), so you need to build the
project by yourself. To complete these instructions, and perform the final build step, you need Apache Maven 3. You can get it
here [http://maven.apache.org/download.html].

	$CAS_TOMCAT_HOME: A Servlet container on which CAS server will be
deployed. In this tutorial, it is a Tomcat 7
package [http://tomcat.apache.org/download-70.cgi].

Deploying CAS

	Go to $CAS_HOME/cas-server-webapp and execute the command:

mvn clean install -Dmaven.test.skip=true

Note

For CAS 4.0.0, you need to edit its $CAS_HOME/pom.xml file by replacing:

<header>${cs.dir}/src/licensing/header.txt</header>

with

<header>${licenseHeader}</header>

	Deploy CAS to Tomcat by copying $CAS_HOME/cas-server-webapp/target/cas.war
into $CAS_TOMCAT_HOME/webapps.

	Change the default port to avoid conflicts with the default eXo Platform (for
testing purposes) by replacing the 8080 port with 8888 in
$CAS_TOMCAT_HOME/conf/server.xml.

Note

If eXo Platform is running on the same machine as Tomcat, other ports
need to be changed to avoid port conflicts. They can be changed to
any free port. For example, you can change the admin port from 8005
to 8805, and the AJP port from 8009 to 8809.

	Start the CAS Tomcat server ($CAS_TOMCAT_HOME\bin\startup.bat for
Windows, or $CAS_TOMCAT_HOME/bin/startup.sh for Linux/OS X).

Note

At this stage, the CAS Tomcat is accessible at http://localhost:8888/cas, but unavailable for login.

After deploying CAS, you need to properly configure the CAS server. The
configuration will be different between callback and non-callback cases.
In paticular:

	If you store users in eXo Platform, see Authentication plugin setup.

	If you store users in another datasource (such as LDAP), you need to
have an Authentication plugin that is compatible with your
datasource. For CAS 3.5 and CAS 4.0 integration, see
here [https://apereo.github.io/cas/5.0.x/installation/Configuring-Authentication-Components.html]
for specific cases.

Authentication plugin setup

Note

The below procedure is for callback to eXo Platform server only. If it is not your case, bypass this.

	Go to $PLATFORM_HOME, and install CAS add-on with the command:

addon install exo-cas

After successful installation, one zip folder named cas-plugin.zip
is generated at the root of $PLATFORM_HOME.

	Extract cas-plugin.zip, then copy and merge its extracted .jar
files into $CAS_TOMCAT_HOME/webapps/cas/WEB-INF/lib/.

	Open $CAS_TOMCAT_HOME/webapps/cas/WEB-INF/deployerConfigContext.xml
to modify.

	If you are using CAS 3.5.x, replace:

<bean
 class="org.jasig.cas.authentication.handler.support.SimpleTestUsernamePasswordAuthenticationHandler" />

with the following (make sure you have set the host, port and context
with the values corresponding to your portal).

<bean class="org.gatein.sso.cas.plugin.AuthenticationPlugin">
 <property name="gateInProtocol"><value>http</value></property>
 <property name="gateInHost"><value>localhost</value></property>
 <property name="gateInPort"><value>8080</value></property>
 <property name="gateInContext"><value>portal</value></property>
 <property name="httpMethod"><value>POST</value></property>
</bean>

	Or, if you are using CAS 4.0.0, find:

<bean id="primaryAuthenticationHandler"
 class="org.jasig.cas.authentication.AcceptUsersAuthenticationHandler">
 <property name="users">
 <map>
 <entry key="casuser" value="Mellon"/>
 </map>
 </property>
</bean>

and replace with:

<bean id="primaryAuthenticationHandler" class="org.gatein.sso.cas.plugin.CAS40AuthenticationPlugin">
 <property name="gateInProtocol"><value>http</value></property>
 <property name="gateInHost"><value>localhost</value></property>
 <property name="gateInPort"><value>8080</value></property>
 <property name="gateInContext"><value>portal</value></property>
 <property name="httpMethod"><value>POST</value></property>
</bean>

Now, you can move to the next section
to configure the eXo Platform server.

eXo Platform server configuration

The eXo Platform server configuration is quite different between the Tomcat
and JBoss packages. Here are instructions for both
Tomcat
and JBoss
bundles.

In Tomcat

Add the following to the
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties file (see
Configuration overview
for this file):

SSO
gatein.sso.enabled=true
gatein.sso.callback.enabled=${gatein.sso.enabled}
gatein.sso.login.module.enabled=${gatein.sso.enabled}
gatein.sso.login.module.class=org.gatein.sso.agent.login.SSOLoginModule
gatein.sso.server.url=http://localhost:8888/cas
gatein.sso.portal.url=http://localhost:8080
gatein.sso.filter.logout.class=org.gatein.sso.agent.filter.CASLogoutFilter
gatein.sso.filter.logout.url=${gatein.sso.server.url}/logout
gatein.sso.filter.login.sso.url=${gatein.sso.server.url}/login?service=${gatein.sso.portal.url}/@@portal.container.name@@/initiatessologin

In previous versions of eXo Platform, there were much more changes needed in
various configuration files. But now, all JARS are available in
$PLATFORM_TOMCAT_HOME/lib or
$PLATFORM_JBOSS_HOME/standalone/deployments/platform.ear/lib, so you
do not need to manually add any JAR files. If you are interested in
technical details about the single properties and configuration, you can
see the below.

	gatein.sso.enabled - This option will generally enable SSO
integration and informs eXo Platform about that.

	gatein.sso.callback.enabled - This will enable REST callback
authentication handler, which is needed if you want CAS server to use
SSO Authentication plugin for CAS own authentication. By default, the
Callback handler is enabled when the gatein.sso.enabled option is
true. You can switch it to “false” if you do not want to use
Authentication Plugin on the CAS server side.

	gatein.sso.login.module.enabled &
gatein.sso.login.module.class - There is a special login module
configured for gatein-domain in
$PLATFORM_TOMCAT_HOME/conf/jaas.conf (Tomcat) or
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml
(JBoss) called SSODelegateLoginModule. If SSO is disabled, this
SSODelegateLoginModule is simply ignored during authentication
process. But if SSO is enabled by this property, it delegates the
work to another login module configured via the next option
gatein.sso.login.module.class. SSODelegateLoginModule will
also resend all its options to its delegate. In case of CAS server,
org.gatein.sso.agent.login.SSOLoginModule will be used as
delegate. The point of this architecture is, that people do not need
to manually change any login module configurations in jaas.conf
or standalone-exo.xml.

The main eXo Platform configuration file for SSO integration is
portal.war!/WEB-INF/conf/sso/security-sso-configuration.xml. All
needed SSO components like agents and SSO interceptors (former servlet
filters) are configured in this file. The idea is that you never need to
manually edit this file as most of the options are configurable via
exo.properties (see Configuration overview
for this file). But in case that something is really not suitable for your
usecase or you need to add another custom interceptor or something else,
you can manually edit it here. All the additional configuration
properties are used especially for substitute values in this
security-sso-configuration.xml file.

	gatein.sso.server.url - Here you need to configure where your CAS
server is deployed. In this context, that is
http://localhost:8888/cas.

	gatein.sso.portal.url - Here is URL for access to your GateIn
Portal server (actually server you are just configuring). In this
context, that is http://localhost:8080.

	gatein.sso.filter.logout.class - Class of logout filter, which
needs to be set to org.gatein.sso.agent.filter.CASLogoutFilter.
This filter is able to redirect to CAS server and performs logout on
CAS side.

	gatein.sso.filter.logout.url - CAS server logout URL, which will
be used for redirection by logout filter.

Note

If you want to disable logout on CAS side, you can simply disable
this logout interceptor by adding the gatein.sso.filter.logout.enabled
with the “false” value. This will cause that click to Sign out on portal side
will logout user from eXo Platform but not from CAS server. In this case, both
gatein.sso.filter.logout.class and gatein.sso.filter.logout.url will be ignored.

	gatein.sso.filter.login.sso.url - CAS server login URL, which
will be used by LoginRedirectFilter for redirection to CAS server
login page.

Note

The @@portal.container.name@@ string will be dynamically
replaced by the correct name of portal container, where it will
be executed. The SSO component will do it, so in configuration,
you should really use the @@portal.container.name@@ string
instead of some hard-coded portal container name (like portal or
sample-portal).

Once these changes have been made, all links to the user authentication
pages will redirect to the CAS centralized authentication form. And on
CAS you will be able to authenticate with portal credentials (like
john/gtn) thanks to Authentication plugin.

In JBoss

	Edit the file $PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
(see Configuration overview for this file):

SSO
 gatein.sso.enabled=true
 gatein.sso.callback.enabled=${gatein.sso.enabled}
 gatein.sso.login.module.enabled=${gatein.sso.enabled}
 gatein.sso.login.module.class=org.gatein.sso.agent.login.SSOLoginModule
 gatein.sso.server.url=http://localhost:8888/cas
 gatein.sso.portal.url=http://localhost:8080
 gatein.sso.filter.logout.class=org.gatein.sso.agent.filter.CASLogoutFilter
 gatein.sso.filter.logout.url=${gatein.sso.server.url}/logout
 gatein.sso.filter.login.sso.url=${gatein.sso.server.url}/login?service=${gatein.sso.portal.url}/@@portal.container.name@@/initiatessologin

In which:

	gatein.sso.server.url (= http://localhost:8888/cas in this
example) is the URL of your CAS web context.

	gatein.sso.portal.url (= http://localhost:8080 in this example)
is the URL of your eXo Platform server.

	Uncomment the below login module in $PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml,
then change ${gatein.sso.login.module.enabled} and
${gatein.sso.login.module.class} into
#{gatein.sso.login.module.enabled} and
#{gatein.sso.login.module.class} respectively.

<login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="#{gatein.sso.login.module.enabled}"/>
 <module-option name="delegateClassName" value="#{gatein.sso.login.module.class}"/>
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 <module-option name="password-stacking" value="useFirstPass"/>
</login-module>

Now, you can move to the next section for testing.

Testing

For the callback case, testing is quite simple as follows:

	Start eXo Platform server and CAS Tomcat server.

Note

Remember that CAS add-on has been already installed in eXo Platform.

	Open your browser, then browse http://localhost:8080/portal/. You will
be redirected to the CAS login form.

[image: image0]

	Log in with the eXo Platform credentials (using the default account -
root/gtn, for example). You will be auto-logged in and redirected to
the eXo Platform homepage.

In case of non-callback, note that the user must be registered in both
the external datasource and eXo Platform, then log in with the credentials
(username and password) created in the external datasource.

Also, you can see:

	CAS SSO cookie configuration if
you use more Service applications integrating with a single CAS SSO.

	Logout redirection setup
if you want to make the CAS server redirect to the portal page after
logout.

CAS SSO cookie configuration

CAS server is using a special cookie CASTGC, which is useful for SSO
scenarios with more Service applications. For example, you have a single
CAS server and two eXo Platform servers configured to use it (in which
eXo Platform instances are marked as accounts and services). So if
your login is against CAS server with accounts of eXo Platform instance,
you do not need to authenticate again when you access CAS with
services of eXo Platform instance. You will be auto-authenticated when
clicking Sign in on the services instance. This is real SSO and
works thanks to CASTGC cookie, which automatically creates a new ticket
for services instance if it recognizes that user is already
authenticated.

However, the CASTGC cookie is secured by default (available only from
https connections). So to make it work, you have 2 possibilities:

	Use the https protocol to access your CAS server. This will ensure
that the secure CASTGC cookie can be viewable by browsers. This is a
recommended approach for eXo Platformion environment. See
here [https://wiki.jasig.org/display/CASUM/Securing+Your+New+CAS+Server]
for more details.

	The easier workaround (but not recommended in eXo Platformion environment)
is to switch the CASTGC cookie to be non-secure (for example, the
cookie will not require secure access through https but can be
accessed from http as well). To achieve this, you need to make
configuration in the CAS side in the
$CAS_TOMCAT_HOME/webapps/cas/WEB-INF/spring-configuration/ticketGrantingTicketCookieGenerator.xml
file and switch the cookieSecure attribute to false.
Configuration of the cookie generator in this file should look like
this:

<bean id="ticketGrantingTicketCookieGenerator" class="org.jasig.cas.web.support.CookieRetrievingCookieGenerator"
 p:cookieSecure="true"
 p:cookieMaxAge="-1"
 p:cookieName="CASTGC"
 p:cookiePath="/cas" />

Logout redirection setup

By default, on logout the CAS server will display the CAS logout page.
To make the CAS server redirect to the portal page after logout, modify
$CAS_TOMCAT_HOME/webapps/cas/WEB-INF/cas-servlet.xml to include the
followServiceRedirects=”true” parameter:

<bean id="logoutController" class="org.jasig.cas.web.LogoutController"
 p:centralAuthenticationService-ref="centralAuthenticationService"
 p:logoutView="casLogoutView"
 p:warnCookieGenerator-ref="warnCookieGenerator"
 p:ticketGrantingTicketCookieGenerator-ref="ticketGrantingTicketCookieGenerator"
 p:followServiceRedirects="true"/>

Note

The portal page will be then immediately redirected to the CAS login
page. Thus, you will see the CAS login page instead of the portal page.

OpenAM

Normally, when a non-authenticated user navigates to eXo Platform, he
will be redirected to the Login form of eXo Platform for authentication.
However, when the OpenAM integration is enabled, he will be redirected
to the OpenAM login screen where he provides his credentials. By logging
into OpenAM, he will then be redirected to eXo Platform without login
again.

The integration between eXo Platform and OpenAM consists of 2 steps:

	Setting up the OpenAM server.

	Configuring the eXo Platform server
to use the OpenAM server.

Assumption

	i. OpenAM is deployed on Tomcat at localhost:8888.

	ii. eXo Platform (Tomcat or JBoss) is deployed at
localhost:8080.

OpenAM server setup

If you store users in eXo Platform, you need to configure OpenAM to call
back the eXo Platform service to validate a login. In this case (called
“callback”), eXo provides the Authentication plugin
(org.gatein.sso.opensso.plugin.AuthenticationPlugin - that is
similar to CAS) that can be set on the OpenAM server. This plugin makes
secure authentication callbacks to a RESTful service installed on the
remote eXo Platform server to authenticate a user. Meanwhile, if you
store users in another external datasource rather than eXo Platform
(called non-callback), you will not need to install the Authentication
plugin.

On the OpenAM server side, the followings are required:

	$PLATFORM_HOME/openam-plugin.zip!/: This is not needed in case of
non-callback.

	openam.war: You can download the war
here [https://backstage.forgerock.com/#!/downloads/enterprise/OpenAM].
If you download OpenAM as a zip file, extract it and select the exact
war inside. The war file name may differ among OpenAM versions (or
snapshots). For PRODUCT integration, eXo supports and tests OpenAM
11.0 and OpenAM 10.1. This guide is written on the exact
versions: OpenAM 11.0.0 and OpenAM 10.1.0. However, the
integration can still work with all versions.

Note

Remember that the web context is based on the war file name. For
example, if the war file name is OpenAM-11.0.0.war, the web
context is /OpenAM-11.0.0. So, if you do not rename the
downloaded war file name into openam.war, remember to change
the web context accordingly.

	$OPENAM_TOMCAT_HOME: A Servlet container on which OpenAM server
will be deployed. In this tutorial, it is a Tomcat 7
package [http://tomcat.apache.org/download-70.cgi] that you will
download and extract to $OPENAM_TOMCAT_HOME in next steps.

Deploying OpenAM

The first procedure is the same for both callback and non-callback
cases.

	Copy openam.war into $OPENAM_TOMCAT_HOME/webapps to deploy
OpenAM.

	Change the default port to avoid a conflict with the default eXo
Platform (for testing purposes) by replacing the 8080 port with
8888 in $OPENAM_TOMCAT_HOME/conf/server.xml.

Note

If eXo Platform is running on the same machine as Tomcat, another ports
need to be changed to avoid port conflicts. They can be changed to
any free port. For example, you can change the admin port from 8005
to 8805, and the AJP port from 8009 to 8809.

	Start the OpenAM Tomcat server ($OPENAM_TOMCAT_HOME\bin\startup.bat
for Windows, or $OPENAM_TOMCAT_HOME/bin/startup.sh for Linux/OS X).

After deploying OpenAM, you need to properly configure the OpenAM
server. The configuration will be different between callback or
non-callback cases. In particular:

	If you store users in eXo Platform, see Configuring the OpenAM server for
callback case.

	If you store users in another external datasource (such as default
OpenAM DataStore, or LDAP), see Configuring the OpenAM server for
non-callback
case.

Configuring the OpenAM server for callback case

Step 1. Setting up the Authentication plugin

	Go to $PLATFORM_HOME, and install OpenAM add-on with the command:

addon install exo-openam

If you want to use one specific version of OpenAM add-on, check by
yourself with command:

addon list --snapshots

After successful installation, one zip folder named
openam-plugin.zip is generated at the root of $PLATFORM_HOME.

	Extract $PLATFORM_HOME/openam-plugin.zip, then copy and merge its
content into $OPENAM_TOMCAT_HOME/webapps/openam.

	Check
$OPENAM_TOMCAT_HOME/webapps/openam/WEB-INF/classes/gatein.properties
to ensure the correct information about your portal is already given as
below.

host=localhost
port=8080
context=portal
protocol=http
httpMethod=POST

Step 2. Configuring realm in OpenAM UI

Note

The UI of OpenAM forms may be a little different between OpenAM
versions. In the procedure below, screenshots are based on OpenAM 11.0.1.

	Start OpenAM Tomcat server, then browse http://localhost:8888/openam.
You will be redirected to the Configuration Options page like below.

[image: image1]

	Click the Create Default Configuration link.

	Select passwords for Default User (amAdmin) and Default Policy Agent,
then click the Create Configuration button. Remember that these 2
passwords must be different.

[image: image2]

You need to wait for some minutes when the OPENAM configuration is in
progress. If the configuration is successful, you will receive a message
stating “Configuration Complete!”.

	Click the Proceed to Login link.

	Enter the username (amAdmin) and password created previously in the
Sign in to OpenAM form, then click the LOG IN button. You will
be redirected to the OpenAM homepage.

	Select Configuration tab > Authentication subtab > Core link.

	Enter org.gatein.sso.opensso.plugin.AuthenticationPlugin into the
New Value field, then click Add and Save.

[image: image3]

Note

This step is important for setup of GateIn Portal SSO
AuthenticationPlugin to be available among other OpenAM
authentication modules.

	Click Back to Service Configuration, then select the Access Control
tab, and click the New button to create a new realm, named “exo”.

	Enter exo into the Name field, then click OK.

[image: image4]

	Go to the “exo” realm and select the Authentication tab –> Authentication
Chaining. In the Authentication Chaining section, click
ldapService. Here, change the selection from Datastore, which is
the default module in the authentication chain, to
AuthenticationPlugin, then click Save.

[image: image5]

This enables the authentication of “exo” realm by using the eXo
Platform REST service instead of the default DataStore.

	Click Back to Authentication, then Back to Access Control.
Here, select Configuration tab –> Authentication subtab –> Core –>
Realm Attributes –> User Profile. In the User Profile form,
change Required to Dynamic, then click Save.

[image: image6]

Note

This step is needed because eXo Platform users are not in the OpenAM
Datastore (LDAP server), so their profiles cannot be obtained if
Required is active. By using Dynamic, all new users are
automatically created in the OpenAM datastore after successful
authentication.

	Click Back to Service Configuration, then go to Access Control tab –>
Top Level Realm –> Privileges tab –> All Authenticated Users. Here,
increase the user privileges to allow the REST access by ticking the two
checkboxes:

	Read and write access only for policy properties

	Read and write access to all realm and policy properties

	Click Save –> Back to Privilege(s) –> Back to Access Control to
come back to the Realms window.

	Select exo, then go to Privileges tab to increase the user
privileges for exo realm as in Step 12, and click Save.

Now you can move to the next section
to configure the eXo Platform server.

Configuring the OpenAM server for non-callback case

If you store users in an external datasource, configuring the OpenAM
server is quite simple. You only need to create a new realm in OpenAM UI
named “exo”. Besides, for testing purpose, the following procedure
includes steps of creating a user that is stored into the default
DataStore of OpenAM.

	Start OpenAM Tomcat server, then browse
http://localhost:8888/openam [http://localhost:8888/openam/]. You
will be redirected to the **Configuration Options** <ConfigurationOptions_OpenAM>
page.

	Click the Create Default Configuration link. You will be auto-logged
as a default user - amAdmin.

	Enter passwords for Default User and Default Policy Agent, then click
the Create Configuration button. Remember that these 2 passwords
must be different.

You need to wait for some minutes when the OPENAM configuration is in
progress. If the configuration is successful, you will receive a message
stating “Configuration Complete!”.

	Click the Proceed to Login link.

	Enter the username (amAdmin) and password created previously in the
Sign in to OpenAM form, then click the LOG IN button. You will
be redirected to the OpenAM homepage.

	Select the Access Control tab, then click the New button to
create a new realm, named “exo”.

	Enter exo into the Name field, then click OK.

	Click the “exo” realm in the Access Control tab.

	Create users for the “exo” realm by selecting Subjects tab, then
clicking New.

	
	Enter information for the user (ID = “root” and password = “12345678”,

	for example) in the New User form, then click OK to finish.

[image: image7]

Note

To make the user stored in an external datasource be able to access
eXo Platform resources, ensure that the user is already registered in
eXo Platform also. To make convenient for login and access to eXo Platform
later (for testing purpose), the user identifier (ID in this
example) created in the external datasource should be one username
existing in eXo Platform.

Now you can move to the next section
to configure the eXo Platform server.

eXo Platform server configuration

Here are instructions for both
Tomcat
and JBoss
packages.

In Tomcat

Add the following to the
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties file to have the
following lines (see Configuration overview
for this file):

#SSO
gatein.sso.enabled=true
gatein.sso.callback.enabled=${gatein.sso.enabled}
gatein.sso.login.module.enabled=${gatein.sso.enabled}
gatein.sso.login.module.class=org.gatein.sso.agent.login.SSOLoginModule
gatein.sso.server.url=http://localhost:8888/openam
gatein.sso.openam.realm=exo
gatein.sso.portal.url=http://localhost:8080
gatein.sso.filter.logout.class=org.gatein.sso.agent.filter.OpenSSOLogoutFilter
gatein.sso.filter.logout.url=${gatein.sso.server.url}/UI/Logout
gatein.sso.filter.login.sso.url=${gatein.sso.server.url}/UI/Login?realm=${gatein.sso.openam.realm}&goto=${gatein.sso.portal.url}/@@portal.container.name@@/initiatessologin

In which:

	gatein.sso.server.url (= http://localhost:8888/openam in this
example) is the URL of your OpenAM web context.

	gatein.sso.portal.url (= http://localhost:8080 in this example)
is the URL of your eXo Platform server.

	gatein.sso.openam.realm (= exo in this example) is the realm
created in previous steps.

In JBoss

	Edit the
$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
file to have the following lines (see Configuration
overview for
this file):

SSO
gatein.sso.enabled=true
gatein.sso.callback.enabled=${gatein.sso.enabled}
gatein.sso.login.module.enabled=${gatein.sso.enabled}
gatein.sso.login.module.class=org.gatein.sso.agent.login.SSOLoginModule
gatein.sso.server.url=http://localhost:8888/openam
gatein.sso.openam.realm=exo
gatein.sso.portal.url=http://localhost:8080
gatein.sso.filter.logout.class=org.gatein.sso.agent.filter.OpenSSOLogoutFilter
gatein.sso.filter.logout.url=${gatein.sso.server.url}/UI/Logout
gatein.sso.filter.login.sso.url=${gatein.sso.server.url}/UI/Login?realm=${gatein.sso.openam.realm}&goto=${gatein.sso.portal.url}/@@portal.container.name@@/initiatessologin

In which:

	gatein.sso.server.url (= http://localhost:8888/openam in this
example) is the URL of your OpenAM web context.

	gatein.sso.portal.url (= http://localhost:8080 in this example)
is the URL of your eXo Platform server.

	gatein.sso.openam.realm (= gatein in this example) is the
realm created in previous steps.

	Uncomment the below login module in
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml,
then change ${gatein.sso.login.module.enabled} and
${gatein.sso.login.module.class} into
#{gatein.sso.login.module.enabled} and
#{gatein.sso.login.module.class} respectively.

<login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="#{gatein.sso.login.module.enabled}"/>
 <module-option name="delegateClassName" value="#{gatein.sso.login.module.class}"/>
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 <module-option name="password-stacking" value="useFirstPass"/>
</login-module>

After configuring the eXo Platform server, move to the next section
for testing.

Testing

Note

Ensure that the OpenAM add-on is already installed on the eXo Platform server.

For the callback case, testing is quite simple as follows:

	Start eXo Platform server and OpenAM Tomcat server.

	Open a browser, then browse http://localhost:8080/portal/. You will be
redirected to the OpenAM centralized authentication form.

	Log in with the eXo Platform credentials (for example, root/gtn). You
will be auto-logged in and redirected to the eXo Platform homepage.

In case of non-callback, note again that the user must be registered in
both the external datasource and eXo Platform. Also, log in with the
credentials created in the external datasource (for example,
root/12345678).

In case eXo Platform and OpenAM are deployed into different domains, move to
the next section
for for more details.

Cross-domain authentication configuration

In the above example (in both JBoss and Tomcat), the eXo Platform and SSO
servers are deployed at localhost:8080 and localhost:8888. The
above configuration works if both servers are deployed on the same
machine or the same domain, like eXo Platform on portal.mydomain.com and
SSO on openam.mydomain.com.

In case eXo Platform and SSO are deployed in different domains, for example,
eXo Platform on portal.yourdomain.com:8080 and OpenAM on
opensso.mydomain.com:8888/openam, you need to do some changes on
both sides, as follows:

	On portal side, change the configuration that you have done to
$PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties (Tomcat), or
$PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
(JBoss) to have the following lines (see Configuration overview
for this file):

SSO
gatein.sso.enabled=true
gatein.sso.callback.enabled=${gatein.sso.enabled}
gatein.sso.login.module.enabled=${gatein.sso.enabled}
gatein.sso.login.module.class=org.gatein.sso.agent.login.SSOLoginModule
gatein.sso.server.url=http://opensso.mydomain.com:8888/openam
gatein.sso.openam.realm=exo
gatein.sso.portal.url=http://portal.yourdomain.com:8080
gatein.sso.filter.logout.class=org.gatein.sso.agent.filter.OpenSSOLogoutFilter
gatein.sso.filter.logout.url=${gatein.sso.server.url}/UI/Logout
gatein.sso.filter.login.enabled=false
gatein.sso.filter.login.openamcdc.enabled=true
gatein.sso.filter.login.sso.url=${gatein.sso.server.url}/cdcservlet

	On the OpenAM side, create an agent as follows:

	i. Go to
http://opensso.mydomain.com:8888/openam [http://ws2012-1.ad2.testlab1.exoplatform.vn:8888/openam]
and log in as amAdmin.

	
	Go to Access Control tab > Realm “exo” > Agents tab > Web.

	iii. Click New to create a new web agent through the wizard. You
can use these properties:

	Name: eXoAgent.

	
	Password: Whatever you want. This password is not used for

	integrating OpenAM into eXo Platform. See the WebAgent policy in
OpenAM
documentation [https://wikis.forgerock.org/confluence/display/openam/Home]
for more details.

	Configuration: Centralized.

	Server URL: http://opensso.mydomain.com:8888/openam.

	Agent URL: http://portal.yourdomain.com:8080.

Note

If you have more portal servers on different hosts, you may want to
create an agent for each of them. Look at OpenAM administration
guide [http://openam.forgerock.org/doc/admin-guide/index.html]
for more details.

SPNEGO

SPNEGO (Simple and Protected GSSAPI Negotiation Mechanism) is used to
authenticate transparently through the web browser after the user has
been authenticated when logging in the desktop session.

Before going deeper into how to integrate SPNEGO with eXo Platform, see
the below typical usecase:

[image: image8]

In particular:

	[image: image9] The User logs into the desktop that is governed by a Ticket
Granting Service (TGS) (such as Active Directory for Windows or
Kerberos Server for Linux), then opens a browser (for example,
Firefox) to access the web application hosted on eXo Platform.

	[image: image10] The browser transfers the desktop sign-on information to the
web application. The Web Server will respond presenting that it must
“negotiate authentication”. If both the browser and the server
support SPNEGO, it will be used.

	[image: image11] The browser then contacts a Kerberos Ticket Granting Service
(TGS) to request a Service Ticket (ST). This Service Ticket is used
to prove the identity of the caller.

	[image: image12] The TGS Server generates a ST, then returns it to the
client.

	[image: image13] The ST is then sent to the Web Server.

	[image: image14] The Web Server that is configured within TGS to be a Service
Principal (SP) uses a keytab file to communicate with the TGS for
authenticating the user.

For simplification, the SPNEGO integration with eXo Platform involves
specific activities that need to be performed on 3 factors:

	Machine 1: A server that runs the TGS (Active Directory/Kerberos
Server) and associated Kerberos Key Distribution Center (KDC).

	Machine 2: A server on which eXo Platform is running.

	Machine 3: The end-user client that has a browser installed.

The implementation of a Single Sign-On for HTTP requests using the
SPNEGO web authentication is not the same in different environments, so
consult the relevant documents. In this guideline, detailed instructions
for 2 common environments, including Windows and Linux, will be covered.
However, regardless of your using environment, the following main steps
are generally required:

	Active Directory/Kerberos Server setup

	eXo Platform server configuration

	Client (browser) configuration

Active Directory/Kerberos Server setup

Here are step-by-step instructions for setting up Active Directory on
Windows and Kerberos
Server on Linux.

Active Directory on Windows environment

	Creating a Service Principal Name (SPN) user within the Microsoft Active Directory

	Configuring Kerberos SPN to identify eXo Platform

	Generating the Kerberos Keytab file used by SPNEGO

Note

The above 3 steps require appropriate rights to access the Windows
Domain Controller (on Machine 1). If you do not already have
these rights, contact with your administrator.

Step 1. Creating a Service Principal Name (SPN) user within the
Microsoft Active Directory

According to this article of
Microsoft [http://msdn.microsoft.com/en-us/library/cc281382.aspx],
“an SPN for the server must be registered under either a built-in
computer account (such as NetworkService or LocalSystem) or user
account”. In this step, you create a user account that will be used
during the SPN registration in Step 2.

	Create a user account within the Active Directory Users and
Computers console by clicking Start –> Administrative Tools –>
Active Directory Users and Computers –> $Domain_Name
(example.com in this scenario) –> Users, then
right-click in the right panel and select New –> User.

[image: image15]

	Fill information for the user account, then click Next to move to
the Create Password form.

[image: image16]

	Enter a password for the user account. For example, the username as
“exoadmin” with password as “aA@123456” will be used later. Since this
account is acting as a service account, select User cannot change
password and Password never expires, then click Next. You need to
remember this password to use later.

[image: image17]

	Verify the user settings, and select Finish.

	Configure the new user account to comply with the Kerberos protocol
as follows:

	i. Right-click the user in the Users tree and select
Properties. The User Properties form will open.

	ii. Navigate to the Account tab. Under the Account options
section, ensure the followings are selected: User cannot change
password, Password never expires, Do not require Kerberos
preauthentication.

Step 2. Configuring the Service Principal Name (SPN) for eXo Platform
server

The setspn command is used to create a service principal for the
user previously created. A service principal complies with the rule:
serviceclass/host.

Because the web application is communicating via the HTTP protocol, HTTP
is the service class. The host is fully qualified domain name (FQDN) of
the eXo Platform server. The FQDN of the eXo Platform server in this
case is server.example.com.

To add a Service Principal, use the commands that comply with the
formats:

	setspn -a HTTP/$hostname $username (that is,
setspn -a HTTP/server exoadmin)

	setspn -a HTTP/$fully-qualified-host-name $username (that is,
setspn -a HTTP/server.example.com exoadmin)

Note

One service should be added to only one domain account, otherwise
users will not be able to log into this service automatically. To
check the service and domain account that you created, run the
following command: setspn -l exoadmin. In which, -l is a
lowercase of L.

Step 3. Creating the Kerberos Keytab file used by SPNEGO

In this step, the ktpass is used to generate the keytab file by
mapping the service principal to the user account created previously.
This file will then be stored in the eXo Platform server (on Machine 2).

	Create the keytab file for the eXo Platform server running in an Windows
2008 domain environment that complies with the format:

ktpass /princ HTTP/$fully-qualified-domain-name@realm-name /pass "$password" /mapuser "$username" /out $hostname.keytab /ptype KRB5_NT_PRINCIPAL /kvno 0 /crypto RC4-HMAC-NT

In this scenario, the command will be:

ktpass /princ HTTP/server.example.com@EXAMPLE.COM /pass "aA@123456" /mapuser "EXAMPLE\exoadmin" /out server.keytab /ptype KRB5_NT_PRINCIPAL /kvno 0 /crypto RC4-HMAC-NT

In this step, the $hostname.keytab file (that is, server.keytab)
will be generated.

	Copy the generated keytab file to a location on the eXo Platform server.

After creating the keytab file successfully, continue with configuring the eXo Platform server.

Kerberos Server on Linux

Note

The Kerberos setup is dependent on your Linux distribution, so steps can be slightly different in your environment.

	Correct the setup of network on the machine. For example, if you are
using the “server.example.com” domain as your machine where Kerberos and
eXo Platform are located and the machine’s IP address is
192.168.1.88, add the following line to the /etc/hosts file.

192.168.1.88 server.example.com

Note

It is not recommended to use loopback addresses.

	Install Kerberos with these packages: krb5-admin-server,
krb5-kdc, krb5-config, and krb5-user. If you are using
Ubuntu/Debian, use the following command to install these packages:

sudo apt-get install krb5-admin-server krb5-kdc krb5-config krb5-user

	Edit the Kerberos configuration file at /etc/krb5.conf, including:

	i. Uncomment these lines. If the value of these parameters is
“des3-hmac-sha1”, change it into rc4-hmac.

default_tgs_enctypes = rc4-hmac
default_tkt_enctypes = rc4-hmac
permitted_enctypes = rc4-hmac

	ii. Add EXAMPLE.COM as a default realm, then add
EXAMPLE.COM to the list of realms (and remove the remains of
realms - not mandatory). The content looks like:

[libdefaults]
 default_realm = EXAMPLE.COM

 # The following krb5.conf variables are only for MIT Kerberos.
 krb4_config = /etc/krb.conf
 krb4_realms = /etc/krb.realms
 kdc_timesync = 1
 ccache_type = 4
 forwardable = true
 proxiable = true

 # The following encryption type specification will be used by MIT Kerberos
 # if uncommented. In general, the defaults in the MIT Kerberos code are
 # correct and overriding these specifications only serves to disable new
 # encryption types as they are added, creating interoperability problems.
 #
 # The only time when you might need to uncomment these lines and change
 # the enctypes is if you have local software that will break on ticket
 # caches containing ticket encryption types it doesn't know about (such as
 # old versions of Sun Java).

 default_tgs_enctypes = rc4-hmac
 default_tkt_enctypes = rc4-hmac
 permitted_enctypes = rc4-hmac

 # The following libdefaults parameters are only for Heimdal Kerberos.
 v4_instance_resolve = false
 v4_name_convert = {
 host = {
 rcmd = host
 ftp = ftp
 }
 plain = {
 something = something-else
 }
 }
 fcc-mit-ticketflags = true

 [realms]
 EXAMPLE.COM = {
 kdc = server.example.com
 admin_server = server.example.com
 }

 [domain_realm]
 .example.com = EXAMPLE.COM
 example.com = EXAMPLE.COM

 [login]
 krb4_convert = true
 krb4_get_tickets = false

	Edit the KDC configuration file at /etc/krb5kdc/kdc.conf that
looks like.

[kdcdefaults]
 kdc_ports = 750,88

 [realms]
 EXAMPLE.COM = {
 database_name = /var/lib/krb5kdc/principal
 admin_keytab = FILE:/etc/krb5.keytab
 acl_file = /etc/krb5kdc/kadm5.acl
 key_stash_file = /etc/krb5kdc/stash
 kdc_ports = 750,88
 max_life = 10h 0m 0s
 max_renewable_life = 7d 0h 0m 0s
 master_key_type = rc4-hmac
 supported_enctypes = rc4-hmac:normal
 default_principal_flags = +preauth
 }

 [logging]
 kdc = FILE:/tmp/kdc.log
 admin_server = FILE:/tmp/kadmin.log

	Create a KDC database using the sudo krb5_newrealm command.

	Start the KDC and Kerberos admin servers using these commands:

	sudo /etc/init.d/krb5-kdc restart

	sudo /etc/init.d/krb5-admin-server restart

	Add Principals and create Keys.

	i. Start an interactive ‘kadmin’ session and create the necessary
Principals.

sudo kadmin.local

	ii. Add the eXo Platform machine and keytab file that need to be
authenticated.

	addprinc -randkey HTTP/server.example.com@EXAMPLE.COM

	ktadd HTTP/server.example.com@EXAMPLE.COM

	iii. Add the default eXo Platform user account(s).

addprinc root

You will be asked to enter a password for the user account(s) that
you need to remember to use later.

Note

	The krb5.keytab file will be created after doing this

	step. You need to ensure that this file is readable (by using

the command:sudo chmod a+r /etc/krb5.keytab if needed).

	Exit the kadmin.local (for example, by entering the q key),
then test your setup by using the command:

 kinit -A root

- If the setup works well, you are asked to enter the password created
 for the 'root' user in Step 7. Without **-A**, the Kerberos ticket
 validation involves reverse DNS lookups, which may cause trouble to
 your debug (if your network's DNS setup is not great). Thus, the
 -A option is recommended in the development setup, but should be
 avoided in the production environment.

- After successful login to Kerberos, you can see your Kerberos ticket
 when using the ``klist`` command.

- If you want to log out and destroy your ticket, use the ``kdestroy``
 command.

After setting up the Kerberos on Linux, move to the next step
to configure eXo Platform server.

eXo Platform server configuration

Note

As said earlier, the eXo Platform configuration should be done on
the Machine 2 on which eXo
Platform is running.

Installing eXo SPNEGO add-on

Go to $PLATFORM_HOME, and install SPNEGO add-on with the command:

addon install exo-spnego

Integrating SPNEGO with eXo Platform Tomcat

	Append this login module into the bottom of the
$PLATFORM_TOMCAT_HOME/conf/jaas.conf file.

spnego-server {
 com.sun.security.auth.module.Krb5LoginModule required
 storeKey=true
 doNotPrompt=true
 useKeyTab=true
 keyTab="/etc/krb5.keytab"
 principal="HTTP/server.example.com@EXAMPLE.COM"
 useFirstPass=true
 debug=true
 isInitiator=false;
 };

	Configure SSO for eXo Platform by appending these configurations into
the $PLATFORM_TOMCAT_HOME/gatein/conf/exo.properties file (see
Configuration overview
for this file).

SSO
 gatein.sso.enabled=true
 gatein.sso.filter.spnego.enabled=true
 gatein.sso.callback.enabled=false
 gatein.sso.skip.jsp.redirection=false
 gatein.sso.login.module.enabled=true
 gatein.sso.login.module.class=org.gatein.security.sso.spnego.SPNEGOSSOLoginModule
 gatein.sso.filter.login.sso.url=/@@portal.container.name@@/spnegosso
 gatein.sso.filter.initiatelogin.enabled=false
 gatein.sso.valve.enabled=false
 gatein.sso.filter.logout.enabled=false

	On Windows environment, rename
$PLATFORM_TOMCAT_HOME/bin/setenv-customize.sample.bat into
$PLATFORM_TOMCAT_HOME/bin/setenv-customize.bat, then add the
following to the setenv-customize.bat file.

SET "CATALINA_OPTS=%CATALINA_OPTS% -Djava.security.krb5.realm=EXAMPLE.COM -Djava.security.krb5.kdc=$ADMACHINE_NAME.example.com"

Note

$ADMACHINE_NAME is name of the machine that has Active Directory installed.

	On Linux environment, rename
$PLATFORM_TOMCAT_HOME/bin/setenv-customize.sample.sh into
$PLATFORM_TOMCAT_HOME/bin/setenv-customize.sh, then add the
following to the setenv-customize.sh file.

CATALINA_OPTS="${CATALINA_OPTS} -Djava.security.krb5.realm=EXAMPLE.COM -Djava.security.krb5.kdc=$ADMACHINE_NAME.example.com"

Note

$ADMACHINE_NAME is name of the machine that has Active Directory installed.

	Start eXo Platform.

Intergating SPNEGO with eXo Platform JBoss

	Add the login module “spnego-server” as the child of the
<security-domains> section of the
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml
file.

<security-domain name="spnego-server" cache-type="default">
 <authentication>
 <login-module code="com.sun.security.auth.module.Krb5LoginModule" flag="required">
 <module-option name="storeKey" value="true"/>
 <module-option name="doNotPrompt" value="true"/>
 <module-option name="useKeyTab" value="true"/>
 <module-option name="keyTab" value="/etc/krb5.keytab"/>
 <module-option name="principal" value="HTTP/server.example.com@EXAMPLE.COM"/>
 <module-option name="useFirstPass" value="true"/>
 <module-option name="debug" value="true"/>
 <module-option name="isInitiator" value="false"/>
 </login-module>
 </authentication>
 </security-domain>

Note

On Windows environment, you should change the path of keytab. For
example, if this file is put into the D drive, it should be:
keyTab=”D:/server.keytab”.

	Uncomment the below login module in standalone-exo.xml, then change
${gatein.sso.login.module.enabled} and
${gatein.sso.login.module.class} into
#{gatein.sso.login.module.enabled} and
#{gatein.sso.login.module.class} respectively.

<login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="#{gatein.sso.login.module.enabled}"/>
 <module-option name="delegateClassName" value="#{gatein.sso.login.module.class}"/>
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 <module-option name="password-stacking" value="useFirstPass"/>
 </login-module>

	Configure SSO for eXo Platform by appending these configurations into
the $PLATFORM_JBOSS_HOME/standalone/configuration/gatein/exo.properties
file (see Configuration overview
for this file).

SSO
 gatein.sso.enabled=true
 gatein.sso.filter.spnego.enabled=true
 gatein.sso.callback.enabled=false
 gatein.sso.skip.jsp.redirection=false
 gatein.sso.login.module.enabled=true
 gatein.sso.login.module.class=org.gatein.security.sso.spnego.SPNEGOSSOLoginModule
 gatein.sso.filter.login.sso.url=/@@portal.container.name@@/spnegosso
 gatein.sso.filter.initiatelogin.enabled=false
 gatein.sso.valve.enabled=false
 gatein.sso.filter.logout.enabled=false

	Start eXo Platform by using the command:

	On linux:

./standalone.sh -Djava.security.krb5.realm=EXAMPLE.COM -Djava.security.krb5.kdc=$AD_MACHINE_NAME.example.com -b server.example.com

	On Windows:

standalone.bat -Djava.security.krb5.realm=EXAMPLE.COM -Djava.security.krb5.kdc=$AD_MACHINE_NAME.example.com -b server.example.com

Note

$AD_MACHINE_NAME is name of the machine that has Active Directory installed.

Next, move to the final step to configure the client
(browser you are using).

Client (browser) configuration

As you know, the Kerberos authentication protocol supports the concept
of Single Sign-On (SSO). After being authenticated at the first start of
a session, users can access network services through a Kerberos realm
without re-authentication. To make this work, you need to use network
protocols that are aware of Kerberos. In the case of HTTP, Kerberos is
normally provided by the SPNEGO authentication mechanism - also known as
“negotiate authentication”. The below steps are different among
browsers, so consult the relevant documentation of your OS or web
browser. In this section, only 2 most popular browsers, including
Firefox
and Internet Explorer,
are covered.

Firefox

Although SPNEGO is supported in Firefox, but it is disabled by default
for some security reasons. Supposing that you want to authenticate the
http://server.example.com website using Kerberos, the web server should
be configured to accept the Kerberos tickets from the EXAMPLE.COM
realm that you created earlier.

To do this, you need to enable the Negotiate authentication of
Firefox in client machines so that clients could be authenticated by eXo
Platform as follows:

	Start Firefox, then enter about:config in the location bar.

	Click the I’ll be careful, I promise! link to access the
configurations.

	Enter network.negotiate-auth on the search bar to filter the
relevant settings from the list:

	Double-click the network.negotiate-auth.delegation-uris and
network.negotiate-auth.trusted-uris. A dialog box for editing the
values should appear.

	Enter the required hostname, then click OK. You may need to restart
Firefox for these changes to take effect.

network.negotiate-auth.allow-proxies = true
network.negotiate-auth.delegation-uris = .example.com
network.negotiate-auth.gsslib (no-value)
network.negotiate-auth.trusted-uris = .example.com
network.negotiate-auth.using-native-gsslib = true

Internet Explorer

Internet Explorer will only perform SPNEGO authentication against sites
that are set in the Local Intranet zone. Thus, you need to add the site
(http://server.example.com in this example) to this zone as follows:

	Open IE, then click Tools tab –> Internet Options. If you are using
Windows Vista or Windows 7, you can click Start and type Internet
Options.

	Select Security tab –> Local intranet –> Sites –> Advanced.

	Enter the fully qualified domain name of the application server into
the text field, then click Add.

[image: image18]

	Click Close, then OK through the various windows. You may need
to restart Internet Explorer for the changes to take effect.

Now, you can move to the next section
for testing.

Testing

On Windows

	On the Machine 1 (that has
Microsoft Active Directory installed), create another user account
so that the username is the same as that of one user existing in eXo
Platform, for example “root”.

	Log in the Client machine with the user created in the previous step
(root in this case).

	In the Client machine, open the http://server.example.com:8080/portal
on the browser. Note that you may need to reconfigure the browser as said
earlier. As
the result, you will be auto-logged into eXo Platform as the “root”
user without login again in the Login form of eXo Platform.

On Linux

	Log into Kerberos with the kinit root command, then go to
http://server.example.com:8080/portal. You will be auto-logged into
eXo Platform as the “root” without login again in the Login form of
eXo Platform.

	Test the FORM fallback by destroying the ticket with the kdestroy
command. Then, log out eXo Platform and log in again. You now can fill
user credentials in the eXo Platform login form.

In case you want to enforce authentication only by SPNEGO and disable
the authentication through the eXo Platform login form, see the
next for how-to.

Disabling fallback to FORM authentication

As mentioned, the fallback to FORM authentication is automatically
enabled. This means that users can authenticate either by the SPNEGO
handshake with their Kerberos ticket or by providing their credentials
in the eXo Platform login form, which will perform verification of
credentials against the Picketlink IDM database.

For some reasons, you may want to enforce authentication only by SPNEGO
and disable possibility to authenticate with the eXo Platform login
form. In this case, you will need to add the
enableFormAuthentication=false option to the
SSODelegateLoginModule module:

	$PLATFORM_TOMCAT_HOME/conf/jaas.conf (in Tomcat). The
jaas.conf now looks like:

...
 gatein-domain {
 org.gatein.sso.integration.SSODelegateLoginModule required
 enabled="#{gatein.sso.login.module.enabled}"
 delegateClassName="#{gatein.sso.login.module.class}"
 portalContainerName=portal
 realmName=gatein-domain
 enableFormAuthentication=false
 password-stacking=useFirstPass;
 org.exoplatform.services.security.j2ee.TomcatLoginModule required
 portalContainerName=portal
 realmName=gatein-domain;
 };
...

	$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml
(in JBoss). The standalone-exo.xml now looks like.

...
 <security-domain name="gatein-domain" cache-type="default">
 <authentication>
 <login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="#{gatein.sso.login.module.enabled}" />
 <module-option name="delegateClassName" value="#{gatein.sso.login.module.class}" />
 <module-option name="portalContainerName" value="portal" />
 <module-option name="enableFormAuthentication" value="false"/>
 <module-option name="realmName" value="gatein-domain" />
 <module-option name="password-stacking" value="useFirstPass" />
 </login-module>
 <login-module code="org.exoplatform.services.security.j2ee.JBossAS7LoginModule" flag="required">
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 </login-module>
 </authentication>
 </security-domain>
...

SAML2

SAML2 is version 2 of SAML (Security Assertion Markup Language), an
XML-based standard for exchanging authentication and authorization data.
The document of SAML2 Specifications is available
here [http://saml.xml.org/saml-specifications].

According to SAML2 Specifications, two parties which exchange
authentication and authorization data are called SP (Service Provider)
and IDP (Identity Provider). IDP issues the security assertion and SP
consumes it. The following scenario describes a SAML2 exchange:

	A user, via web browser, requests a resource at the SP.

	The SP checks and finds no security context for the request, then it
redirects to the SSO service.

	The browser requests the SSO service at IDP.

	The IDP responds with an XHTML form after performing security check and
identifying the user. The form contains SAMLResponse value.

	The browser requests assertion consumer service at the SP.

	The consumer service processes the SAMLResponse, creates a security
context and redirects to the target resource.

	The browser requests target resource again.

	The SP finds a security context, so it returns the target resource.

[image: image19]

In this document, two addresses, www.sp.com and www.idp.com, and folders
with name $PLATFORM_* are used to respectively represent URLs and
home folders of SP and IDP.

eXo Platform can perform both roles SP and IDP; thus, it can integrate
with services like Salesforce and Google Apps.

Note

	SAML2 IDP integration only works for eXo Platform on Jboss.

	SAML2 SP integration works for eXo Platform Jboss and Tomcat.

This chapter covers the following subjects:

	eXo Platform as SAML2 SP

	eXo Platform as SAML2 IDP

	SAML2 scenario with REST callback

	SAML2 scenario with eXo Platform and Salesforce

	SAML2 scenario with eXo Platform and Google Apps

	Generating and using your own keystore

eXo Platform as SAML2 SP

	Install SAML2 add-on with the command:

$PLATFORM_SP/addon install exo-saml`` (Windows, Linux / Mac OX)

Note

Add the option –no-compat for tomcat application server.

Accordingly, the SAML2 package named saml-plugin-jboss.zip will be
downloaded into $PLATFORM_SP folder. Unzip this package to see
inside folders including: idp-sig.war and idp-sig-module. Notice
these extracted folders will be used for the case
SAML2 scenario with REST callback.

	For Tomcat
After the installation of the SAML2 add-on on a tomcat server, its
corresponding folder saml2 should be found under the path
$PLATFORM_SP/standalone/configuration/gatein/.
So, you need to move them under the path $PLATFORM_SP/gatein/conf
by executing this command under $PLATFORM_SP path:

mv standalone/configuration/gatein/saml2/ gatein/conf/

	For Jboss

Open the $PLATFORM_SP/standalone/configuration/standalone-exo.xml
file, and uncomment the configuration of SSODelegateLoginModule
(under security domain gatein-domain). Then, replace
${gatein.sso.login.module.enabled} with
#{gatein.sso.login.module.enabled} and
${gatein.sso.login.module.class} with
#{gatein.sso.login.module.class}. Now, the
SSODelegateLoginModule will look like:

<login-module code="org.gatein.sso.integration.SSODelegateLoginModule" flag="required">
 <module-option name="enabled" value="#{gatein.sso.login.module.enabled}"/>
 <module-option name="delegateClassName" value="#{gatein.sso.login.module.class}"/>
 <module-option name="portalContainerName" value="portal"/>
 <module-option name="realmName" value="gatein-domain"/>
 <module-option name="password-stacking" value="useFirstPass"/>
</login-module>

	
For both Jboss and Tomcat

Open the file
$PLATFORM_SP/standalone/configuration/gatein/exo.properties (for
Jboss) or $PLATFORM_SP/gatein/conf/exo.properties (for Tomcat).

Note

Rename the file exo-samples.properties to exo.properties.

Edit the following properties (add them if they don’t exist):

SSO
gatein.sso.enabled=true
gatein.sso.saml.sp.enabled=true
gatein.sso.callback.enabled=${gatein.sso.enabled}
gatein.sso.login.module.enabled=${gatein.sso.enabled}
gatein.sso.filter.logout.enabled=false
gatein.sso.filter.login.sso.url=/@@portal.container.name@@/dologin
gatein.sso.filter.initiatelogin.enabled=false
gatein.sso.saml.config.file=${exo.conf.dir}/saml2/picketlink-sp.xml
gatein.sso.idp.host=www.idp.com
gatein.sso.idp.url=http://${gatein.sso.idp.host}:8087/portal/sso
gatein.sso.sp.url=http://www.sp.com:8080/portal/dologin
WARNING: This bundled keystore is only for testing purposes. You should generate and use your own keystore!
gatein.sso.picketlink.keystore=${exo.conf.dir}/saml2/jbid_test_keystore.jks

Uncomment this when JBoss is used

#gatein.sso.login.module.class=org.gatein.sso.agent.login.SAML2WildflyIntegrationLoginModule
#gatein.sso.uri.suffix=dologin

Uncomment this when Tomcat is used

#gatein.sso.login.module.class=org.gatein.sso.agent.login.SAML2IntegrationLoginModule
#gatein.sso.valve.enabled=true
#gatein.sso.valve.class=org.gatein.sso.saml.plugin.valve.ServiceProviderAuthenticator

You need to modify gatein.sso.idp.host, gatein.sso.idp.url and
gatein.sso.sp.url according to your environment setup. You also need
to install your own keystore as instructed in Generating and using your own keystore.

	Download and import your generated IDP certificate to your keystore
using this command:

keytool -import -keystore jbid_test_keystore.jks -file idp-certificate.crt -alias Identity_Provider-idp

Note

The Default password of the keystore jbid_test_keystore.jks is store123.

	Start up the platform using:

For Tomcat Use the following command for linux Operating systems:

./start_eXo.sh

and use this command for Windows operating systems:

start_eXo.bat

For Jboss use these commands:

cd $PLATFORM_SP/bin
./standalone.sh -b www.sp.com

eXo Platform as SAML2 IDP

In JBoss only

	Install the SAML2 add-on in the eXo Platform package named $PLATFORM_IDP,
as in Step 1 of eXo Platform as SAML2 SP:

./addon install exo-saml

	Open the file
$PLATFORM_IDP/standalone/configuration/gatein/exo.properties If you
find the file exo-samples.properties, rename it to
exo.properties.

Update these configurations or add them if they do not exist:

SSO
gatein.sso.enabled=true
gatein.sso.filter.login.enabled=false
gatein.sso.filter.logout.enabled=false
gatein.sso.filter.initiatelogin.enabled=false
gatein.sso.filter.saml.idp.enabled=true
gatein.sso.skip.jsp.redirection=false
gatein.sso.saml.signature.ignore=true
gatein.sso.saml.config.file=${exo.conf.dir}/saml2/picketlink-idp.xml
gatein.sso.idp.url=http://www.idp.com:8087/portal/sso
gatein.sso.sp.domains=sp.com
gatein.sso.sp.host=www.sp.com
WARNING: This bundled keystore is only for testing purposes. You should generate and use your own keystore in eXo Platformion!
gatein.sso.picketlink.keystore=${exo.conf.dir}/saml2/jbid_test_keystore.jks

In which, gatein.sso.sp.domains is a comma-separated list of domains
that will be trusted by this IDP. gatein.sso.sp.host accepts only one
value here. If you want more SP applications, you need to manually edit
the file
$PLATFORM_IDP/standalone/configuration/gatein/saml2/picketlink-idp.xml.

	Start up the platform IDP with this command:

cd $PLATFORM_IDP/bin
./standalone.sh -b www.idp.com

SAML2 scenario with REST callback

In this section, you set up a SAML2 scenario with eXo Platform performing SP
role and Identity Store as well. IDP receives authentication request and
callback to eXo Platform (as Identity Store) so eXo Platform users will be
authenticated. This callback is carried out by idp-sig.war which can
be deployed in plain JBoss AS. However, it requires some additional
modules which are packed inside eXo Platform package, so you will deploy
idp-sig.war against an eXo Platform package.

Before you start steps below, let’s see the interconnecting
configurations:

	At SP:
gatein.sso.idp.url=http://${gatein.sso.idp.host}:8080/idp-sig/ so
SP knows that IDP serves at /idp-sig.

	At IDP: -Dsp.host=www.sp.com -Dsp.domains=sp.com, this will be
declared in start command.

Platform SP configuration

	Configure eXo Platform SP as described in eXo Platform as SAML2 SP.

You should change one configuration:

gatein.sso.idp.url=http://${gatein.sso.idp.host}:8080/idp-sig/

	Start $Platform_SP

External IDP configuration

Note

In this part, we will use another platform package to deploy
idp-sig.war. Please do not confuse it with eXo Platform IDP
described in previous section.
This package is used to run idp-sig.war.

	Copy $PLATFORM_SP/saml-plugin/idp-sig.war to
$PLATFORM_IDP/standalone/deployments.

	Create an empty file named idp-sig.war.dodeploy under
$PLATFORM_IDP/standalone/deployments.

	Remove $PLATFORM_IDP/standalone/deployments/platform.ear.dodeploy,
so that platform.ear will not be deployed.

	Copy folder $PLATFORM_SP/saml-plugin/idp-sig-module/module into
$PLATFORM_IDP.

	Add the following security domain to the
$PLATFORM_IDP/standalone/configuration/standalone.xml file:

<security-domain name="idp" cache-type="default">
 <authentication>
 <login-module code="org.gatein.sso.saml.plugin.SAML2IdpLoginModule" flag="required">
 <module-option name="gateInURL" value="http://www.sp.com:8080/portal"/>
 </login-module>
 </authentication>
</security-domain>

	Start the IDP with options as follows:

./standalone.sh -b www.idp.com -c standalone.xml -Dsp.host=www.sp.com -Dsp.domains=sp.com -Dpicketlink.keystore=/jbid_test_keystore.jks

Test case

Now you can test the scenario as follows:

	In web browser, access http://www.sp.com:8080/portal, then complete
setup screens if asked.

	You will be redirected to http://www.idp:8080/idp-sig. The screen
looks like as below:

	Complete the screen with your eXo Platform identity. At this step, IDP
sends RESTcallback to SP to authenticate your identity.

	When authentication is done, you are logged in at SP.

SAML2 scenario with eXo Platform and Salesforce

In this section, you will set up two SAML2 scenarios with eXo Platform
and Salesforce:

	eXo Platform as IDP and Salesforce as SP

	eXo Platform as SP and Salesforce as IDP

Note

Configurations and UI at Salesforce side can be changed by
Salesforce and may depend on your Salesforce edition and license. If
you have problems when following the instruction here, please
consult Salesforce support and documentation, and leave a feedback
to help us keep eXo documentation up-to-date.

In this guideline, let’s assume that you start from the beginning and
register a free Salesforce developer account to test, as follows:

	Sign up at http://developer.force.com/.

	Set up your domain by selecting Setup –> Domain Management –> My
Domain.

[image: image20]

eXo Platform as IDP and Salesforce as SP

Configuring Salesforce as SAML2 SP

	Set up SSO by clicking Setup –> Security Controls –>
Single Sign-On Settings, then select Edit and check SAML Enabled.

	Create a new SAML Single Sign-On Setting and complete the screen as
below:

[image: image21]

	Issuer: The eXo Platform IDP URL, like
http://www.idp.com:8080/portal/dologin.

	SAML Identity Type: Select Assertion contains the Federation ID
from the User object.

	SAML Identity Location: Select Identity is in the NameIdentifier
element of the Subject statement.

	Identity Provider Login(/Logout) URL:
http://www.idp.com:8080/portal/dologin.

	Entity ID: Now, it should be https://saml.salesforce.com.

	Certificate: Export a .crt file from your keystore
to be uploaded here. The command to export:

keytool -export -keystore secure-keystore.jks -alias secure-key -file test-certificate.crt

Note

If you are using default jbid_test_keystore.jks (for testing
only), the keystore password is store123 and the security alias
is servercert.

	Back to the My Domain screen and edit the Login Page Branding
section. Check your SSO Setting item(s) in the Authentication Service.

[image: image22]

The default “Login Page” allows you to log in Salesforce in case the IDP
is not available, so it is safe in testing. Depending on Salesforce, you
may have the ability to enable/disable SSO for individual users (via
User Profile and Permission Set). For now, do not uncheck Login Page.

Configure eXo Platform as IDP

	Configure eXo Platform IDP as described in eXo Platform as SAML2 IDP.
Then update gatein.sso.sp.domains and gatein.sso.sp.host as below:

gatein.sso.sp.domains=saml.salesforce.com
gatein.sso.sp.host=saml.salesforce.com

	Edit the file $PLATFORM_IDP/standalone/deployments/platform.ear/exo.portal.web.portal.war!/WEB-INF/conf/sso/saml/picketlink-idp.xml
by making this step:

	Add domain saml.salesforce.com as a ValidatingAlias:

<KeyProvider ...>
 <ValidatingAlias Key="${gatein.sso.sp.host}" Value="secure-key"/>
 <ValidatingAlias Key="saml.salesforce.com" Value="salesforce-cert"/>
</KeyProvider>

Where salesforce-cert is the alias that you will import to your
keyfile in later step.

	Download SP Metadata file from your Salesforce SSO Setting page, by
clicking Download Metadata, then save this file with name
sp-metadata.xml.

[image: image23]

	Edit the downloaded sp-metadata.xml file then add
EntitiesDescriptor as root tag of this xml file. This file will
look like:

<md:EntitiesDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" entityID="https://saml.salesforce.com" validUntil="2025-01-09T02:22:00.551Z">
 <md:EntityDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" entityID="https://saml.salesforce.com" validUntil="2025-01-09T02:22:00.551Z">

 </md:EntityDescriptor>
</md:EntitiesDescriptor>

	In the file sp-metadata.xml, update the value of AuthnRequestsSigned
from true to false.

	Copy this sp-metadata.xml file into
$PLATFORM_IDP/standalone/deployments/platform.ear/exo.portal.web.portal.war!/WEB-INF/conf/sso/saml/

	Edit the file $PLATFORM_IDP/standalone/deployments/platform.ear/exo.portal.web.portal.war!/WEB-INF/conf/sso/saml/picketlink-idp.xml
to add MetaDataProvider element as follows:

<PicketLinkIDP ...>
 ...
 <MetaDataProvider ClassName="org.picketlink.identity.federation.core.saml.md.providers.FileBasedEntitiesMetadataProvider">
 <Option Key="FileName" Value="/WEB-INF/conf/sso/saml/sp-metadata.xml"/>
 </MetaDataProvider>
</PicketLinkIDP>

	Download and import Salesforce client certificate:

	Download a new certificate from this link [https://developer.salesforce.com/page/Client_Certificate].
It will downloads a zip file.

	Unzip the downloaded file.

	Import the certificate into your keystore:

For your secure keystore:

keytool -import -keystore secure-keystore.jks -file proxy-salesforce-com.123 -alias salesforce-cert

For default jbid_test_keystore.jks keystore:

keytool -import -keystore jbid_test_keystore.jks -file proxy-salesforce-com.123 -alias salesforce-cert

Testing the scenario

	Create some users in Salesforce and eXo Platform IDP for testing. The
users mapping uses Federation ID, that means the username “john” in
eXo Platform must be the same as the Federation ID “john” in
Salesforce.

	Log out Salesforce, then re-login using your domain
(https://exodoc-dev-ed.my.salesforce.com/ for example).

Now, you will see a link to IDP Login page in the login screen, like
“eXo Doc SSO” (Name of your Salesforce SSO Setting above) in the
screenshot:

[image: image24]

	Click the link. You will be redirected to the eXo Platform login
screen.

	Log in as one of testing users. You will get access to your
Salesforce domain.

eXo Platform as SP and Salesforce as IDP

Note

Remember to disable SSO if you have enabled as described in Configuring Salesforce as SAML2 SP.

Configuring Salesforce as SAML2 IDP

	Enable Identity Provider by clicking Setup –>
Security Controls –> Identity Provider, then click
Enable Identity Provider.

[image: image25]

Accept the default certificate by clicking Save. You can change it
later if you need.

	Create Connected Apps, as follows:

	i. Click the link in the Service Providers section:

[image: image26]

	ii. Fill in all required information. In the Web App Settings
section, check Enable SAML and complete the following
information:

[image: image27]

	Entity ID: The SP login URL, like
http://www.sp.com:8080/portal/dologin.

	ACS URL: The URL of the Assertion Consumer Service. In this
scenario, it is http://www.sp.com:8080/portal/dologin too.

	Subject Type: Select Federation ID.

	Name ID Format: Select
urn:oasis:names:tc:SAML:2.0:nameid-format:transient.

	Issuer: Use your domain like
https://exodoc-dev-ed.my.salesforce.com.

Note

You can also create Connected Apps by selecting Build –> Create –> Apps.

	Make sure your connected application can be accessed by users who
have the “Standard Platform User” profile, as follows:

	i. Click Manage Apps –> Connected Apps.

[image: image28]

	ii. Find your app and click to view it. In the Profiles section,
you can manage Profiles that have access to your app. At this time,
make sure you see the “Standard Platform User” because this is needed
for testing later.

Configurations at eXo Platform

	Configure eXo Platform as described in eXo Platform as SAML2 SP.
Notice some values below:

gatein.sso.idp.host=exodoc-dev-ed.my.salesforce.com
gatein.sso.idp.url=https://exodoc-dev-ed.my.salesforce.com/idp/endpoint/HttpPost
gatein.sso.sp.url=http://www.sp.com:8080/portal/dologin

	Download and import Salesforce IDP certificate to your keystore. The
Salesforce IDP certificate is downloaded from the Identity Provider
page.

[image: image29]

	Import the downloaded certificate to your keystore:

keytool -import -keystore secure-keystore.jks -file SelfSignedCert_17Oct2013_070921.crt -alias salesforce-idp

For default keystore jbid_test_keystore.jks, the command is:

keytool -import -keystore jbid_test_keystore.jks -file SelfSignedCert_17Oct2013_070921.crt -alias salesforce-idp

where: SelfSignedCert_17Oct2013_070921.crt is the downloaded file.

	Modify $PLATFORM_SP/standalone/deployments/platform.ear/exo.portal.web.portal.war/WEB-INF/conf/sso/saml/picketlink-sp.xml
and update the value of ValidatingAlias key ${gatein.sso.idp.host} to
salesforce-idp.

<ValidatingAlias Key="${gatein.sso.idp.host}" Value="salesforce-idp"/>

	Start up the Platform as SP.

Testing the scenario

Create some users in Salesforce and eXo Platform SP for testing. The
users mapping uses Federation ID, that means the username “john” in eXo
Platform must be the same as the Federation ID “john” in Salesforce.
Also, make sure the Salesforce user has the “Standard Platform User”
profile (to have access to the Connected App, as explained before).

Now, access eXo Platform. You will be redirected to the Salesforce login
page. After getting authenticated with Salesforce username (like
john@example.com), you get access to eXo Platform.

SAML2 scenario with eXo Platform and Google Apps

In this section, you will set up a SAML2 scenario with eXo Platform as IDP
and Google Apps as SP.

The integration between eXo Platform and Google Apps requires user
synchronization. The premise is username in eXo Platform that matches nick in
Google. For example, if your domain is example.com and your Google
Apps account is john@example.com, your eXo Platform username should be
john.

Configurations at Google Apps

	Export a certificate file using your own keystore, as described in
Generating and using your own keystore.
The command to export:

keytool -export -keystore secure-keystore.jks -alias secure-key -file test-certificate.crt

Note that if you are using default jbid_test_keystore.jks (for
testing only), the keystore password is store123.

As the result, a file named test-certificate.crt will be created.
You will use it in next step.

	Go to Google Apps Single Sign-On settings page by accessing your
Admin console, then clicking More controls –> Security

–> Advanced settings (UI may be changed by Google). Complete
this page as follows:

	Upload the test-certificate.crt file that is exported previously.

	Enter http://www.idp.com:8080/portal/dologin to Sign-in, Sign-out
and Change password URLs.

	Check the box Setup SSO with third party identity provider.

	The checkbox Use a domain specific issuer is optional. If it is
checked, the SP host is signed as google.com/a/${your_domain}
(google.com/a/test.com for example), otherwise it is simply
google.com. Configurations at IDP side will change according to
this, as you will see later.

[image: image30]

Warning

Be careful when you are setting up Single Sign-On in your Google
Apps. Make sure your settings are correct before you save.

Configurations at eXo Platform

	Configure eXo Platform as described in eXo Platform as SAML2 IDP.
Notice some values in $PLATFORM_IDP/standalone/configuration/gatein/exo.properties
as follows:

gatein.sso.sp.domains=google.com
gatein.sso.sp.host=www.google.com

	Modify the
$PLATFORM_IDP/standalone/configuration/gatein/saml2/picketlink-idp.xml
to add the following configurations:

For SP domains:

<Trust>
 <Domains>${gatein.sso.sp.domains},google.com</Domains>
</Trust>

For SP hosts, the host is google.com or
google.com/a/${your_domain}, depending on your Google Apps settings,
as explained before:

<KeyProvider ...>
 <ValidatingAlias Key="${gatein.sso.sp.host}" Value="secure-key"/>
 <ValidatingAlias Key="google.com" Value="secure-key"/>
 <!--<ValidatingAlias Key="google.com/a/test.com" Value="secure-key"/>-->
</KeyProvider>

	“secure-key” is the alias in your command to create the keystore
file, or use “servercert” if you use the default keystore.

Continue to add MetaDataProvider element as follows:

<PicketLinkIDP ...>
 ...
 <MetaDataProvider ClassName="org.picketlink.identity.federation.core.saml.md.providers.FileBasedEntitiesMetadataProvider">
 <Option Key="FileName" Value="/WEB-INF/conf/sso/saml/sp-metadata.xml"/>
 </MetaDataProvider>
</PicketLinkIDP>

	Create a file named WEB-INF/conf/sso/saml/sp-metadata.xml inside
$PLATFORM_IDP/standalone/deployments/platform.ear/exo.portal.web.portal.war
with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<md:EntitiesDescriptor xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata">
 <md:EntityDescriptor entityID="google.com" validUntil="2022-06-13T21:46:02.496Z">
 <md:SPSSODescriptor AuthnRequestsSigned="false" WantAssertionsSigned="true" protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol" />
 </md:EntityDescriptor>
</md:EntitiesDescriptor>

in which entityID is either “google.com” or
“google.com/a/${your_domain}” (“google.com/a/test.com” for example),
depending on your Google Apps settings as explained before. You can add
many md:EntityDescriptor for many SP.

Testing the scenario

Be sure you have synchronized accounts. If not yet, create a username in
eXo Platform that matches nick in Google Apps.

Logout eXo Platform and Google Apps, then access one of services of your
Google Apps, for example: http://mail.google.com/a/${your_domain}.
You will be redirected to the eXo Platform login page. Login using your
synchronized username, after that you have your access to the Google
service.

Note

Note that said by Google, in SSO-enabled domains without network
masks, the super administrator account will not be redirected to the
SSO page (so that you can access Admin console in case there is
something wrong with SSO settings). Refer to
https://support.google.com/a/answer/60224?hl=en for more Google’s
instructions.

Generating and using your own keystore

The default jbid_test_keystore.jks is useful for testing purpose,
but in eXo Platformion you need to generate and use your own keystore as
follows:

	Generate your file using the keytool command:

keytool -genkey -alias secure-key -keyalg RSA -keystore secure-keystore.jks

You will be asked to enter a keystore password and a key password.
Remember them to use in next steps.

	Install your file to
PLATFORM_*/standalone/configuration/gatein/saml2/ (for Jboss) or
PLATFORM_*/gatein/conf/saml2/ (for Tomcat) if you are configuring
eXo Platform SP/IDP. Install it to WEB-INF/classes/ inside
PLATFORM_*/standalone/deployments/idp-sig.war if you are configuring
idp-sig.war.

	Modify picketlink configuration file to provide your keystore
password and a key password. The picketlink configuration file is:

	PLATFORM_SP/standalone/configuration/gatein/saml2/picketlink-sp.xml
(for Jboss) and PLATFORM_SP/gatein/conf/saml2/picketlink-sp.xml
(for Tomcat) if you are configuring eXo Platform SP.

	PLATFORM_IDP/standalone/configuration/gatein/saml2/picketlink-idp.xml
(for Jboss) and PLATFORM_IDP/gatein/conf/saml2/picketlink-sp.xml
(for Tomcat) if you are configuring eXo Platform IDP.

	WEB-INF/picketlink.xml inside
PLATFORM_*/standalone/deployments/idp-sig.war if you are
configuring idp-sig.war.

The following configuration is for SP, similar for IDP and
idp-sig.war:

<KeyProvider ClassName="org.picketlink.identity.federation.core.impl.KeyStoreKeyManager">
 <Auth Key="KeyStoreURL" Value="${gatein.sso.picketlink.keystore}"/>
 <Auth Key="KeyStorePass" Value="keystore pass"/>
 <Auth Key="SigningKeyPass" Value="key pass"/>
 <Auth Key="SigningKeyAlias" Value="secure-key"/>
 <ValidatingAlias Key="${gatein.sso.sp.host}" Value="secure-key"/>
</KeyProvider>

Note

On Windows, you should use the absolute link to the keystore file, instead of using ${gatein.sso.picketlink.keystore}.

Single Sign-On in Cluster mode

Note

Currently this content is for eXo Platform JBoss only.

In the cluster mode, the eXo Platform SSO valve can be used to
authenticate a user on one eXo Platform node and have that
authentication automatically carried across to other nodes in the
cluster.

Clustered SSO with Load Balancer

If you are running the cluster mode with Apache Load Balancer, you are
using the same URL to access the servers (which is actually URL of the
Load Balancer). You need to enable SSO by modifying the
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo-cluster.xml
file, as follows:

	Find subsystem that has xmlns=”urn:jboss:domain:web:1.4”. It
looks like:

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
 <connector name="ajp" protocol="AJP/1.3" scheme="http" socket-binding="ajp"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 </virtual-server>
</subsystem>

	Add <sso cache-container=”web” cache-name=”sso”
reauthenticate=”false” /> right after <alias
name=”example.com”/>. This will be:

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
 <connector name="ajp" protocol="AJP/1.3" scheme="http" socket-binding="ajp"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 <sso cache-container="web" cache-name="sso" reauthenticate="false" />
 </virtual-server>
</subsystem>

Clustered SSO in a Shared DNS Domain

If you are accessing the servers through different URLs in the same DNS
domain, Single Sign-On can be configured by adding the domain parameter
to the SSO configuration entry.

Let’s see what is the difference. In case Load Balancer is used
(described above):

<sso cache-container="web" cache-name="sso" reauthenticate="false" />

In this case:

<sso cache-container="web" cache-name="sso" reauthenticate="false" domain="yourdomain.com"/>

The parameter must be added to the entry on all servers in the cluster
and the name of the shared DNS domain must be specified as its value.
This configuration ensures that the JSESSIONIDSSO cookie will be
scoped to the specified domain, which is otherwise scoped only to the
host where the initial authentication was performed.

The following example demonstrates how to simulate and test this case on
a Linux machine. There are 2 nodes in the cluster.

Configuring and testing SSO in a shared DNS Domain

	Add the following lines to the /etc/hosts file:

127.0.1.1 machine1.yourdomain.com
127.0.1.2 machine2.yourdomain.com

	On both servers, modify the
$PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo-cluster.xml
file to have:

<subsystem xmlns="urn:jboss:domain:web:1.4" default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http" socket-binding="http"/>
 <connector name="ajp" protocol="AJP/1.3" scheme="http" socket-binding="ajp"/>
 <virtual-server name="default-host" enable-welcome-root="true">
 <alias name="localhost"/>
 <alias name="example.com"/>
 <sso cache-container="web" cache-name="sso" reauthenticate="false" domain="yourdomain.com"/>
 </virtual-server>
</subsystem>

	Start the first server using the following command:

./standalone.sh -b machine1.yourdomain.com -c standalone-exo-cluster.xml -Djboss.node.name=node1

	Start the second server using:

./standalone.sh -b machine2.yourdomain.com -c standalone-exo-cluster.xml -Djboss.node.name=node2

	Access the first server at http://machine1.yourdomain.com:8080/portal
and sign in.

	Access the second server at http://machine2.yourdomain.com:8080/portal
and test that you are automatically signed in.

	Sign out from one server and test that you are automatically signed
out from the other one.

Re-authentication

The eXo Platform SSO valve can also be used to authenticate with any
other web application. If that application uses the same roles as the
main eXo Platform instance, no further configuration is required.
Because the eXo Platform SSO valve includes the same JAAS principal in
all HTTP requests, even in requests to other web applications, matching
roles ensure successful authentication with those applications.

To enable the single sing-on authentication with an application that
uses different roles, you need to set the reauthenticate parameter
of the sso eXo Platform Web subsystem configuration entry to
true:

<sso cache-container="web" cache-name="sso" reauthenticate="true" />

The true value ensures that reauthentication with user credentials
will be performed against the web application’s security domain in each
HTTP request. This will enforce creation of a new principal with updated
roles for the web application. As user credentials are used for
authentication in this case, it is required that the same user
credentials exist in both the web application and the JBoss Portal
Platform instance.

CMIS

CMIS add-on is built on top of
xCMIS [https://github.com/exoplatform/xcmis] - the open source
implementation of CMIS.

CMIS standard by OASIS [http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis]
defines a domain model and Web Services and Restful AtomPub bindings
that can be used by applications to work with one or more Content
Management repositories/systems.

Note

CMIS add-on is available for Enterprise Edition only.

In this chapter:

	CMIS specification

Basic information of CMIS specification by OASIS.

	xCMIS project

Introduction to the open source CMIS implementation by eXo.

	eXo CMIS add-on and configuration

How the add-on works in eXo Platform and detailed configuration.

	CMIS features

The features provided by the add-on.

	CMIS usage code
examples

Learn to use the API by examples (Java and JavaScript).

CMIS specification

Note

This is related to Content Management Interoperability Services
(CMIS) [http://en.wikipedia.org/wiki/Content_Management_Interoperability_Services]
OASIS v1.0 Standard on May 1, 2010.

The CMIS interface is designed to be layered on top of existing Content
Management systems and their existing programmatic interfaces. It is
intended to expose all of the CM systems capabilities through the CMIS
interfaces exhaustively. The CMIS specification defines the followings:

	A standard “domain model” for an ECM system - a set of core concepts
included in all modern ECM systems, such as Object Types, properties,
folders, documents, versions, and relationships; and a set of
operations performed on those concepts, such as updating documents,
or navigating via a folder hierarchy.

	The way to bind the CMIS domain model to two different web service
protocols, including the Simple Object Access Protocol (SOAP) used in
many ECM systems, and the Atom used in many Web 2.0 applications.

Note

The SOAP protocol is not implemented in eXo CMIS add-on.

The CMIS specification provides a Web services interface that can:

	Work over existing repositories, enabling customers to build and
leverage applications against multiple repositories.

	Decouple Web services and content from the content management
repository, enabling customers to manage content independently.

	Provide common Web services and Web 2.0 interfaces to dramatically
simplify the application development.

	Build the development platform and language agnostic.

	Support the composite application development and mashups by the
business or IT analysts.

xCMIS project

xCMIS includes the client side frameworks for integrating content from
different enterprise repositories, according to
CMIS standard [http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=cmis].

The project is to make joining Enterprise Content repositories simpler
by offering CMIS abilities and exposing them to language-independent
CMIS clients via the most convenient protocol.

xCMIS project:

	Is embedded, packaged as the J2EE Web archive (WAR) and prepared
“download and go” Tomcat bundle.

	Has a live demo with the full-featured CMIS Expert client, which is
accessible via xcmis.org site and with prepared “download and go”
Tomcat bundle (the client is accessible as the remote gadget).

	Is embedded in eXo Platform to create the special xCMIS JCR repository and
access it with any CMIS client.

	Tested with third-party CMIS clients, such as IBM CMIS Firefox
Connector and CMIS Spaces Flex+AIR client. Either local repository,
or can be used as a CMIS repository’s endpoint URL for these, or
other types of clients.

Benefits of xCMIS:

	xCMIS is an open source, server side Java CMIS implementation,
enabling to expose content in the existing content repositories
according to the protocols defined in the CMIS specification.

	xCMIS will give developers a way to make their content repositories
“pluggable” on the server side based on the internal Storage Provider
Interface and additional protocol on-demand bindings.

	xCMIS will provide (several) CMIS client frameworks for
repository-application and repository-repository interactions. The
programming language and supported protocol can be selected by users.
For example, the reasonable choice for using web applications,
gadgets, and/or mashups is JavaScript, or GWT over REST AtomPub,
while for inter-repository exchange, it may be Java over Web Services
like WSDL/SOAP.

	Both the server and client sides of xCMIS are easily integrated in
eXo Platform infrastructure. In particular, xCMIS exposes the eXo JCR
content repository and provides a framework for building web
applications and gadgets for the GateIn portal.

The xCMIS project is distributed under the LGPL license. You can
download sources on github [https://github.com/exoplatform/xcmis],
or visit Community Wiki [http://code.google.com/p/xcmis/w/list] for
more information.

eXo CMIS add-on and configuration

eXo CMIS add-on is built on the top of xCMIS embedded in eXo Platform to
expose the Content drives as the CMIS repositories. The CMIS features
are implemented as a set of components deployed on the eXo Container
using XML files to describe the service configuration.

Note

SOAP protocol binding is not implemented in eXo CMIS add-on.

See how eXo CMIS works in the figure below.

[image: image0]

The Content drives exposure is implemented as a Content storage provider
to the xCMIS SPI. The storage provider uses mappings from the Content’s
ManageDriveService to actual JCR nodes. AtomPub bindings make
Content structure available via CMIS standard API.

Note

The getRepositories service endpoint is: http://localhost:8080/rest/private/cmisatom.

Configuration

You do not need to configure anything to make it work, unless you want
to enable CMIS index and search.

The configuration is done in
ecm-xcmis-extension.war!/WEB-INF/conf/xcmis-configuration/xcmis-configuration.xml.

The following component -
org.exoplatform.ecms.xcmis.sp.DriveCmisRegistry that extends
CmisRegistry - is used to expose Content drives to the CMIS
repositories:

<component>
 <type>org.exoplatform.ecms.xcmis.sp.DriveCmisRegistry</type>
 <init-params>
 <!-- Disabled by default. Uncomment if you need query support in CMIS. -->
 <!-- value-param>
 <name>indexDir</name>
 <value>${gatein.jcr.index.data.dir}/cmis-index${container.name.suffix}</value>
 </value-param-->
 <value-param>
 <name>exo.cmis.renditions.persistent</name>
 <value>true</value>
 </value-param>
 <values-param>
 <name>renditionProviders</name>
 <description>Redition providers classes.</description>
 <!-- <value>org.xcmis.renditions.impl.PDFDocumentRenditionProvider</value> -->
 <value>org.xcmis.renditions.impl.ImageRenditionProvider</value>
 </values-param>
 </init-params>
</component>

	indexDir - The directory where the lucene index will be placed.
It is disabled by default.

	exo.cmis.renditions.persistent - Indicates if a rendition of the
document (thumbnails) should be persisted in the JCR. The allowed
value is true or false.

	renditionProviders - A set of FQN of classes which can be used as
Rendition Providers. Classes which implement the
org.xcmis.spi.RenditionProvider interface are used to preview the
CMIS objects (thumbnails).

Note

In most cases, it is not required to change anything in the xCMIS
configuration. In case of any change on the indexer storage
location, uncomment the indexDir value parameter and point it to
the actual location.

Required nodetypes and namespaces in JCR

The following configuration is mandatory for JCR to work correctly (this
is done in the add-on already):

<external-component-plugins>
 <target-component>org.exoplatform.services.jcr.RepositoryService</target-component>
 <component-plugin>
 <name>add.namespaces</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNamespacesPlugin</type>
 <init-params>
 <properties-param>
 <name>namespaces</name>
 <property name="cmis" value="http://www.exoplatform.com/jcr/cmis/1.0"/>
 <property name="xcmis" value="http://www.exoplatform.com/jcr/xcmis/1.0"/>
 </properties-param>
 </init-params>
 </component-plugin>
 <component-plugin>
 <name>add.nodeType</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNodeTypePlugin</type>
 <init-params>
 <values-param>
 <name>autoCreatedInNewRepository</name>
 <description>Node types configuration file</description>
 <value>jar:/conf/cmis-nodetypes-config.xml</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

CMIS search and index

The CMIS standard defines a query language based on a subset of the
SQL-92 grammar (ISO/IEC 9075: 1992 – Database Language SQL), with a few
extensions to enhance its filtering capability for the CMIS data model,
such as existential quantification for multi-valued property, full-text
search, and folder membership.

Warning

CMIS search is disabled by default in eXo CMIS. Uncomment the
indexDir parameter if you need the query support in CMIS. To
discover the search capability, check the table below.

CMIS Relational View

The relational view of a CMIS repository consists of a collection of
virtual tables that are defined on the top of the CMIS data model. A
virtual table exists for every queryable object type (content type
if you prefer) in the repository. Each row in these virtual tables
corresponds to an instance of the corresponding object type (or one of
its subtypes). A column exists for every property that the object type
has.

Query Capabilities

	Capability

	Value

	capabilityQuery

	bothcombined (if indexDir is configured; otherwise none)

	capabilityJoin

	none

	capabilityPWCSearchable

	false

	capabilityAllVersionsSearchable

	false

Configuration

To be able to provide full-text search capabilities, xCMIS uses its own
index. The following is the configuration parameter:

	Parameter

	Default

	Description

	indexDir

	none

	The location of the index directory. This parameter is mandatory for the default implementation.

For example, to set up the index directory:

<component>
 <type>org.exoplatform.ecms.xcmis.sp.DriveCmisRegistry</type>
 <init-params>
 <value-param>
 <name>indexDir</name>
 <value>${gatein.jcr.index.data.dir}/cmis-index${container.name.suffix}</value>
 </value-param>
 ...
 </init-params>
</component>

Indexing atomicity and durability

	Write-ahead logging

To be able to provide index consistency and recovery in case of
unexpected crashes or damages, XCMIS uses write-ahead
logging [http://en.wikipedia.org/wiki/Write-ahead_logging] (WAL)
technique. Write-ahead logging is a standard approach to transaction
logging. Briefly, WAL’s centre concept is “changes of data files
(indexes)” that must be written only after those changes have been
logged, that is, when the change log records have been flushed to
permanent storage. If you follow this procedure, you do not need to
flush data pages to disk on every transaction commit, because it is
known in the event of a crash, and the index can be recovered by using
the log: any changes that have not been applied to the data pages can be
redone from the log records. (This is roll-forward recovery, also known
as REDO.)

A major benefit of using WAL is a significantly reduced number of disk
writes, because only the log file needs to be flushed to disk at the
time of transaction commit, rather than every data file changed by the
transaction.

	Recovering uncommitted transaction

When you start Indexer, it will check uncommitted transaction logs. If
at least one log exists, recovering process will be started. Indexer
will read all logs and extract added, updated and removed UUIDs into a
set. Then, indexer walks through this set and checks objects against
UUID. If the object exists, the indexer will put it into the added
document list. In other cases, UUID will be added to the removed
documents list. After that, depending on the list of added and removed
documents, changes will be applied to the index.

	Initial index population

When you run the indexer to check the number of documents in the index.
If there are no documents in the index or the previous re-indexation was
not successful, then re-indexation of all content will be started. The
first step is cleaning old index data. Uncommitted transaction logs and
old persistent data are removed. These data are useless, because
re-indexation of all content will be started. Then, the indexer walks
through all objects and makes Lucene document for each one. Then batches
with less than 100 elements will be saved to the index. After
re-indexation, all logs (WAL) are removed, and all data mentioned on
these change logs are already indexed.

Note

If you, as an administrator, get an exception with the message
“Can’t remove reindex flag.”, it means that the index restoring was
finished but file-flag was not removed (see index directory, file
named as “reindexProcessing”). You can manually remove this
file-flag, and avoid a new reindex of repository on the JCR start.

CMIS features

	Integration with Content

How to integrate between Content and CMIS via JCR namespaces and nodetypes,
Content drives as CMIS Repositories,
Content symlinks,
CMIS search, and
modifying content via CMIS.

	CMIS Domain Model

Necessary information about the CMIS Domain Model and some of its
common entities.

	CMIS Services

Introduction to the CMIS Services, including Repository, Navigation,
Object, Multi-filing, Discovery, Versioning, Relationship, Policy and
ACL.

Integration with Content

The Content system provides CMIS access to its content storage features:

	Content drives

	Document files and folders

	Symlinks

	Categories

To expose Content drives as CMIS repositories, there is a special
extension of CmisRegistry.

Working with CMIS is based on reference documents returned by services.
Each CMIS service returns response containing links to other services
describing the Document or operations on it. In most cases, a Document
will be asked by its ID. Some services accept a Document path.

Note

Notes for use cases: To access the eXo CMIS services from the client
side, use the Curl tool [http://curl.haxx.se/download.html]. The
CMIS AtomPub binding which is based upon the Atom (RFC4287) and Atom
Publishing Protocol (RFC5023) will be used.

SOAP binding is not implemented as of eXo Platform 4.0.

JCR namespaces and nodetypes

CMIS uses specified JCR namespaces cmis and xcmis internally.

The following nodetypes are supported to expose the content of drives:

	nt:file nodetype for representation of cmis:document.

	nt:folder for representation of cmis:folder.

Since the CMIS specification does not allow having more root types
except ones described above (cmis:document and cmis:folder), the
nt:file and nt:folder nodetypes are mapped to CMIS types.

There are two more nodetypes which are used: cmis:policy and
cmis:relationship which represent the corresponding CMIS types (see
Services description for details).

Additionally, nodetypes used in Content are mapped as follows:

	nt:unstructured + extensions as cmis:folder.

	exo:taxonomy + extensions as cmis:folder.

In other words, only nodetypes extending nt:file, nt:folder,
nt:unstructured and exo:taxonomy will be exposed correctly via
CMIS API.

Warning

The Content nodetype named exo:article is not supported by eXo
CMIS due to uncompliant structure to nt:file.

Content drives as CMIS Repositories

The Content drive is used to expose as an isolated repository via the
CMIS service. Operations on the repository will reflect the drive
immediately.

Tip

When working with CMIS repositories, it is important to understand
that a repository reflects a Content Drive, which is a sub-tree in
JCR workspace. Two or more drives can be mapped to the same
workspace or a sub-tree. As a result, changes in one repository can
affect others. Refer to the Content drives mappings to know actual
location of a content you will access or change.

Use Case: Browse Drives via getRepository

	Get the list of these Content drives via CMIS using Curl, asking
getRepositories service:

curl -o repos.xml -u root:gtn http://localhost:8080/rest/private/cmisatom/

The output file repos.xml contains a list of CMIS repositories
(Content drives):

<service>
 <workspace>
 <atom:title type="text">.organization.employees</atom:title>
 <cmisra:repositoryInfo>
 <cmis:repositoryId>.organization.employees</cmis:repositoryId>
 <cmis:repositoryName>.organization.employees</cmis:repositoryName>
 <cmis:rootFolderId>f48349e17f0000010138880df837a1cc</cmis:rootFolderId>
 </cmisra:repositoryInfo>
 ...
 </workspace>
 <workspace><!-- .organization.management.executive-board --></workspace>
 <workspace><!-- .platform.administrators --></workspace>
 <workspace><!-- .platform.users --></workspace>
 <workspace><!-- .platform.web-contributors --></workspace>
 <workspace><!-- Collaboration --></workspace>
 <workspace><!-- Managed Sites --></workspace>
 <workspace><!-- Personal Documents --></workspace>
 <workspace><!-- Trash --></workspace>
</service>

	By specifying a repository ID
(http://localhost:8080/rest/private/cmisatom/Collaboration), you
get the information of that repository.

<service>
 <workspace>
 <atom:title type="text">Collaboration</atom:title>
 <cmisra:repositoryInfo>
 <cmis:repositoryId>Collaboration</cmis:repositoryId>
 <cmis:repositoryName>Collaboration</cmis:repositoryName>
 <cmis:repositoryDescription>xCMIS (eXo SP)</cmis:repositoryDescription>
 <cmis:vendorName>eXo</cmis:vendorName>
 <cmis:productName>xCMIS (eXo SP)</cmis:productName>
 <cmis:productVersion>1.1</cmis:productVersion>
 <cmis:rootFolderId>00exo0jcr0root0uuid0000000000000</cmis:rootFolderId>
 <cmis:latestChangeLogToken/>
 <cmis:cmisVersionSupported>1.0</cmis:cmisVersionSupported>
 <cmis:thinClientURI/>
 <cmis:changesIncomplete>true</cmis:changesIncomplete>
 <cmis:principalAnonymous>__anonim</cmis:principalAnonymous>
 <cmis:principalAnyone>any</cmis:principalAnyone>
 <cmis:capabilities></cmis:capabilities>
 <cmis:aclCapability></cmis:aclCapability>
 </cmisra:repositoryInfo>
 <collection href="http://localhost:8080/rest/private/cmisatom/Collaboration/types"></collection>
 <collection href="http://localhost:8080/rest/private/cmisatom/Collaboration/unfiled"></collection>
 <collection href="http://localhost:8080/rest/private/cmisatom/Collaboration/checkedout"></collection>
 <collection href="http://localhost:8080/rest/private/cmisatom/Collaboration/query"></collection>
 <collection href="http://localhost:8080/rest/private/cmisatom/Collaboration/children/00exo0jcr0root0uuid0000000000000"></collection>
 <cmisra:uritemplate><!-- objectbyid --></cmisra:uritemplate>
 <cmisra:uritemplate><!-- objectbypath --></cmisra:uritemplate>
 <cmisra:uritemplate><!-- query --></cmisra:uritemplate>
 <cmisra:uritemplate><!-- typebyid --></cmisra:uritemplate>
 <cmisra:uritemplate><!-- changes --></cmisra:uritemplate>
 <atom:link title="Type descendants" rel="http://docs.oasis-open.org/ns/cmis/link/200908/typedescendants" type="application/cmistree+xml" href="http://localhost:8080/rest/private/cmisatom/Collaboration/typedescendants"/>
 <atom:link title="Root folder descendants" rel="http://docs.oasis-open.org/ns/cmis/link/200908/rootdescendants" type="application/cmistree+xml" href="http://localhost:8080/rest/private/cmisatom/Collaboration/descendants/00exo0jcr0root0uuid0000000000000"/>
 <atom:link title="Root folder tree" rel="http://docs.oasis-open.org/ns/cmis/link/200908/foldertree" type="application/cmistree+xml" href="http://localhost:8080/rest/private/cmisatom/Collaboration/foldertree/00exo0jcr0root0uuid0000000000000"/>
 </workspace>
</service>

Here is the collection of services and predefined templates which can be
used from the client side to request resources related to this
repository. For example, to get the Content node of the drive by path,
the objectbypath template can be used:

http://localhost:8080/rest/private/cmisatom/{repositoryId}/objectbypath?path={path}&filter={filter}&includeAllowableActions={includeAllowableActions}&includePolicyIds={includePolicyIds}&includeRelationships={includeRelationships}&includeACL={includeACL}&renditionFilter={renditionFilter}

	Required:

	ID repositoryId: The identifier for the repository.

	String path: The path to the object.

	Optional:

	String filter

	Boolean includeAllowableActions

	Enum includeRelationships

	String renditionFilter

	Boolean includePolicyIds

	Boolean includeACL

Note

Find the full description of all specified services in the CMIS specification.

Content symlinks

Symlinks are used to organize the virtual access to documents in
Content, which is implemented like links in Unix/Linux/Mac OS (refer to
ln command for more details).

Via CMIS, you can get a file using its symlink as well as its real path.

Note

Nodetype of symlinks is exo:symlink.

Use Case: Follow Symlinks

	Log in intranet website as a developer role.

	Go to Administration –> Content –> Sites Explorer –> Site Management on
the administration bar, then select /intranet/documents folder.

	Upload any file (for example test.txt) to /intranet/documents.

	Go to /intranet/categories/intranet and add a new category:
/intranet/categories/intranet/news.

	Back to /intranet/documents/test.txt and add this file to that
category. This will create a symlink of /intranet/documents/test.txt
in /intranet/categories/intranet/news.

	Get content of the /intranet/categories/intranet/news folder via
CMIS:

curl -o news.xml -u root:gtn http://localhost:8080/rest/private/cmisatom/Managed%20Sites/objectbypath?path=/intranet/categories/intranet/news

The output file (news.xml) contains the entry with information about
the folder, in which you will find a link (to get children) like this:

<link href="http://localhost:8080/rest/private/cmisatom/Managed%20Sites/children/03dcf0827f00000100cf3b9a4cbf3de4" rel="down" type="application/atom+xml; type=feed"/>

	Get the children of /intranet/categories/intranet/news using that
link:

curl -o children.xml -u root:gtn http://localhost:8080/rest/private/cmisatom/Managed%20Sites/children/03dcf0827f00000100cf3b9a4cbf3de4

The output file (children.xml contains an entry (related to
test.txt) that has an ID:

<entry>
 <id>03dd409c7f000001010b7e050789d358</id>
 ...
 <title type="text">test.txt</title>
 ...
</entry>

	Finally get the test.txt file by using file service and the ID:

curl -o test.txt -u root:gtn http://localhost:8080/rest/private/cmisatom/Managed%20Sites/file/03dd409c7f000001010b7e050789d358

Modifying Content via CMIS

In the previous section, you get a file using file service and the
file’s ID.

You can modify your local copy of the file and upload it back to the
Content drive using the file service again but with PUT method.

curl -T test.txt -X PUT -H "Content-Type:text/plain; charset=UTF-8" -u root:gtn http://localhost:8080/rest/private/cmisatom/Managed%20Sites/file/03dd409c7f000001010b7e050789d358

Then check the new content of /intranet/documents/test.txt in Sites Explorer.

CMIS search

Note

To enable query support, follow CMIS Add-on configuration section.

The service URL is http://localhost:8080/rest/private/cmisatom/{repositoryId}/query.
To use curl to send request (GET and POST), see Simple query
section.

CMIS provides a type-based query service for discovering objects that
match specified criteria by defining a read-only projection of the CMIS
data model into a Relational View.

CMIS query languages are based on a subset of the SQL-92 grammar.
CMIS-specific language extensions to SQL-92 are called out explicitly.
The basic structure of a CMIS query is a SQL statement that MUST include
the following clauses:

	SELECT (virtual columns): This clause identifies the set of virtual
columns that will be included in the query results for each row.

	FROM (Virtual Table Names): This clause identifies which Virtual
Table(s) the query will run against.

Additionally, a CMIS query MAY include the following clauses:

	WHERE (conditions): This clause identifies the constraints that rows
MUST satisfy to be considered a result for the query.

	ORDER BY (sort specification): This clause identifies the order in
which the result rows MUST be sorted in the result row set.

Each CMIS ObjectType definition has the following query attributes:

	Name

	Description

	query name (String)

	Is used for query operations on object types. In the SQL statement examples, all object types are queryName. For example, the given queryName matches the specific type of document. For example, in query like “SELECT * FROM cmis:document”, “cmis:document” is queryName pre-configured in Document object type definition.

	queryable (Boolean)

	Indicates whether or not this object type is queryable. A non-queryable object type is not visible through the relational view that is used for query, and can not appear in the FROM clause of a query statement.

	fulltextIndexed (Boolean)

	Indicates whether objects of this type are full-text indexed for querying via the CONTAINS() query predicate.

	includedInSupertypeQuery (Boolean)

	Indicates whether this type and its subtypes appear in a query of this type’s ancestor types. For example, if Invoice is a sub-type of Document, and its value is TRUE for a query on Document type, the matched instances of Invoice will be returned. If this attribute is FALSE, no instances (including matched ones) of Invoice will be returned.

Property definition also contains queryName and queryable attributes
with the same usage.

Here are query examples for each case, including:

	Simple query

	Find document by several constraints

	Full-text search

	Extended full-text search

	Date property comparison

	Boolean property comparison

	IN Constraint

	Select all documents where the longprop property is not in set

	Select all documents where the longprop property is in set

	IN_FOLDER constraint

	Select all documents that are in a specified folder

	Select all documents where query supertype is cmis:article

	IN_TREE constraint

	LIKE Comparison

	LIKE constraint with escape symbols

	NOT constraint

	Property existence

	ORDER BY

	ORDER BY ASC

	ORDER BY DESC

	ORDER BY SCORE (as columns)

	Not equal comparison (decimal)

	Not equal comparison (string)

	Greater than comparison (>)

Simple query

Warning

You are looking at documentation for an older release. Not what you
want? See the current release
documentation [https://exo-documentation.readthedocs.io/en/latest/index.html].

Query: Select all cmis:document.

SELECT * FROM cmis:document

Note

You need to enable query support by following `CMIS Add-on
configuration <eXoAddonsGuide.CMIS.Addon>`__ section.

That simple query can be executed by curl as follows:

Upload a text file test.txt to the drive Collaboration in Sites
Explorer.

Send the GET request to query service by curl:

curl -o result.xml -uroot:gtn http://localhost:8080/rest/private/cmisatom/Collaboration/query?q=SELECT%20*%20FROM%20cmis:document

The output file (result.xml) contains an entry of test.txt:

<feed>
 ...
 <cmisra:numItems>1</cmisra:numItems>
 <entry>
 <id>058a68ab7f00000101699284020aa88c</id>
 ...
 <title type="text">test.txt</title>
 ...
 </entry>
 ...
</feed>

If you want to use POST request, write your query in an xml file
(cmis:statement is required):

<?xml version='1.0' encoding='utf-8'?>
<cmis:query xmlns='http://www.w3.org/2005/Atom' xmlns:cmis='http://docs.oasis-open.org/ns/cmis/core/200908/'>
 <cmis:statement>SELECT * FROM cmis:document</cmis:statement>
 <cmis:maxItems>10</cmis:maxItems>
 <cmis:skipCount>0</cmis:skipCount>
 <cmis:searchAllVersions>true</cmis:searchAllVersions>
 <cmis:includeAllowableActions>true</cmis:includeAllowableActions>
</cmis:query>

Then send it by the following command (for example you saved the file as
query.xml):

curl -o result.xml -X POST -uroot:gtn http://localhost:8080/rest/private/cmisatom/Collaboration/query -H "Content-Type: text/xml; charset=UTF-8" -d @query.xml

Find document by several constraints

Query: Select all documents where apollo:propertyBooster is ‘Saturn
V’ and apollo:propertyCommander is Frank F. Borman, II or James A.
Lovell, Jr.

Initial data:

	document1: apollo:propertyBooster - Saturn 1B,
apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyBooster - Saturn V,
apollo:propertyCommander - Frank F. Borman, II

	document3: apollo:propertyBooster - Saturn V,
apollo:propertyCommander - James A. Lovell, Jr.

SELECT * FROM cmis:document WHERE apollo:propertyBooster = 'Saturn V' AND (apollo:propertyCommander = 'Frank F. Borman, II' OR apollo:propertyCommander = 'James A. Lovell, Jr.')

Query result:

	document2 and document3.

Full-text search

Query: Select all documents that contains the “here” word.

Initial data:

	document1: content - “There must be test word”

	document2: content - “Test word is not here”

SELECT * FROM cmis:document WHERE CONTAINS('here')

Query result:

	document2.

Extended full-text search

Query: Select all documents that contains “There must” phrase and do not
contain the “check-word” term.

Initial data:

	document1: content - “There must be test word.”

	document2: content - “Test word is not here. Another check-word.”

	document3: content - “There must be check-word.”

SELECT * FROM cmis:document WHERE CONTAINS("There must" - "check-word")

Query result:

	document1.

Date property comparison

Query: Select all documents where cmis:lastModificationDate is more
than 2007-01-01.

Initial data:

	document1: cmis:lastModificationDate - 2006-08-08

	document2: cmis:lastModificationDate - 2009-08-08

SELECT * FROM cmis:document WHERE (cmis:lastModificationDate >= TIMESTAMP '2007-01-01T00:00:00.000Z')"

Query result:

	document2.

Boolean property comparison

Query: Select all documents where the apollo:someProperty property
equals to false.

Initial data:

	document1: apollo:someProperty - true

	document2: apollo:someProperty - false

SELECT * FROM cmis:document WHERE (apollo:someProperty = FALSE)

Query result:

	document2.

IN Constraint

Query: Select all documents where apollo:propertyCommander is in set
{‘Virgil I. Grissom’, ‘Frank F. Borman, II’, ‘James A. Lovell, Jr.’}.

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. Borman, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. Cernan

SELECT * FROM cmis:document WHERE apollo:propertyCommander IN ('Virgil I. Grissom', 'Frank F. Borman, II', 'James A. Lovell, Jr.')

Query result:

	document2, document3.

Select all documents where the longprop property is not in set

Query: Select all documents where the apollo:propertyCommander
property is not in set {‘Walter M. Schirra’, ‘James A. Lovell, Jr.’}.

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. Borman, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. Cerna

SELECT * FROM cmis:document WHERE apollo:PropertyCommander NOT IN ('Walter M. Schirra', 'James A. Lovell, Jr.')

Query result:

	document2, document4.

Select all documents where the longprop property is in set

Query: Select all documents where the apollo:propertyCommander
property is in set {‘James A. Lovell, Jr.’}.

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. Borman, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. Cerna

SELECT * FROM cmis:document WHERE NOT (apollo:propertyCommander NOT IN ('James A. Lovell, Jr.'))

Query result:

	document3.

IN_FOLDER constraint

Query: Select all folders that are in folder1.

Initial data:

	folder1: id - 123456789

	document1: Title - node1

	folder3:

	folder4:

	folder2:

	document2: Title - node2

SELECT * FROM cmis:folder WHERE IN_FOLDER('123456789')

Query result:

	folder3.

Select all documents that are in a specified folder

Query: Select all documents that are in folder1.

Initial data:

	folder1: id - 123456789

	document1: Title - node1

	folder2:

	document2: Title - node2

SELECT * FROM cmis:document WHERE IN_FOLDER('123456789')

Query result:

	document1.

Select all documents where query supertype is cmis:article

Initial data:

	testRoot: id - 123456789

	document1: Title - node1 typeID - cmis:article-sports

	document2: Title - node2 typeID - cmis:article-animals

SELECT * FROM cmis:article WHERE IN_FOLDER('123456789')

Query result:

	document1, document2.

IN_TREE constraint

Query: Select all documents that are in the tree of folder1.

Initial data:

	folder1: id - 123456789

	document1

	folder2:

	document2

SELECT * FROM cmis:document WHERE IN_TREE('123456789')

Query result:

	document1, document2.

LIKE Comparison

Query: Select all documents where apollo:propertyCommander begins
with “James”.

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. James, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. James

SELECT * FROM cmis:document AS doc WHERE apollo:PropertyCommander LIKE 'James%'

Query result:

	document3.

LIKE constraint with escape symbols

Query: Select all documents where apollo:someProperty like
‘ad%min%’.

Initial data:

	document1: Title - node1, apollo:someProperty - ad%min master

	document2: Title - node2, apollo:someProperty - admin operator

	document3: Title - node2, apollo:someProperty - radmin

SELECT * FROM cmis:document AS doc WHERE apollo:someProperty LIKE 'ad%min%'

Query result:

	document1.

NOT constraint

Query: Select all documents that do not contain the “world” word.

Initial data:

	document1: Title - node1, content - hello world

	document2: Title - node2, content - hello

SELECT * FROM cmis:document WHERE NOT CONTAINS('world')

Query result:

	document2.

Property existence

Query: Select all documents that has the apollo:propertyCommander
property is NOT NULL.

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander -

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander -

SELECT * FROM cmis:document WHERE apollo:propertyCommander is NOT NULL

Query result:

	document1, document3.

ORDER BY

Query: Select all documents in default order (by document name).

Initial data:

	document1: Title - Apollo 7

	document2: Title - Apollo 8

	document3: Title - Apollo 13

	document4: Title - Apollo 17

SELECT cmis:lastModifiedBy, cmis:objectId, cmis:lastModificationDate FROM cmis:document

Query result:

	document3, document4, document1, document2.

ORDER BY ASC

Query: Order by the apollo:propertyCommander property value (in
ascending order).

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. Borman, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. Cerna

SELECT cmis:lastModifiedBy, cmis:objectId, cmis:lastModificationDate FROM cmis:document ORDER BY apollo:propertyCommander

Query result:

	document4, document2, document3, document1.

ORDER BY DESC

Query: Order by the apollo:propertyCommander property value (in
descending order).

Initial data:

	document1: apollo:propertyCommander - Walter M. Schirra

	document2: apollo:propertyCommander - Frank F. James, II

	document3: apollo:propertyCommander - James A. Lovell, Jr.

	document4: apollo:propertyCommander - Eugene A. James

SELECT cmis:lastModifiedBy, cmis:objectId, cmis:lastModificationDate FROM cmis:document ORDER BY cmis:propertyCommander DESC

Query result:

	document1, document3, document2, document4.

ORDER BY SCORE (as columns)

Query: Select all documents which contains word “moon” ordered by score.

Initial data:

	document1: content - “Earth-orbital mission, the first manned launch”

	document2: content - “from another celestial body - Earth’s Moon”

	document3: content - “NASA intended to land on the Moon, but a
mid-mission technical”

	document4: content - “It was the first night launch of a U.S. human”

SELECT cmis:lastModifiedBy, cmis:objectId, cmis:lastModificationDate FROM cmis:document WHERE CONTAINS('moon') ORDER BY SCORE()

Query result:

	document2, document3.

Not equal comparison (decimal)

Query: Select all documents which have the `` apollo:propertyBooster``
property that does not equal to 3.

Initial data:

	document1: Title - node1, apollo:propertyBooster - 3

	document2: Title - node2, apollo:propertyBooster - 15

SELECT * FROM cmis:document WHERE apollo:propertyBooster <> 3

Query result:

	document2.

Not equal comparison (string)

Query: Select all documents with the apollo:someProperty property
that does not equal to “test word second”.

Initial data:

	document1: apollo:someProperty - “test word first”

	document2: apollo:someProperty - “test word second”

SELECT * FROM cmis:document WHERE apollo:someProperty <> 'test word second'

Query result:

	document1.

Greater than comparison (>)

Query: Select all documents with the apollo:propertyBooster property
which is more than 5.

Initial data:

	document1: apollo:propertyBooster - 3

	document2: apollo:propertyBooster - 15

SELECT * FROM cmis:document WHERE apollo:propertyBooster > 5

Query result:

	document2.

CMIS Domain Model

The CMIS Domain Model defines a repository as a container and an entry
point to the objects that is quite simple and non-restrictive. The
followings are some of the common entities of the domain model.

	Repository is a container of objects with a set of “capabilities”
which may be different depending on the implementation.

	Object is the entity managed by a CMIS repository.

	Object Type is a classification related to an object. It specifies a
fixed and non-hierarchical set of properties (“schema”) that all
objects of that type have.

	Document Object is an elementary information entity.

	Folder Object is a collection of fileable objects.

	Relationship Object is used to describe a dependent object
semantically.

	Policy Object represents an administrative policy applied to an
object.

	Access Object defines permissions.

	Versioning is to support versioning for Document objects.

	Query is type-based in a simplified SQL SELECT statement.

	Change Log is a mechanism which enables applications to discover
changes to the objects stored.

Note

CMIS specifies a query language based on the SQL-92 standard, plus
the extensions, in conjunction with the model mapping defined by the
CMIS’s relational view.

All objects are classified by an Object Type which declares that all
objects of the given type have some sets of properties in common. Each
property consists of a set of attributes, such as the TypeID, the
property ID, its display name, its query name, and more. There are only
four base types, including Document, Folder, Relationship, and Policy.
Also, you can extend those basic types by modifying a set of their
properties.

Document Object and Folder Object are self-explanatory. Document Object
has properties to hold document metadata, such as the document author,
modification date and custom properties. It can also contain a content
stream whether it is required, and renditions, such as a thumbnail view
of document. Folder is used to contain objects. Apart from the default
hierarchical structure, CMIS can optionally store objects in multiple
folders or in no folders at all (so-called multi-filing and unfiling
capabilities). Relationship Object denotes the connection between two
objects (target and source). An object can have multiple relationships
with other objects. Policy Object is a way to define administrative
policies in managing objects. For example, you can use a CMIS policy to
define which documents are subject to retention policies.

CMIS Services

CMIS provides a set of services to access and manage the content or
repository. These services include:

	Name

	Description

	Repository Services

	Discovers information about the repository and the object types defined for the repository.

	Navigation Services

	Traverses the folder hierarchy in a CMIS repository, and to locate documents which are checked out.

	Object Services

	Executes ID-based CRUD functions (Create, Retrieve, Update, Delete) on objects in a repository.

	Multi-filing Services (optional)

	Puts an object in more than one folder (multi-filing), or outside the folder hierarchy (unfiling).

	Discovery Services

	Searches for queryable objects in a repository.

	Versioning Services

	Checks out, navigates to documents, or updates a Document Version Series (checkOut, cancelCheckOut, getPropertiesOfLatestVersion, getAllVersions, deleteAllVersions).

	Relationship Services (optional)

	Retrieves an object for its relationships.

	Policy Services (optional)

	Applies, removes, or queries for policies.

	ACL Services

	Returns and manages the Access Control List (ACL) of an object. ACL Services are not supported by all repositories.

Some repositories might not implement certain optional capabilities, but
they are still considered as CMIS-compliant. Each service has binding
which defines the way messages will be serialized and wired. Binding is
based on HTTP and uses the Atom Publishing Protocol.

CMIS Usage code examples

This section consists of the following main topics:

	Login to repository

Example of using Java to login to repository.

	List of documents (folder, files)

Description about the usage of several methods to get the documents
lists, such as getChildren(), getFolderTree() and
getDescendants().

	Read document properties and content-stream

Instructions on how to read and get the document properties and
content stream.

	Search of data and syntax examples

Examples of using Java and Javascript to search for data and syntax
in CMIS.

	Modification of document properties or content

Instructions on how to use Java and Javascript to update and get
document properties or content in CMIS.

The examples of the CMIS usage may be useful for developers who need to
access a repository. CMIS access code snippets are built using Apache
HTTP Client for Java, or using Google gadgets (gadgets.io) for
JavaScript examples. For examples of CURL, visit http://code.google.com/p/xcmis/wiki/xCMISusesWithCurl.

Login to repository

Note

The CMIS service uses the default authentication in general case,
but it can be overridden in case of embedding CMIS into an
Application Service. In these examples, only the Basic HTTP
authentication is covered.

Using Java

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.UsernamePasswordCredentials;
import org.apache.commons.httpclient.auth.AuthScope;
import org.apache.commons.httpclient.methods.GetMethod;

HttpClient client = new HttpClient();
client.getState().setCredentials(
new AuthScope("localhost", 8080, "realm"),
new UsernamePasswordCredentials("root", "gtn");
....

List of documents (folder, files)

There are several methods to get the documents lists, such as
getChildren(), getFolderTree() and getDescendants(). The
difference between them is the usage of different URL segments to get
data (“/children” for getChildren(), “/foldertree” for
getFolderTree(), “/descendants” for getDescendants()), and
(getChildren() returns a flat structure, while getFolderTree()
and getDescendants() have a tree of items in response).

Using Java

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.httpclient.MultiThreadedHttpConnectionManager;

String url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/children/";
url += obj_id;

HttpClient client = new HttpClient(new MultiThreadedHttpConnectionManager());
client.getHttpConnectionManager().
getParams().setConnectionTimeout(10000);

GetMethod get = new GetMethod(url);
try {
int result = client.executeMethod(get);
final String strResponse = get.getResponseBodyAsString();
} finally {
 get.releaseConnection();
}

Using JavaScript

Creating a URL to make a request (consisting of repository name, method
name, for example “/children/”, and folderID to get children from):

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/children/";
url += obj_id;

Performing request:

var params = {};
params[gadgets.io.RequestParameters.METHOD] = gadgets.io.MethodType.GET;
params[gadgets.io.RequestParameters.CONTENT_TYPE] = gadgets.io.ContentType.FEED;
gadgets.io.makeRequest(url, handler, params);

Processing results (the code is located in the handler specified while
making a request - the same way might be used for all examples in this
chapter):

 var handler = function(resp) {
 var data = eval(resp.data.Entry);
 for (var i = 0; i < data.length; i++) {
 var doc = data[i];
 alert(doc.Title);
 alert(doc.Date);
 ...etc..
 }
}

Read document properties and content-stream

Reading the Document properties and content stream are two separate
operations. Getting the content stream is possible after the properties
set has been read and the content stream ID is extracted from it.

Using Java

	Get document properties.

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.GetMethod;
import org.apache.commons.httpclient.MultiThreadedHttpConnectionManager;

String url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/object/";
url += obj_id;

HttpClient client = new HttpClient(new MultiThreadedHttpConnectionManager());
client.getHttpConnectionManager().
getParams().setConnectionTimeout(10000);

GetMethod get = new GetMethod(url);
try {
 int result = client.executeMethod(get);
 final String strResponse = get.getResponseBodyAsString();
 // use response...
} finally {
 get.releaseConnection();
}

	Get document content-stream.

To get the Document’s content stream, an URL must contain a
“/file” part, object ID, and optionally the content stream ID,
which can be used, for example, to obtain renditions. If no stream ID
is specified, the default stream will be returned.

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.PostMethod;

String url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/file/";
url += obj_id;
//Optionally
url += "?";
url += "streamid=";
url += streamID;

HttpClient client = new HttpClient();
client.getHttpConnectionManager().
getParams().setConnectionTimeout(10000);

GetMethod get = new GetMethod(url);
try {
 int result = client.executeMethod(get);
 final InputStream stream = get.getResponseBodyAsStream();
 try {
 // use stream...
 int dataByte = stream.read();
 } finally {
stream.close();
 }
} finally {
 get.releaseConnection();
}

Using JavaScript

	Get document properties.

	Create a URL to make a request (consisting of repository name,
method name, for example “/children/”, and folder ID to get the
children from):

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/object/";
url += obj_id;

	Perform the request:

var params = {};
params[gadgets.io.RequestParameters.METHOD] = gadgets.io.MethodType.GET;
params[gadgets.io.RequestParameters.CONTENT_TYPE] = gadgets.io.ContentType.FEED;
gadgets.io.makeRequest(url, handler, params);

You can also use the ContentType.DOM parameter to parse the
feed in your application (Using DOMParser for example).

	Get document content-stream.

Note

Performing a content stream request in JavaScript will cause the
browser dialog for a file download.

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/file/";
url += obj_id;
//Optionally
url += "?";
url += "streamid=";
url += streamID;

Search for data and syntax examples

CMIS supports SQL queries for more handful content search. Query service
can handle both GET and POST requests. URL for query consists of the
repository name and the “/query” method name. The GET request must
contain query as a parameter named “q”. In case of the POST, query
must be located in request body.

Note

You need to enable query support by following :ref:`CMIS Add-on configuration <eXoAddonsGuide.CMIS.Addon>`_section.

For more detailed instructions how to construct queries, refer to the
Query examples
section.

Using Java

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.methods.StringRequestEntity;

String url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/query/";

HttpClient client = new HttpClient();
client.getHttpConnectionManager().
getParams().setConnectionTimeout(10000);

PostMethod post = new PostMethod(url);
String s = "<?xml version='1.0' encoding='utf-8'?>"
 + "<cmis:query xmlns='http://www.w3.org/2005/Atom' xmlns:cmis='http://docs.oasis-open.org/ns/cmis/core/200908/'>"
 + "<cmis:statement>SELECT * FROM cmis:document</cmis:statement>"
 + "<cmis:maxItems>10</cmis:maxItems>"
 + "<cmis:skipCount>0</cmis:skipCount>"
 + "<cmis:searchAllVersions>true</cmis:searchAllVersions>"
 + "<cmis:includeAllowableActions>true</cmis:includeAllowableActions>"
 + "</cmis:query>";

RequestEntity entity = new StringRequestEntity(s, "text/xml","utf-8");
try {
 post.setRequestEntity(entity);
 int result = client.executeMethod(post);
 final String strResponse = post.getResponseBodyAsString();
 // use response...
} finally {
 post.releaseConnection();
}

Using JavaScript

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/query/";

var params = {};
params[gadgets.io.RequestParameters.METHOD] = gadgets.io.MethodType.POST;
params[gadgets.io.RequestParameters.POST_DATA] = gadgets.io.encodeValues(someQuery);
gadgets.io.makeRequest(url, handler, params);

Modification of document properties or content

The command of property update uses PUT method. The URL is the same as
the one for reading properties, the difference is only in the HTTP
method used. The body of the request must be an Atom document with
specified properties.

Sending of content stream can be executed via PUT or POST requests.
Content-type of the request must be a “multipart/form-data”.

Using Java

	Update properties:

 import org.apache.commons.httpclient.HttpClient;
 import org.apache.commons.httpclient.methods.StringRequestEntity;
 import org.apache.commons.httpclient.methods.PostMethod;
 import org.apache.commons.httpclient.methods.RequestEntity;

 String url = "http://localhost:8080/rest/private/cmisatom/";
 url += repository;
 url += "/object/";
 url += obj_id;

 HttpClient client = new HttpClient();
 client.getHttpConnectionManager().
 getParams().setConnectionTimeout(10000);

String atomDoc = "<?xml version='1.0' encoding='utf-8'?>"
 + "<entry xmlns='http://www.w3.org/2005/Atom'"
 + " xmlns:cmis='http://docs.oasis-open.org/ns/cmis/core/200908/'"
 + " xmlns:cmisra='http://docs.oasis-open.org/ns/cmis/restatom/200908/'>"
 + "<cmisra:object><cmis:properties>"
 + "<cmis:propertyString queryName='cmis:name' localName='cmis:name' propertyDefinitionId='cmis:name'>"
 + "<cmis:value>newName</cmis:value>"
 + "</cmis:propertyString>"
 + "</cmis:properties></cmisra:object>"
 + "</entry>";

 PutMethod put = new PutMethod(url);
 RequestEntity entity = new StringRequestEntity(atomDoc, "text/xml", "utf-8");
 put.setRequestEntity(entity);

 try {
 int result = client.executeMethod(put);
 final String strResponse = put.getResponseBodyAsString();
 } finally {
 put.releaseConnection();
 }

	Set content stream:

import org.apache.commons.httpclient.HttpClient;
import org.apache.commons.httpclient.methods.InputStreamRequestEntity;
import org.apache.commons.httpclient.methods.PostMethod;
import org.apache.commons.httpclient.methods.RequestEntity;

String url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/file/";
url += obj_id;

HttpClient client = new HttpClient();
client.getHttpConnectionManager().
getParams().setConnectionTimeout(10000);

PostMethod post = new PostMethod(url);
RequestEntity entity = new InputStreamRequestEntity(inputStream, "text/xml; charset=ISO-8859-1");
post.setRequestEntity(entity);

try {
 int result = client.executeMethod(post);
 final String strResponse = post.getResponseBodyAsString();
} finally {
 post.releaseConnection();
}

Using JavaScript

	Update properties:

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/object/";
url += obj_id;

//constructing document
 String atomDoc = "<?xml version='1.0' encoding='utf-8'?>";
 atomDoc += "<entry xmlns='http://www.w3.org/2005/Atom'";
 atomDoc += " xmlns:cmis='http://docs.oasis-open.org/ns/cmis/core/200908/'";
 atomDoc += " xmlns:cmisra='http://docs.oasis-open.org/ns/cmis/restatom/200908/'>";
 atomDoc += "<cmisra:object><cmis:properties>";
 atomDoc += "<cmis:propertyString queryName='cmis:name' localName='cmis:name' propertyDefinitionId='cmis:name'>";
 atomDoc += "<cmis:value>newName</cmis:value>";
 atomDoc += "</cmis:propertyString>";
 atomDoc += "</cmis:properties></cmisra:object></entry>";

 var params = {};
 params[gadgets.io.RequestParameters.METHOD] = gadgets.io.MethodType.PUT;
 params[gadgets.io.RequestParameters.POST_DATA] = atomDoc;
 gadgets.io.makeRequest(url, handler, params);

	Set content stream:

var url = "http://localhost:8080/rest/private/cmisatom/";
url += repository;
url += "/file/";
url += obj_id;

var params = {};
params[gadgets.io.RequestParameters.METHOD] = gadgets.io.MethodType.POST;
params[gadgets.io.RequestParameters.CONTENT_TYPE] = "multipart/form-data";
params[gadgets.io.RequestParameters.POST_DATA] = contentStream;
gadgets.io.makeRequest(url, handler, params);

Features

eXo Mobile enables you to connect and collaborate on the go. Native
iPhone, iPad and Android apps integrate easily and securely with sites
built on eXo Platform. Follow the latest updates from your colleagues
and groups, interact with your personal dashboards, browse and edit your
files, and more, at any time, from anywhere.

News Feed

You can receive messages from co-workers, follow your group’s latest
activities, and collaborate in real-time. You can also see when changes
are made to the wiki pages, forums, calendars or documents you consider
essential to your work.

[image: image0]

Left menu

The left menu allowing you :
- to move from one page to another: home page, people, forum, wiki, documents…
- to select a space from MY SPACES list.

[image: image1]

Documents

You can easily access your documents using your mobile device’s native
document viewers, for a more user-friendly experience. eXo Platform’s
document management capabilities synchronize user permissions across the
social intranet.

[image: image2]

Multiple accounts

As of version 2.5, eXo Mobile makes it easy to create, edit and use
multiple accounts in the app.

As before, the accounts are accessible on the initial login screen. One
difference though is that the Accounts tab appears only if you have
more than one accounts configured.

[image: image3]

Uploading files

Share a snapshot of a recent whiteboard session or a new product
prototype with your co-workers. Your images and files could be added to
your eXo Platform social intranet directly from your mobile device.

[image: image5]

[image: image4]

Security

By default eXo Mobile does not store your username and password,
ensuring that only you can connect to your account.

Files and cache stored on the device are placed in a private folder
within your app, only accessible to your app’s process.

Basic authentication is used so your credentials are not clearly visible
on the network. For improved security, configure HTTPS on your server
and use a https URL.

Familiar User Experience

Designed to leverage the unique features of iPhone, iPad and Android
devices, eXo Platform native mobile apps let you access and interact
with your social intranet in a familiar environment.

Introduction to eXo JCR

eXo JCR is an implementation of the Java Specification Request 170 [http://jcp.org/en/jsr/detail?id=170],
also known as the Content Repository for Java technology API. This chapter introduces
you to eXo JCR via 2 main topics:

	eXo JCR architecture

Introduction to 2 core factors of the eXo JCR architecture: eXo
Repository Service and Workspace Data Model.

	Compatibility levels

Details of 2 compliance levels and a set of optional features.

Why Use JCR?

Do you know how your website data are stored? Images can be stored in a
file system, and metadata are in some dedicated files, for example, in
.xml files, and text documents and PDFs are stored in different
folders with metadata in another repositories and in a proprietary
structure. How do you manage updating these data and access rights?
Where and how do you start if your leader asks you to manage different
versions of each document? The larger your website is, the more Content
Management
Systems [http://en.wikipedia.org/wiki/Content_management_system]
(CMSs) you need that allows tackling all these issues.

These CMS solutions are provided by different vendors and each vendor
provides its own API for interfacing the proprietary content repository.
The developers MUST deal with this and need to learn about the
vendor-specific API. If you intend to switch to a different vendor in
future, everything will be different, for example, you need a new
implementation or a new interface.

JCR provides a unique Java interface that allows you to interact with
both text and binary data, and to deal with any kind and amount of
metadata of your documents. JCR supplies methods for storing, updating,
deleting and retrieving your data without being dependent on the fact
that the data is stored in a RDBMS, in a file system or as an XML
document. The JCR interface is also defined as classes and methods for
searching, versioning, access control, locking and observation.

Furthermore, the export and import functionality is specified so that a
switch to a different vendor is always possible.

What does eXo JCR do?

eXo JCR fully complies with JSR
170 [http://jcp.org/en/jsr/detail?id=170]; therefore with eXo JCR you
can use a vendor-independent API. It means that you could switch to a
different vendor whenever. By using the standard, you can reduce your
lifecycle cost and long-term risk.

Note

eXo Platform offers not only JCR but also the complete solution for
both Enterprise Content Management and Web Content Management.

eXo JCR architecture

eXo Repository Service

eXo Repository Service is a JSR
170 [http://jcp.org/en/jsr/detail?id=170]-based standard service and
is a registered IoC (Inversion Of Control) component that can be
deployed in some eXo Containers (see Repository service
configuration
for more details). The relationships between components are shown in the
picture below:

[image: image0]

eXo Container: Some subclasses of ExoContainer (usually
StandaloneContainer or PortalContainer) that holds a reference
to Repository Service. See
Containers for
more details.

	Repository Service: Contain information about repositories. eXo
JCR is able to manage many Repositories.

	Repository: Implementation of javax.jcr.Repository. It holds
references to one or more Workspace(s).

	Workspace: Container of a single rooted tree of Items. (Note that
here it is not exactly the same as javax.jcr.Workspace as it is
not a Session object). See
Workspace for the workspace
configurations.

The JCR application usecase typically includes two initial steps:

	Obtaining Repository object by getting Repository Service from
the current eXo Container (eXo “native” way) or via JNDI lookup if
eXo repository is bound to the naming context using (see
Repository configuration
for more details).

	Creating javax.jcr.Session object that calls
Repository.login(..).

Workspace Data Model

The following diagram explains which components of eXo JCR
implementation are used in a data flow to perform operations specified
in JCR API.

[image: image1]

The Workspace Data Model can be split into 4 levels by the data
isolation and value from the JCR model point of view.

	eXo JCR core: Implements the JCR API interfaces, such as
Item, Node, Property. It contains JCR “logical” view on stored data.

	Session Level: Isolates the transient data viewable inside one
JCR Session and interacts with API level using eXo JCR internal API.

	Session Data Manager: Maintains the transient session data. With
data access/ modification/ validation logic, it contains Modified
Items Storage to hold the data changed between subsequent save()
calling and Session Items Cache.

	Transaction Data Manager: Maintains the session data between
save() and transaction commit/ rollback if the current session is
part of a transaction.

	Workspace Level: Operates for the particular workspace shared
data. It contains objects of each Workspace.

	Workspace Storage Data Manager: Maintains the workspace data,
including final validation, events firing, and caching.

	Workspace Data Container: Implements the physical data storage.
It allows different types of backend (such as RDB, FS files) to be
used as a storage for JCR data. With the main Data Container, other
storages for the persisted Property Values can be configured and
used.

	Indexer: Maintains the workspace data indexing for further
queries.

	Storage Level: Persistent storages for:

	JCR Data.

	Indexes (Apache Lucene).

	Values (for example, for BLOBs) if being different from the main
Data Container.

Compatibility levels

The Java Content Repository specification
JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] has been split
into two compliance levels and a set of optional features.

	Level 1 defines a read-only
repository.

	Level 2 defines methods for
writing content and bidirectional interaction with the repository.

Note

eXo JCR supports JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] level 1 and
level 2 and all optional features. The recent
JSR-283 [http://www.jcp.org/en/jsr/detail?id=283] is not yet supported.

Level 1

Level 1 includes the read-only functionality for very simple
repositories. It is useful to port an existing data repository and
convert it to a more advanced form step by step. JCR uses a well-known
Session abstraction to access the repository data (similar to the
sessions you have in OS, web, and more).

The features of level 1:

	Initiating a session calling the login method with the name of
desired workspace and client credentials. It involves some security
mechanisms (JAAS) to authenticate the client and in case the client
is authorized to use the data from a particular workspace, he can
retrieve the session with a workspace tied to it.

	Using the obtained session, the client can retrieve data (items) by
traversing the tree, directly accessing a particular item (requesting
path or UUID) or traversing the query result. So an application
developer can choose the “best” form depending on the content
structure and desired operation.

	Reading property values. All content of a repository is ultimately
accessed through properties and stored in property values of
predefined types (Boolean, Binary Data, Double, Long, String) and
special types Name, Reference, and Path. It is possible to read
property value without knowing its real name as a primary item.

	Export to XML. Repository supports two XML/JCR data model mappings:
system and document views. The system view provides complete XML
serialization without loss of information and is somewhat difficult
for a human to read. In contrast, the document view is well readable
but does not completely reflect the state of repository, it is used
for Xpath queries.

	Query facility with Xpath syntax. Xpath, originally developed for
XML, suits the JCR data model as well because the JCR data model is
very close to XML’s one. It is applied to JCR as it would be applied
to the document view of the serialized repository content, returning
a table of property names and content matching the query.

	Discovery of available node types. Every node should have only one
primary node type that defines names, types and other characteristics
of child nodes and properties. It also can have one or more mixin
data types that defines additional characteristics. Level 1 provides
methods for discovering available in repository node types and node
types of a concrete node.

	Transient namespace remapping. Item name can have prefix, delimited
by a single ‘:’ (colon) character that indicates the namespace of
this name. It is patterned after XML namespaces, prefix is mapped to
URI to minimize names collisions. In Level 1, a prefix can be
temporarily overridden by another prefix in the scope of a session.

[image: image2]

Level 2

JCR level 2 includes reading/writing content functionality, importing
other sources and managing content definition and structuring using
extensible node types.

In addition to the features of the Level 1, it also supports the
following major features:

	Adding, moving, copying and removing items inside workspace and
moving, copying and cloning items between workspaces. The client can
also compare the persisted state of an item with its unsaved states
and either save the new state or discard it.

	Modifying and writing value of properties. Property types are checked
and can be converted to the defined format.

	Importing XML document into the repository as a tree of nodes and
properties. If the XML document is an export of JCR system view, the
content of repository can be completely restored. If this is not the
case, the document is interpreted as a document view and the import
procedure builds a tree of JCR nodes and properties that matches the
tree structure of the XML document.

	Assigning node types to nodes. The primary node type is assigned when
adding a node. This can be done automatically based on the parent
node type definition and mixin node types.

	Persistent namespaces changes. Adding, changing and removing
namespaces stored in the namespace registry, excluding built-in
namespaces required by JCR.

[image: image3]

Optional features

On the top of Level 1 or Level 2, a number of optional features are
defined for a more advanced repository functionality. This includes
functions such as Versioning, (JTA) Transactions, Query using SQL,
Explicit Locking and Content Observation. eXo JCR supports all optional
features.

[image: image4]

Configuration

This chapter is divided into 2 main topics that allow you to follow
easily:

	Basic configuration
Instructions on basic configurations related to JCR, persister
and JDBC Data Container.

	Advanced configuration
Instructions on advanced configurations regarding to Search,
LockManager, QueryHandler, Cluster, RepositoryCreationService,
TransactionService and External Value Storages.

Basic configuration

	JCR configuration

Details of the JCR configuration, including Repository, Workspace,
Value storage plugin, Initializer, Cache, Query Handler and Lock
Manager.

	JCR configuration persister

Instructions on how to configure and customize the JCR persister.

	JDBC data container configuration

Information about configuration of JDBC data container.

	Frequently asked questions

Questions and their answers related to commonly basic configurations,
such as Lucene spellchecker, spellchecker results, Help application,
and more.

The JCR service configuration (for example, Repository service) that can
be found in jcr-configuration.xml looks like the following:

<component>
 <key>org.exoplatform.services.jcr.RepositoryService</key>
 <type>org.exoplatform.services.jcr.impl.RepositoryServiceImpl</type>
</component>
<component>
 <key>org.exoplatform.services.jcr.config.RepositoryServiceConfiguration</key>
 <type>org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationImpl</type>
 <init-params>
 <value-param>
 <name>conf-path</name>
 <description>JCR repositories configuration file</description>
 <value>war:/conf/jcr/repository-configuration.xml</value>
 </value-param>
 <value-param>
 <name>max-backup-files</name>
 <value>5</value>
 </value-param>
 <properties-param>
 <name>working-conf</name>
 <description>working-conf</description>
 <property name="persister-class-name" value="org.exoplatform.services.jcr.impl.config.JDBCConfigurationPersister" />
 <property name="source-name" value="${gatein.jcr.datasource.name}${container.name.suffix}"/>
 <property name="dialect" value="${gatein.jcr.datasource.dialect}"/>
 </properties-param>
 </init-params>
</component>

	conf-path: A path to a RepositoryService JCR Configuration.

	max-backup-files: The maximum number of backup files. This option
lets you specify the number of stored backups. Number of backups can
not exceed this value. File which will exceed the limit will replace
the oldest file.

	working-conf: This is optional. See JCR configuration persister
for more details. If there is not a working-conf, the persister
will be disabled.

The JCR Core implementation contains a persister which stores the
repository configuration in the related database using JDBC calls -
org.exoplatform.services.jcr.impl.config.JDBCConfigurationPersister.
The implementation will create and use table JCR_CONFIG in the provided
database. But the developer can implement his own persister for his
particular usecase.

JCR configuration

The repository-configuration.xml file is declared in
jcr-configuration.xml.

<external-component-plugins>
 <target-component>org.exoplatform.services.jcr.config.RepositoryServiceConfiguration</target-component>
 <component-plugin>
 <name>Sample RepositoryServiceConfiguration Plugin</name>
 <set-method>addConfig</set-method>
 <type>org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationPlugin</type>
 <init-params>
 <value-param>
 <name>conf-path</name>
 <description>JCR configuration file</description>
 <value>war:/conf/platform/repository-configuration.xml</value>
 </value-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Each repository-configuration.xml file contains configurations of
one repository, workspaces of the repository and configurations of
workspaces. This file can be found in various locations:

	platform-extension/WEB-INF/conf/platform

	wiki-extension/WEB-INF/wiki-extension/jcr

	portal/WEB-INF/conf/jcr

	social-extension/WEB-INF/conf/social-extension/jcr

	forum-extension/WEB-INF/ks-extension/jcr

	ecm-wcm-extension/WEB-INF/conf/dms-extension/jcr

	calendar-extension/WEB-INF/cs-extension/jcr

See the following DTD file to understand the expected format of the JCR
configuration.

<!ELEMENT repository-service (repositories)>
<!ATTLIST repository-service default-repository NMTOKEN #REQUIRED>
<!ELEMENT repositories (repository)>
<!ELEMENT repository (security-domain,access-control,session-max-age,authentication-policy,workspaces)>
<!ATTLIST repository
 default-workspace NMTOKEN #REQUIRED
 name NMTOKEN #REQUIRED
 system-workspace NMTOKEN #REQUIRED
>
<!ELEMENT security-domain (#PCDATA)>
<!ELEMENT access-control (#PCDATA)>
<!ELEMENT session-max-age (#PCDATA)>
<!ELEMENT authentication-policy (#PCDATA)>
<!ELEMENT workspaces (workspace+)>
<!ELEMENT workspace (container,initializer,cache,query-handler)>
<!ATTLIST workspace name NMTOKEN #REQUIRED>
<!ELEMENT container (properties,value-storages)>
<!ATTLIST container class NMTOKEN #REQUIRED>
<!ELEMENT value-storages (value-storage+)>
<!ELEMENT value-storage (properties,filters)>
<!ATTLIST value-storage class NMTOKEN #REQUIRED>
<!ELEMENT filters (filter+)>
<!ELEMENT filter EMPTY>
<!ATTLIST filter property-type NMTOKEN #REQUIRED>
<!ELEMENT initializer (properties)>
<!ATTLIST initializer class NMTOKEN #REQUIRED>
<!ELEMENT cache (properties)>
<!ATTLIST cache
 enabled NMTOKEN #REQUIRED
 class NMTOKEN #REQUIRED
>
<!ELEMENT query-handler (properties)>
<!ATTLIST query-handler class NMTOKEN #REQUIRED>
<!ELEMENT access-manager (properties)>
<!ATTLIST access-manager class NMTOKEN #REQUIRED>
<!ELEMENT lock-manager (time-out,persister)>
<!ELEMENT time-out (#PCDATA)>
<!ELEMENT persister (properties)>
<!ELEMENT properties (property+)>
<!ELEMENT property EMPTY>

JCR Service can use multiple Repositories and each repository can
have multiple Workspaces. Each workspace contains its
configurations, including:

	Value Storage plugin for data container

	Initializer

	Cache

	Query Handler

	Lock Manager

Repositories configuration parameters support human-readable formats of
values. They are all case-insensitive:

	Number formats: K, KB - kilobytes; M, MB - megabytes; G, GB -
gigabytes; T,TB - terabytes. For example: 100.5 - digit 100.5; 200k -
200.

	Time format ending: ms - milliseconds; m - minutes; h - hours; d -
days; w - weeks. For example: 500ms - 500 milliseconds; 20 - 20
seconds; 30m - 30 minutes; 12h - 12 hours; 5d - 5 days; 4w - 4 weeks.

Repository service configuration

In eXo Platform, RepositoryService is used to build repositories
storing the whole system data. Because the repository configuration is
quite complex, RepositoryService does not keep that configuration in
itself but delegates to RepositoryServiceConfiguration for storage
and then retrieves that configuration from
RepositoryServiceConfiguraion. Also, additional repository
configuration can be added using
RepositoryServiceConfigurationPlugin which in turn will be added in
to RepositoryServiceConfiguration.

	default-repository: The name of a default repository (one
returned by RepositoryService.getRepository()).

	repositories: The list of repositories.

Repository configuration

	name: The name of a repository.

	default-workspace: The name of a workspace obtained using
Session's login() or login(Credentials) methods (ones without
an explicit workspace name).

	system-workspace: The name of workspace where /jcr:system
node is placed.

	security-domain: The name of a security domain for JAAS
authentication.

	access-control: The name of an access control policy. There may
be 3 types:

	optional - ACL is created on demand (default).

	disable - No access control.

	mandatory - An ACL is created for each added node (not supported
yet).

	authentication-policy: The name of an authentication policy
class.

	workspaces: The list of workspaces.

	session-max-age: The time after which an idle session will be
removed (called logout). If session-max-age is not set up, idle
session will never be removed.

	lock-remover-max-threads: Number of threads that can serve
LockRemover tasks. The default value is “1”. A repository may have
many workspaces, each workspace have own LockManager. JCR supports
Locks with defined lifetime and these locks removed as it becomes
expired by LockRemovers. However, LockRemovers is not an
independent timer-thread, it is a task that executes each 30 seconds.
Such a task is served by ThreadPoolExecutor which may use various
threads.

eXo Platform comes with a pre-configured PortalContainer named “portal”.
The default Portal Container is started from portal.war which
consists of jcr-configuration.xml and
reposistory-configuration.xml. These configurations can be overriden
by those in the last extension loaded.

Note

See RepositoryCreationService
if you want to learn how to create repositories in runtime.

Workspace

Workspace configuration

	name: The name of a workspace.

	auto-init-root-nodetype: DEPRECATED. The node type for root node
initialization.

	container: Workspace data container (physical storage)
configuration.

	initializer: Workspace initializer configuration.

	cache: Workspace storage cache configuration.

	query-handler: Query handler configuration.

	auto-init-permissions: DEPRECATED .Default permissions of the
root node. It is defined as a set of semicolon-delimited permissions
containing a group of space-delimited identities (user, group, etc,
see Organization service documentation for details) and the type of
permission. For example, any read; :/admin read;:/admin
add_node; :/admin set_property;:/admin remove means that users
from group admin have all permissions and other users have only a
‘read’ permission.

Workspace data container configuration

	class: A workspace data container class name.

	value-storages: The list of value storage plugins.

	properties: The list of properties (name-value pairs) for the
concrete Workspace data container.

	trigger-events-for-descendants-on-rename

	Indicate if it is needed to trigger events for descendants on rename or not. This increases the performance of the “rename” operation. However, Observation will not be notified to have the default value as “true”.

	lazy-node-iterator-page-size

	Indicate the page size for lazy iterator. Particularly, this property defines the number of nodes which can be retrieved from storage per request. The default value is “100”.

	acl-bloomfilter-false-positive-probability

	ACL Bloom filters desired false positive probability. Range is between [0..1] and the default value is “0.1d”.

	acl-bloomfilter-elements-number

	Define the expected number of ACL-elements in the Bloom-filter. Its default value is 1000000.

Note

Bloom filters are not supported by all the cache implementations so far, only the implementation for infinispan supports it.

Workspaces configuration with system properties

You can configure values of properties defined in the
repository-configuration.xml file using System Properties. This is
quite helpful especially when you want to change the default
configuration of all the workspaces. For example, if you want to disable
the rdms indexing for all the workspace without this kind of
improvement, it is very error prone. For all components that can be
configured thanks to properties such as
``container, value-storage, workspace-initializer, cache, query-handler,

lock-manager, access-manager`` and persister; the logic, for

example, for the ‘container’ component and the ‘foo’ property
will be the following:

	If you have a system property called
exo.jcr.config.force.workspace.repository_collaboration.container.foo
that has been defined, its value will be used for the configuration
of the ‘repository’ repository and the ‘collaboration’
workspace.

	If you have a system property called
exo.jcr.config.force.repository.repository.container.foo that has
been defined, its value will be used for the configuration of all the
workspaces of the ‘repository’ repository except the workspaces
for which you configured the same property using system properties
defined in #1.

	If you have a system property called
exo.jcr.config.force.all.container.foo that has been defined, its
value will be used for the configuration of all the workspaces except
the workspaces for which you configured the same property using
system properties defined in #1 or #2.

	If you have a ‘foo’ property configured for the ‘repository’
repository and the ‘collaboration’ workspace and you have no
system properties corresponding to rule #1, #2 and #3, use this value
(current behavior).

	If the previous rules do not allow giving a value to the ‘foo’
property, you will then check the default value in the following
order:
exo.jcr.config.default.workspace.repository_collaboration.container.foo,
exo.jcr.config.default.repository.repository.container.foo,
exo.jcr.config.default.all.container.foo.

To turn on this feature, you need to define a component called
SystemParametersPersistenceConfigurator. A simple example:

<component>
 <key>org.exoplatform.services.jcr.config.SystemParametersPersistenceConfigurator</key>
 <type>org.exoplatform.services.jcr.config.SystemParametersPersistenceConfigurator</type>
 <init-params>
 <value-param>
 <name>file-path</name>
 <value>target/temp</value>
 </value-param>
 <values-param>
 <name>unmodifiable</name>
 <value>cache.test-parameter-I</value>
 </values-param>
 <values-param>
 <name>before-initialize</name>
 <value>value-storage.enabled</value>
 </values-param>
 </init-params>
 </component>

To make the configuration process easier, here you can define thee
parameters.

	file-path: this is a mandatory parameter which defines the
location of the file where all parameters configured on the previous
launch of AS are stored.

	unmodifiable: this defines the list of parameters which cannot be
modified using system properties.

	before-initialize: this defines the list of parameters which can
be set only for not initialized workspaces (for example, during the
first start of the AS).

	The parameter in the list have the following format: ``

	{component-name}.{parameter-name}``. This takes affect for every

workspace component called {component-name}.

Take into account that if this component is not defined in the
configuration, the workspace configuration overriding using system
properties mechanism will be disabled. In other words, if you do not
configure SystemParametersPersistenceConfigurator, the system
properties are ignored.

Workspace Data Container

Each Workspace of JCR has its own persistent storage to hold workspace’s
items data. eXo Content Repository can be configured so that it can use
one or more workspaces that are logical units of the repository content.
Physical data storage mechanism is configured using the container
mandatory element. The type of container is described in the class
attribute = the fully qualified name of the
org.exoplatform.services.jcr.storage.WorkspaceDataContainer subclass
like:

<container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr1"/>
 <property name="dialect" value="hsqldb"/>
 <property name="multi-db" value="true"/>
 <property name="max-buffer-size" value="200K"/>
 <property name="swap-directory" value="target/temp/swap/ws"/>
 <property name="lazy-node-iterator-page-size" value="50"/>
 <property name="acl-bloomfilter-false-positive-probability" value="0.1d"/>
 <property name="acl-bloomfilter-elements-number" value="1000000"/>
 <property name="check-sns-new-connection" value="false"/>
 <property name="batch-size" value="1000"/>
 </properties>

Specific parameters of Workspace Data Container

	max-buffer-size: A threshold in bytes, if a value size is
greater, then it will be spooled to a temporary file. The default
value is 200k.

	swap-directory: A location where the value will be spooled if no
value storage is configured but a max-buffer-size is exceeded.
The default value is the value of the “java.io.tmpdir” system
property.

	lazy-node-iterator-page-size: “Lazy” child nodes iterator
settings. Defines the size of page, the number of nodes that are
retrieved from persistent storage at once. The default value is 100.

	acl-bloomfilter-false-positive-probability: ACL Bloom-filter
settings. ACL Bloom-filter desired false positive probability. Range
[0..1]. The default value is 0.1d.

	acl-bloomfilter-elements-number: ACL Bloom-filter settings.
Expected number of ACL-elements in the Bloom-filter. The default
value is 1000000.

	check-sns-new-connection: Defines if you need to create new
connection for checking if an older same-name sibling exists. The
default value is “false”.

	trigger-events-for-descendants-on-rename: Indicates if each
descendant item must be included into the changes log in case of
renaming or not.

	If its value is set to “false”, the performance on the rename
operations will be increased in case of a big amount of nodes
under the source parent node. However, the performance will be
decreased in case of a small amount of sub-nodes.

	If its value is set to “true”, the performance will be better
in case of a small amount of sub-nodes and worse in case of a big
amount of sub-nodes.

	If this parameter is not set, the application will rely on the
max-descendant-nodes-allowed-on-move parameter to add the
descendant items to the changes log or not. If this parameter is
not set but the trigger-events-for-descendants-on-move parameter
is set, it will have the same value.

	trigger-events-for-descendants-on-move: Indicates if each
descendant item must be included into the changes log in case of
moving or not.

	If its value is set to “false”, the performance of moving
operations will be increased in case of a big amount of nodes
under the source parent node. However, the performance will be
decreased in case of a small amount of sub-nodes.

	If its value is set to “true”, the performance will be better in
case of a small amount of sub-nodes and worse in case of a big
amount of sub-nodes.

	If this parameter is not set, the application will rely on the
max-descendant-nodes-allowed-on-move parameter to add or not the
descendant items to the changes log.

	max-descendant-nodes-allowed-on-move: The maximum number of
descendant nodes is allowed to be included into the change log. Its
value will be then automatically disabled. This allows the best
performance regardless of the total amount of sub-nodes. The default
value is set to “100”. This parameter is used only if
trigger-events-for-descendants-on-move and
trigger-events-for-descendants-on-rename are not set.

Note

Bloom filters are not supported by all the cache implementations so
far only the implementation for infinispan supports it. They are
used to avoid read nodes that definitely do not have ACL.
acl-bloomfilter-false-positive-probability and
acl-bloomfilter-elements-number are used to configure such
filters. You can read
`here <http://en.wikipedia.org/wiki/Bloom_filter" >http://en.wikipedia.org/wiki/Bloom_filter>`__
for more information about Bloom filters.

Specific parameters of JDBC Workspace Data Container

eXo JCR has an RDB (JDBC) based production ready Workspace Data
Container which has the following specific parameters:

	source-name: JDBC data source name, registered in JDNI by
InitialContextInitializer. (sourceName prior v.1.9). This
property is mandatory.

	dialect: Database dialect, one of “”hsqldb”, “h2”, “mysql”,
“mysql-myisam”, “mysql-utf8”, “mysql-myisam-utf8”, “pgsql”,
“pgsql-scs”, “oracle”, “oracle-oci”, “mssql”, “sybase”, “derby”,
“db2”, “db2v8”. The default value is “auto”.

	multi-db: Enables multi-database containers if the value of this
parameter is “true”. Otherwise, it is configured for single-database
containers.

Note

This property is currently deprecated. It is advised to use db-structure-type instead.

	db-structure-type: Can be set to isolated, multi, single to set
corresponding configuration for data container. This property is
mandatory.

	db-tablename-suffix: If ``db-structure-type `` is set to
isolated, tables used by repository service have the following
format:

	JCR_I${db-tablename-suffix} for items.

	JCR_V${db-tablename-suffix} for values.

	JCR_R${db-tablename-suffix} for references.

db-tablename-suffix by default equals to the workspace name,
but can be set via configuration to any suitable.

	batch-size: The batch size. The default value is -1 (disabled).

	use-sequence-for-order-number: Indicates whether or not a
sequence must be used to manage the order number. The expected value
for this parameter is a boolean or “auto”. By default, it is set to
“auto” where the value of use-sequence will be set automatically
according to your database type.

	It is enabled in case of H2, HSQLDB, PGSQL and ORACLE.

	It is disabled in case of MSSQL, MYSQL and SYBASE.

Workspace Data Container may support external storages for
javax.jcr.Value (which can be the case for BLOB values for example)
using the value-storages optional element. Data Container will try
to read or write values using underlying value storage plugin if the
filter criteria (see below) match the current property.

<value-storages>
 <value-storage id="Storage #1" class="org.exoplatform.services.jcr.impl.storage.value.fs.TreeFileValueStorage">
 <properties>
 <property name="path" value="data/values"/>
 </properties>
 <filters>
 <filter property-type="Binary" min-value-size="1M"/><!-- Values large of 1Mbyte -->
 </filters>
.........
</value-storages>

Where:

	value-storage is the subclass of
org.exoplatform.services.jcr.storage.value.ValueStoragePlugin and
properties are optional plugin specific parameters.

	filters: Each file value storage can have the filter(s) for
incoming values. If there are several filter criteria, they all have
to match (AND-Condition).

A filter can match values by the property type (property-type),
property name (property-name), ancestor path (ancestor-path)
and/or the size of values stored (min-value-size, e.g. 1M, 4.2G, 100
(bytes)).

This code sample uses a filter with property-type and
min-value-size only. That means that the storage is only for
binary values whose size is greater than 1Mbyte.

It is recommended to store properties with large values in a file value
storage only.

Database’s dialects

PostgreSQL/PostgrePlus database

PostgreSQL/PostgrePlus’s dialect is set automatically. The dialect
depends on the version of database. If you change default value of
standard_conforming_strings parameter, you must configure one of the
following dialects manually:

	PgSQL ``: This dialect is used if ``standard_conforming_strings
is set to ‘off’ which is the default value for version before 9.1.

	PgSQL-SCS: This dialect is used if
standard_conforming_strings is set to ‘on’ which is the default
value for version after 9.1.

MySQL database

	mysql: This dialect is used if JCR tables with InnoDB engine (by
default) need to be created.

	mysql-utf8: This dialect is used if JCR tables with InnoDB engine
with UTF-8 encoding support need to be created.

	mysql-myisam: This dialect is used if JCR tables with MyISAM
engine need to be created.

	mysql-myisam-utf8: This dialect is used if JCR tables with MyISAM
engine with UTF-8 encoding support need to be created.

	mysql-ndb: This dialect is used if JCR tables with NDB engine
(mysql cluster) need to be created.

	mysql-ndb-utf8: This dialect is used if JCR tables with NDB
engine (mysql cluster) with UTF-8 encoding support need to be
created.

Note

Since MySQL NDB engine does not support foreign keys, which may lead
to improper item removal and as consequence to
InvalidItemStateException. In this case, you will need to use
consistency checker tool.

Value Storage plugin for data container

Note

	The value-storage element is optional. If you do not include it, the

	values will be stored as BLOBs inside the database.

See External Value Storages for
advanced configuration of the Value Storage plugin.

	value-storage: Optional Value Storage plugin definition.

Initializer

Note

This configuration is optional.

	class: Initializer implementation class.

	properties: The list of properties (name-value pairs) which are
supported.

	root-nodetype: The node type for root node initialization.

	root-permissions: Default permissions of the root node. It is
defined as a set of semicolon-delimited permissions containing a
group of space-delimited identities (for example, user and group. See
Organization Service Initializer for more
details), and the type of permission. For example any
read;:/admin read;:/admin add_node;:/admin
set_property;:/admin remove means that users from group admin
have all permissions and other users have only a ‘read’ permission.

	Configurable initializer adds a capability to override workspace
initial startup procedure (used for Clustering).It also replaces
workspace element parameters, including auto-init-root-nodetype
andauto-init-permissions, with root-nodetype and
root-permissions respectively.

Cache

	enabled: Define if workspace cache is enabled or not.

	class: Cache implementation class. The default value is
org.exoplatform.services.jcr.impl.dataflow.persistent.LinkedWorkspaceStorageCacheImpl.

	properties: The list of properties (name-value pairs) for
Workspace cache.

	max-size: Cache maximum size.

	live-time: Cached item live time.

Query Handler

The service configuration is located at repository-configuration.xml
in the web application. This file can be found in various locations.

For example:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="target/temp/index/repository/lab" />
 <property name="support-highlighting" value="true" />
 <property name="excerptprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.DefaultHTMLExcerpt" />
 </properties>
</query-handler>

	class: A Query Handler class name.

	properties: The list of properties (name-value pairs) for a Query
Handler (indexDir).

Note

See Query Handler configuration for advanced configuration of QueryHandler.

Lock Manager

The service configuration is located at repository-configuration.xml
in the web application. The file can be found in various locations.

For example:

<lock-manager>
 <time-out>15m</time-out><!-- 15min -->
 <persister class="org.exoplatform.services.jcr.impl.core.lock.FileSystemLockPersister">
 <properties>
 <property name="path" value="../temp/lock/gadgets" />
 </properties>
 </persister>
</lock-manager>

	time-out: Time after which the unused global lock will be
removed.

	persister: A class for storing lock information for future use.
For example, remove lock after jcr restart.

	path: A lock folder. Each workspace has its own one.

Note

	See Lock Manager configuration for advanced configuration of LockManager.

	Also see lock-remover-max-threads.

JCR configuration persister

JCR allows using persister to store configuration. In this section,
you will understand how to use and configure JCR persister.

On startup RepositoryServiceConfiguration component checks if a
configuration persister was configured. In that case, it uses the
provided ConfigurationPersister implementation class to instantiate
the persister object.

The configuration file is located in
portal/WEB-INF/conf/jcr/jcr-configuration.xml in the portal web
application.

Configuration with persister:

<component>
<key>org.exoplatform.services.jcr.config.RepositoryServiceConfiguration</key>
<type>org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationImpl</type>
<init-params>
 <value-param>
 <name>conf-path</name>
 <description>JCR configuration file</description>
 <value>war:/conf/jcr/repository-configuration.xml</value>
 </value-param>
 <properties-param>
 <name>working-conf</name>
 <description>working-conf</description>
 <property name="persister-class-name" value="org.exoplatform.services.jcr.impl.config.JDBCConfigurationPersister" />
 <property name="source-name" value="${gatein.jcr.datasource.name}${container.name.suffix}"/>
 <property name="dialect" value="${gatein.jcr.datasource.dialect}"/>
 </properties-param>
</init-params>
</component>

	persister-class-name - Class name of ConfigurationPersister
interface implementation.

	source-name: JNDI source name configured in
InitialContextInitializer component. Find more in
database configuration.

	dialect: SQL dialect which will be used with database
fromsource-name. Find more in
database configuration.

If you want to customize, you can implement ConfigurationPersister
interface as follows:

/**
 * Init persister.
 * Used by RepositoryServiceConfiguration on init.
 * @return - config data stream
 */
 void init(PropertiesParam params) throws RepositoryConfigurationException;

 /**
 * Read config data.
 * @return - config data stream
 */
 InputStream read() throws RepositoryConfigurationException;

 /**
 * Create table, write data.
 * @param confData - config data stream
 */
 void write(InputStream confData) throws RepositoryConfigurationException;

 /**
 * Tell if the config exists.
 * @return - flag
 */
 boolean hasConfig() throws RepositoryConfigurationException;

JDBC data container configuration

The current configuration of JCR uses Apache DBCP [http://commons.apache.org/dbcp/] connection pool.
(org.apache.commons.dbcp.BasicDataSourceFactory). It is possible to
set a big value for maxActive parameter in configuration.xml. That
means lots of TCP/IP ports from a client machine inside the pool are
used, such as JDBC driver. As the result, the data container can throw
exceptions like “Address already in use”. To solve this problem, you
have to configure the client’s machine networking software for using
shorter timeouts for opened TCP/IP ports.

Microsoft Windows has MaxUserPort, TcpTimedWaitDelay registry
keys in the node
HKEY_LOCAL_MACHINESYSTEMCurrentControlSetServicesTcpipParameters, by
default these keys are unset. Set each one with values as follows:

	“TcpTimedWaitDelay”=dword:0000001e, sets TIME_WAIT parameter to 30
seconds (default value is “240”).

	“MaxUserPort”=dword:00001b58, sets the maximum of open ports to 7000
or higher (default value is “5000”).

A sample registry file is below:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters]
"MaxUserPort"=dword:00001b58
"TcpTimedWaitDelay"=dword:0000001e

Isolated-database configuration

Isolated-database configuration allows configuring single database for
repository but separate database tables for each workspace.

	Configure the data container in the
org.exoplatform.services.naming.InitialContextInitializer service.
It is the JNDI context initializer, which registers (binds) naming
resources (DataSources) for data containers.

For example:

 <external-component-plugins>
 <target-component>org.exoplatform.services.naming.InitialContextInitializer</target-component>
 <component-plugin>
 <name>bind.datasource</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.naming.BindReferencePlugin</type>
 <init-params>
 <value-param>
 <name>bind-name</name>
 <value>jdbcjcr</value>
 </value-param>
 <value-param>
 <name>class-name</name>
 <value>javax.sql.DataSource</value>
 </value-param>
 <value-param>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </value-param>
 <properties-param>
 <name>ref-addresses</name>
 <description>ref-addresses</description>
 <property name="driverClassName" value="org.postgresql.Driver"/>
 <property name="url" value="jdbc:postgresql://exoua.dnsalias.net/portal"/>
 <property name="username" value="exoadmin"/>
 <property name="password" value="exo12321"/>
 </properties-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The database connection parameters are configured:

	driverClassName. For example: “org.hsqldb.jdbcDriver”,
“com.mysql.jdbc.Driver”, “org.postgresql.Driver”

	url. For example: “jdbc:hsqldb:file:target/temp/data/portal”,
“jdbc:mysql://exoua.dnsalias.net/jcr”

	username. For example: “sa”, “exoadmin”

	password. For example: “exo12321”

	Configure the repository service. Each workspace will be configured for
the same data container.

For example:

<workspaces>
 <workspace name="ws">
 <!-- for system storage -->
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="db-structure-type" value="isolated" />
 ...
 </properties>
 ...
 </container>
 ...
 </workspace>

 <workspace name="ws1">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="db-structure-type" value="isolated" />
 ...
 </properties>
 ...
 </container>
 ...
 </workspace>
</workspaces>

In this step, you have configured two workspaces which will be persisted
in different database tables.

Note

The repository configuration
parameters support human-readable formats of values. For example:
200K - 200 Kbytes, 30m - 30 minutes, and more.

Single-database configuration

It is simpler to configure a single-database data container. You have to
configure one naming resource.

For example (embedded mode for jdbcjcr data container):

<external-component-plugins>
<target-component>org.exoplatform.services.naming.InitialContextInitializer</target-component>
<component-plugin>
 <name>bind.datasource</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.naming.BindReferencePlugin</type>
 <init-params>
 <value-param>
 <name>bind-name</name>
 <value>jdbcjcr</value>
 </value-param>
 <value-param>
 <name>class-name</name>
 <value>javax.sql.DataSource</value>
 </value-param>
 <value-param>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </value-param>
 <properties-param>
 <name>ref-addresses</name>
 <description>ref-addresses</description>
 <property name="driverClassName" value="org.postgresql.Driver"/>
 <property name="url" value="jdbc:postgresql://exoua.dnsalias.net/portal"/>
 <property name="username" value="exoadmin"/>
 <property name="password" value="exo12321"/>
 <property name="maxActive" value="50"/>
 <property name="maxIdle" value="5"/>
 <property name="initialSize" value="5"/>
 </properties-param>
 </init-params>
</component-plugin>
</external-component-plugins>

And configure repository workspaces in repositories configuration with
this one database. Parameter “multi-db” must be switched off (set value
“false”).

For example: two workspaces ws - jdbcjcr, and ws1 - jdbcjcr:

<workspaces>
 <workspace name="ws" auto-init-root-nodetype="nt:unstructured">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr"/>
 <property name="dialect" value="pgsql"/>
 <property name="multi-db" value="false"/>
 <property name="max-buffer-size" value="200K"/>
 <property name="swap-directory" value="target/temp/swap/ws"/>
 </properties>
 </container>
 <cache enabled="true">
 <properties>
 <property name="max-size" value="10K"/>
 <property name="live-time" value="30m"/>
 </properties>
 </cache>
 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="../temp/index"/>
 </properties>
 </query-handler>
 <lock-manager>
 <time-out>15m</time-out>
 <persister class="org.exoplatform.services.jcr.impl.core.lock.FileSystemLockPersister">
 <properties>
 <property name="path" value="target/temp/lock/ws"/>
 </properties>
 </persister>
 </lock-manager>
 </workspace>
 <workspace name="ws1" auto-init-root-nodetype="nt:unstructured">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr"/>
 <property name="dialect" value="pgsql"/>
 <property name="multi-db" value="false"/>
 <property name="max-buffer-size" value="200K"/>
 <property name="swap-directory" value="target/temp/swap/ws1"/>
 </properties>
 </container>
 <cache enabled="true">
 <properties>
 <property name="max-size" value="10K"/>
 <property name="live-time" value="5m"/>
 </properties>
 </cache>
 <lock-manager>
 <time-out>15m</time-out>
 <persister class="org.exoplatform.services.jcr.impl.core.lock.FileSystemLockPersister">
 <properties>
 <property name="path" value="target/temp/lock/ws1"/>
 </properties>
 </persister>
 </lock-manager>
 </workspace>
</workspaces>

In this way, you have configured two workspaces which will be persisted
in one database (PostgreSQL).

Configuration without DataSource

Repository configuration without using the javax.sql.DataSource
bounded in JNDI.

This case may be usable if you have a dedicated JDBC driver
implementation with special features like XA transactions,
statements/connections pooling and so on:

	Remove the configuration in InitialContextInitializer for your
database and configure a new one directly in the workspace container.

	Remove parameter “source-name” and add next lines instead. Describe
your values for a JDBC driver, database URL and username.

Note

Be careful in the case JDBC driver should be implemented and provide
connection pooling. Connection pooling is very recommended for using
with JCR to prevent a database overload.

<workspace name="ws" auto-init-root-nodetype="nt:unstructured">
<container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
<properties>
 <property name="dialect" value="hsqldb"/>
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:file:target/temp/data/portal"/>
 <property name="username" value="su"/>
 <property name="password" value=""/>
......

Multi-database configuration

You need to configure each workspace in a repository. You may have each
one on different remote servers as far as you need.

First of all, configure the data containers in the
org.exoplatform.services.naming.InitialContextInitializer service.
It is the JNDI context initializer which registers (binds) naming
resources (DataSources) for data containers.

For example, the configuration for two data containers (jdbcjcr -
local HSQLDB, jdbcjcr1 - remote MySQL) is as follows :

<component>
 <key>org.exoplatform.services.naming.InitialContextInitializer</key>
 <type>org.exoplatform.services.naming.InitialContextInitializer</type>
 <component-plugins>
 <component-plugin>
 <name>bind.datasource</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.naming.BindReferencePlugin</type>
 <init-params>
 <value-param>
 <name>bind-name</name>
 <value>jdbcjcr</value>
 </value-param>
 <value-param>
 <name>class-name</name>
 <value>javax.sql.DataSource</value>
 </value-param>
 <value-param>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </value-param>
 <properties-param>
 <name>ref-addresses</name>
 <description>ref-addresses</description>
 <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
 <property name="url" value="jdbc:hsqldb:file:target/temp/data/portal"/>
 <property name="username" value="sa"/>
 <property name="password" value=""/>
 </properties-param>
 </init-params>
 </component-plugin>
 <component-plugin>
 <name>bind.datasource</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.naming.BindReferencePlugin</type>
 <init-params>
 <value-param>
 <name>bind-name</name>
 <value>jdbcjcr1</value>
 </value-param>
 <value-param>
 <name>class-name</name>
 <value>javax.sql.DataSource</value>
 </value-param>
 <value-param>
 <name>factory</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </value-param>
 <properties-param>
 <name>ref-addresses</name>
 <description>ref-addresses</description>
 <property name="driverClassName" value="com.mysql.jdbc.Driver"/>
 <property name="url" value="jdbc:mysql://exoua.dnsalias.net/jcr"/>
 <property name="username" value="exoadmin"/>
 <property name="password" value="exo12321"/>
 <property name="maxActive" value="50"/>
 <property name="maxIdle" value="5"/>
 <property name="initialSize" value="5"/>
 </properties-param>
 </init-params>
 </component-plugin>
 <component-plugins>
 <init-params>
 <value-param>
 <name>default-context-factory</name>
 <value>org.exoplatform.services.naming.SimpleContextFactory</value>
 </value-param>
 </init-params>
</component>

	driverClassName, for example. “org.hsqldb.jdbcDriver”,
“com.mysql.jdbc.Driver”, “org.postgresql.Driver”

	url, for example, “jdbc:hsqldb:file:target/temp/data/portal”,
“jdbc:mysql://exoua.dnsalias.net/jcr”

	username, for example, “sa”, “exoadmin”

	password, for example, “”, “exo12321”

	maxActive, for example, 50

	maxIdle, for example, 5

	initialSize, for example, 5

There are also some other connection pool configuration parameters
(org.apache.commons.dbcp.BasicDataSourceFactory) according to
Apache DBCP configuration. [http://jakarta.apache.org/commons/dbcp/configuration.html]

When the data container configuration is done, you can configure the
repository service. Each workspace will be configured for its own data
container.

For example (two workspaces ws and ws1:

<workspaces>
 <workspace name="ws" auto-init-root-nodetype="nt:unstructured">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr"/>
 <property name="dialect" value="hsqldb"/>
 <property name="multi-db" value="true"/>
 <property name="max-buffer-size" value="200K"/>
 <property name="swap-directory" value="target/temp/swap/ws"/>
 </properties>
 </container>
 <cache enabled="true">
 <properties>
 <property name="max-size" value="10K"/><!-- 10Kbytes -->
 <property name="live-time" value="30m"/><!-- 30 min -->
 </properties>
 </cache>
 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="target/temp/index"/>
 </properties>
 </query-handler>
 <lock-manager>
 <time-out>15m</time-out><!-- 15 min -->
 <persister class="org.exoplatform.services.jcr.impl.core.lock.FileSystemLockPersister">
 <properties>
 <property name="path" value="target/temp/lock/ws"/>
 </properties>
 </persister>
 </lock-manager>
 </workspace>
 <workspace name="ws1" auto-init-root-nodetype="nt:unstructured">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr1"/>
 <property name="dialect" value="mysql"/>
 <property name="multi-db" value="true"/>
 <property name="max-buffer-size" value="200K"/>
 <property name="swap-directory" value="target/temp/swap/ws1"/>
 </properties>
 </container>
 <cache enabled="true">
 <properties>
 <property name="max-size" value="10K"/>
 <property name="live-time" value="5m"/>
 </properties>
 </cache>
 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="target/temp/index"/>
 </properties>
 </query-handler>
 <lock-manager>
 <time-out>15m</time-out><!-- 15 min -->
 <persister class="org.exoplatform.services.jcr.impl.core.lock.FileSystemLockPersister">
 <properties>
 <property name="path" value="target/temp/lock/ws1"/>
 </properties>
 </persister>
 </lock-manager>
 </workspace>
</workspaces>

	source-name: A javax.sql.DataSource name configured in
InitialContextInitializer component.

	dialect: A database dialect, one of “hsqldb”, “mysql”,
“mysql-utf8”, “pgsql”, “pgsql-scs”, “oracle”, “oracle-oci”, “mssql”,
“sybase”, “derby”, “db2”, “db2v8” or “auto” for dialect
autodetection;

	multi-db: Enable multi-database container with this parameter
(set value “true”);

	max-buffer-size: A threshold (in bytes) after which a javax.jcr.
Value content will be swapped to a file in a temporary storage. For
example: swap for pending changes.

	swap-directory: A path in the file system used to swap the
pending changes.

In this way, you have configured two workspaces which will be persisted
in two different database (ws in HSQLDB, ws1 in MySQL).

Note

	The repository configuration

	parameters supports human-readable formats of values (for example:
200K - 200 Kbytes, 30m - 30 minutes, etc)

_JCR.ConfigurationFAQs:

Frequently asked questions

Q1: How to use Lucene spellchecker?

A: You simply do the following steps:

	Enable the Lucene spellchecker in the JCR QueryHandler configuration:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="spellchecker-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker$FiveSecondsRefreshInterval"/>
 ...
 </properties>
</query-handler>

	Execute query with rep:spellcheck function and word that is checked:

Query query = qm.createQuery("select rep:spellcheck() from nt:base where " +
 "jcr:path = '/' and spellcheck('word that is checked')", Query.SQL);
 RowIterator rows = query.execute().getRows();

	Fetch a result:

Row r = rows.nextRow();
 Value v = r.getValue("rep:spellcheck()");

If there is no any result, this means there is no suggestion, so word is
correct or spellcheckers dictionary does not contain any words like the
checked word.

Q2: How can I affect spellchecker results?

A: There are two parameters in the JCR QueryHandler configuration:

	Minimal distance between checked word and proposed suggestion:

	Search for more popular suggestions:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="spellchecker-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker$FiveSecondsRefreshInterval" />
 <property name="spellchecker-more-popular" value="false" />
 <property name="spellchecker-min-distance" value="0.55" />
 ...
 </properties>
</query-handler>

Minimal distance is counted as Levenshtein distance between checked word
and spellchecker suggestion.

The MorePopular parameter affects in the following way:

If “morePopular” is disabled:

	If the proposed word exists in the directory: no suggestion given.

	If the proposed word does not exist in the directory: propose the
closed word.

If “morePopular” is enabled:

	No matter word exists or not, checker will propose the closed word
that is more popular than the checked word.

Q3: Does Help application prohibit the use of closed sessions?

A: Products that use JCR, sometimes missuse it since they continue
to use a session that has been closed through a method call on a node, a
property or even the session itself. To prevent bad practices, we
propose three following modes:

	If the system property exo.jcr.prohibit.closed.session.usage has
been set to “true”, then a RepositoryException will be thrown any
time an application is trying to access to a closed session. In the
stack trace, you will be able to know the call stack that closes the
session.

	If the system property exo.jcr.prohibit.closed.session.usage has
not been set and the system property exo.product.developing has
been set to true, then a warning will be logged in the log file
with the full stack trace in order to help identifying the root cause
of the issue. In the stack trace, you will be able to know the call
stack that closes the session.

	If none of the previous system properties have been set, then we will
ignore that issue and let the application use the closed session as
before without doing anything to allow applications to migrate step
by step.

Q4: Does Help application allow the use of closed datasources?

A: Since the usage of closed session affects usage of closed
datasource, we propose three ways to resolve such kind of issues:

	If the system property exo.jcr.prohibit.closed.datasource.usage is
set to true (default value) then a SQLException will be thrown any
time an application will try to access to a closed datasource. In the
stack trace, you will be able to know the call stack that closes the
datasource.

	If the system property exo.jcr.prohibit.closed.datasource.usage is
set to “false” and the system property exo.product.developing is
set to “true”, then a warning will be logged in the log file with the
full stack trace in order to help identifying the root cause of the
issue. In the stack trace, you will be able to know the call stack
that closes the datasource.

	If the system property exo.jcr.prohibit.closed.datasource.usage is
set to “false” and the system property exo.product.developing is
set to “false” usage of closed datasource will be allowed and nothing
will be logged or thrown.

Q5: How to get the effective configuration at Runtime of all the
repositories?

A: The effective configuration of all the repositories and their
workspaces can be known thanks to the method getConfigurationXML().
This method is exposed through JMX at the
RepositoryServiceConfiguration level. In case of a PortalContainer,
the name of the related MBean will be of type
exo:portal=${portal-container-name},service=RepositoryServiceConfiguration.
This method will give you the effective configuration in XML format that
has been really interpreted by the JCR core. This could be helpful to
understand how your repositories/workspaces are configured especially if
you would like to overwrite the configuration for some reasons.

Advanced configuration

	Search configuration

Details of Search configuration, including XML parameters, global
search index and indexing tuning.

	Lock Manager configuration

Instructions on how to configure LockManager which is used to store
Lock objects.

	Query Handler configuration

Details of Indexing in clustered environment, query-handler
parameters, cluster-ready indexing strategies, Asynchronous
reindexing and Lucene tuning.

	Configuring JCR in cluster

Requirements related to environment and configuration, instructions
on how to configure Infinispan and stop a node properly in the
cluster environment.

	Repository Creation Service

Overview of dependencies and how RepositoryCreationService works,
details of its configuration and interface.

	Transaction Service

Details of existing TransactionService implementations and JBoss
TransactionService.

	External Value Storages

Details of Tree File Value Storage, Simple File Value Storage and
Content Addressable Value Storage support.

Search configuration

Search is an important function in JCR, so it is quite necessary for you
to know how to configure the JCR Search tool. Before going deeper into
the JCR Search tool, you need to learn about the .xml configuration
file and its parameters as follows.

XML Configuration

This is the JCR index configuration under the
repository-configuration.xml file which can be found in
various locations.

<repository-service default-repository="db1">
 <repositories>
 <repository name="db1" system-workspace="ws" default-workspace="ws">

 <workspaces>
 <workspace name="ws">

 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="${java.io.tmpdir}/temp/index/db1/ws" />
 <property name="synonymprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.PropertiesSynonymProvider" />
 <property name="synonymprovider-config-path" value="/synonyms.properties" />
 <property name="indexing-configuration-path" value="/indexing-configuration.xml" />
 <property name="query-class" value="org.exoplatform.services.jcr.impl.core.query.QueryImpl" />
 </properties>
 </query-handler>
 ...
 </workspace>
 </workspaces>
 </repository>
 </repositories>
</repository-service>

Configuration parameters

Followings are parameters of JCR index configuration:

Note

The maximum number of clauses permitted per BooleanQuery can be
changed via the org.apache.lucene.maxClauseCount System
property. The default value of this parameter is
Integer.MAX_VALUE.

Global search index

The global search index is configured in the above-mentioned
configuration file (repository-configuration.xml which can be found
in various locations) in
the query-handler tag.

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">

In fact, when using Lucene, you should always use the same analyzer for
indexing and for querying, otherwise the results are unpredictable. You
do not have to worry about this, JCR does this for you automatically. If
you do not like the StandardAnalyzer to be configured by default,
just replace it with your own.

If you do not have a handy QueryHandler, you can learn about how to
create a customized QueryHandler in the
Query Handler configuration section.

Customized search indexes and analyzers

By default JCR uses the Lucene standard Analyzer to index contents. This
analyzer uses some standard filters in the method that analyzes the
content:

public TokenStream tokenStream(String fieldName, Reader reader) {
 StandardTokenizer tokenStream = new StandardTokenizer(reader, replaceInvalidAcronym);
 tokenStream.setMaxTokenLength(maxTokenLength);
 TokenStream result = new StandardFilter(tokenStream);
 result = new LowerCaseFilter(result);
 result = new StopFilter(result, stopSet);
 return result;
 }

	The first one (StandardFilter) removes ‘s (as ‘s in “Peter’s”) from
the end of words and removes dots from acronyms.

	The second one (LowerCaseFilter) normalizes token text to lower case.

	The last one (StopFilter) removes stop words from a token stream. The
stop set is defined in the analyzer.

For specific cases, you may wish to use additional filters like
ISOLatin1AccentFilter, which replaces accented characters in the ISO
Latin 1 character set (ISO-8859-1) by their unaccented equivalents.

In order to use a different filter, you have to create a new analyzer,
and a new search index to use the analyzer. You put it in a jar, which
is deployed with your application.

Creating a filter

The ISOLatin1AccentFilter is not present in the current Lucene
version used by eXo. You can use the attached file. You can also create
your own filter with the relevant method as follows:

public final Token next(final Token reusableToken) throws java.io.IOException

This method defines how chars are read and used by the filter.

Creating an analyzer

The analyzer has to extend
org.apache.lucene.analysis.standard.StandardAnalyzer, and overload
the following method to put your own filters.

public TokenStream tokenStream(String fieldName, Reader reader)

You can have a glance at the example analyzer attached to this article.

Configuring Platform to use your analyzer

In repository-configuration.xml which can be found in
various locations, you have to add
the analyzer parameter to each query-handler config:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="analyzer" value="org.exoplatform.services.jcr.impl.core.MyAnalyzer"/>
 ...
 </properties>
</query-handler>

When you start eXo, your SearchIndex will start to index content with
the specified filters.

Creating a search index

You have had the analyzer, so you now need to write the SearchIndex,
which will use the analyzer. You have to extend
org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex. You
have to write the constructor to set the right analyzer and the
following method to return your analyzer.

public Analyzer getAnalyzer() {
 return MyAnalyzer;
}

You can see the attached SearchIndex.

Note

You can set Analyzer directly in your configuration. So, creating a
new SearchIndex only for new Analyzer is redundant.

Configuring Platform to use your SearchIndex

In repository-configuration.xml which can be found in
:ref:`various locations <repository-configuration-file-locations>, you have to
replace each:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">

with your own class

<query-handler class="mypackage.indexation.MySearchIndex">

Fulltext search

Property content indexing

Each property of a node (if it is indexable) is processed with Lucene
analyzer and stored in Lucene index. That is called indexing of a
property. After that, you can perform a fulltext search among these
indexed properties.

Lucene analyzers

The sense of analyzers is to transform all strings stored in the index
in a well-defined condition. The same analyzer(s) is/are used when
searching in order to adapt the query string to the index reality.

Therefore, performing the same query using different analyzers can
return different results.

Now, let’s see how the same string is transformed by different
analyzers.

	Analyzer

	Parsed

	org.apache.lucene.analysis.WhitespaceAnalyzer

	[The] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

	org.apache.lucene.analysis.SimpleAnalyzer

	[the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

	org.apache.lucene.analysis.StopAnalyzer

	[quick] [brown] [fox] [jumped] [over] [lazy] [dogs]

	org.apache.lucene.analysis.standard.StandardAnalyzer

	[quick] [brown] [fox] [jumped] [over] [lazy] [dogs]

	org.apache.lucene.analysis.snowball.SnowballAnalyzer

	[quick] [brown] [fox] [jump] [over] [lazi] [dog]

	org.apache.lucene.analysis.standard.StandardAnalyzer (configured without stop word - JCR default analyzer)

	[the] [quick] [brown] [fox] [jumped] [over] [the] [lazy] [dogs]

Table: “The quick brown fox jumped over the lazy dogs”

	Analyzer

	Parsed

	org.apache.lucene.analysis.WhitespaceAnalyzer

	[XY&Z] [Corporation] [-] [xyz@example.com]

	org.apache.lucene.analysis.SimpleAnalyzer

	[xy] [z] [corporation] [xyz] [example] [com]

	org.apache.lucene.analysis.StopAnalyzer

	[xy] [z] [corporation] [xyz] [example] [com]

	org.apache.lucene.analysis.standard.StandardAnalyzer

	[xy&z] [corporation] [xyz@example] [com]

	org.apache.lucene.analysis.snowball.SnowballAnalyzer

	[xy&z] [corpor] [xyz@exampl] [com]

	org.apache.lucene.analysis.standard.StandardAnalyzer (configured without stop word - jcr default analyzer)

	[xy&z] [corporation] [xyz@example] [com]

Table: “XY&Z Corporation - xyz@example.com”

Note

StandardAnalyzer is the default analyzer in JCR search engine but it does not use stop words.

You can assign your analyzer as described in Search Configuration.

How are different properties indexed?

Different properties are indexed in different ways that defines if it
can be searched like fulltext by property or not.

Only two property types are indexed as fulltext searcheable: STRING and
BINARY.

	Property Type

	Fulltext search by all properties

	Fulltext search by exact property

	STRING

	YES

	YES

	BINARY

	YES

	NO

Table: Fulltext search by different properties

For example, you have the jcr:data property (it is BINARY). It is
stored well, but you will never find any string with query like:

SELECT * FROM nt:resource WHERE CONTAINS(jcr:data, 'some string')

BINARY is not searchable by fulltext search on the exact property, but
the next query will return result if the node has searched data.

SELECT * FROM nt:resource WHERE CONTAINS(* , 'some string')

Fulltext search query examples

	Fulltext Search by Property

	Fulltext Search by All Properties.

	Find nt:file document by content of its child jcr:content node.

	Setting new analyzer and ignoring accent symbols.

Different analyzers in action

First of all, fill repository by nodes with mixin type ‘mix:title’ and
different values of jcr:description property.

	root

	document1 (mix:title) jcr:description = “The quick brown fox
jumped over the lazy dogs.”

	document2 (mix:title) jcr:description = “Brown fox live in
forest.”

	document3 (mix:title) jcr:description = “Fox is a nice animal.”

Let’s see analyzers effect closer. In the first case, the base JCR
settings is used, so as mentioned above, the string “The quick brown fox
jumped over the lazy dogs” will be transformed to set {[the] [quick]
[brown] [fox] [jumped] [over] [the] [lazy] [dogs] }

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(jcr:description, 'the')";
// create query
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

NodeIterator will return “document1”.

Now change the default analyzer to
org.apache.lucene.analysis.StopAnalyzer. Fill the repository (new
Analyzer must process nodes properties) and run the same query again. It
will return nothing, because stop words like “the” will be excluded from
parsed string set.

Indexing tuning

The default search index implementation in JCR allows you to control
which properties of a node are indexed. You also can define different
analyzers for different nodes.

The configuration parameter is called indexingConfiguration and its
default value is not set. This means all properties of a node are
indexed.

If you wish to configure the indexing behavior, you need to add a
parameter to the query-handler element in your configuration file.

<property name="indexing-configuration-path" value="/indexing_configuration.xml"/>

Index configuration path can indicate any file located on the file
system, in the jar or war files.

Note

You have to declare the namespace prefixes in the configuration
element that you are using throughout the .xml file.

Indexing rules

Node scope limit

To optimize the index size, you can limit the node scope so that only
certain properties of a node type are indexed.

With the below configuration, only properties named Text are indexed for
nodes of type nt:unstructured. This configuration also applies to all
nodes whose type extends from nt:unstructured.

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured">
 <property>Text</property>
 </index-rule>
</configuration>

Indexing boost value

It is also possible to configure a boost value for the nodes that match
the index rule. The default boost value is 1.0. Higher boost values (a
reasonable range is 1.0 - 5.0) will yield a higher score value and
appear as more relevant.

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured" boost="2.0">
 <property>Text</property>
 </index-rule>
</configuration>

If you do not wish to boost the complete node but only certain
properties, you can also provide a boost value for the listed
properties:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured">
 <property boost="3.0">Title</property>
 <property boost="1.5">Text</property>
 </index-rule>
</configuration>

Conditional index rules

You may also add a condition to the index rule and have multiple rules
with the same nodeType. The first index rule that matches will apply and
all remain ones are ignored:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured"
 boost="2.0"
 condition="@priority = 'high'">
 <property>Text</property>
 </index-rule>
 <index-rule nodeType="nt:unstructured">
 <property>Text</property>
 </index-rule>
</configuration>

In the above example, the first rule only applies if the nt:unstructured
node has a priority property with a value ‘high’. The condition syntax
supports only the equals operator and a string literal.

You may also refer properties in the condition that are not on the
current node:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured"
 boost="2.0"
 condition="ancestor::*/@priority = 'high'">
 <property>Text</property>
 </index-rule>
 <index-rule nodeType="nt:unstructured"
 boost="0.5"
 condition="parent::foo/@priority = 'low'">
 <property>Text</property>
 </index-rule>
 <index-rule nodeType="nt:unstructured"
 boost="1.5"
 condition="bar/@priority = 'medium'">
 <property>Text</property>
 </index-rule>
 <index-rule nodeType="nt:unstructured">
 <property>Text</property>
 </index-rule>
</configuration>

The indexing configuration also allows you to specify the type of a node
in the condition. However, please note that the type match must be
exact. It does not consider sub-types of the specified node type.

<?xml version="1.0"?>
<!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured"
 boost="2.0"
 condition="element(*, nt:unstructured)/@priority = 'high'">
 <property>Text</property>
 </index-rule>
</configuration>

Exclusion from the node scope index

All configured properties of each default value are fulltext indexed if
they are of type STRING and included in the node scope index. A node
scope search finds normally all nodes of an index. That is, the select
jcr:contains(., ‘foo’) returns all nodes that have a string property
containing the word ‘foo’. You can exclude explicitly a property from
the node scope index:

<?xml version="1.0"?>
<!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <index-rule nodeType="nt:unstructured">
 <property nodeScopeIndex="false">Text</property>
 </index-rule>
</configuration>

Nodes exclusion From Query Results

You have an ability to disable the indexing on nodes that are sub nodes
of excluded paths and/or that are of a given type. To get this, you
simply need to add some lines to the configuration file:

<?xml version="1.0"?>
<!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.3.dtd">
<configuration xmlns:exo="http://www.exoplatform.com/jcr/exo/1.0">
 <exclude nodeType="exo:hiddenable"/>
 <exclude path="/my[2]/path"/>
 <exclude nodeType="exo:foo" path="/my/other[2]/path"/>
</configuration>

This will exclude nodes of the “exo:hiddenable” type and nodes with
the “/my[2]/path” path from the results. As you see, you can also
combine exclusions.

Indexing aggregates

Sometimes it is useful to include the contents of descendant nodes into
a single node to easier search on content that is scattered across
multiple nodes.

JCR allows you to define indexed aggregates, basing on relative path
patterns and primary node types.

The following example creates an indexed aggregate on nt:file that
includes the content of the jcr:content node:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:jcr="http://www.jcp.org/jcr/1.0"
 xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <aggregate primaryType="nt:file">
 <include>jcr:content</include>
 </aggregate>
</configuration>

You can also restrict the included nodes to a certain type:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:jcr="http://www.jcp.org/jcr/1.0" xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <aggregate primaryType="nt:file">
 <include primaryType="nt:resource">jcr:content</include>
 </aggregate>
</configuration>

You may also use the asterisk (*) to match all child nodes:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:jcr="http://www.jcp.org/jcr/1.0" xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <aggregate primaryType="nt:file">
 <include primaryType="nt:resource">*</include>
 </aggregate>
</configuration>

If you wish to include nodes up to a certain depth below the current
node, you can add multiple include elements. For example, the nt:file
node may contain a complete XML document under jcr:content:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:jcr="http://www.jcp.org/jcr/1.0" xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <aggregate primaryType="nt:file">
 <include>*</include>
 <include>*/*</include>
 <include>*/*/*</include>
 </aggregate>
</configuration>

Property-level analyzers

Example

In this configuration section, you will define how a property has to be
analyzed. If there is an analyzer configuration for a property, this
analyzer is used for indexing and searching of this property. For
example:

<?xml version="1.0"?> <!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.0.dtd">
<configuration xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <analyzers>
 <analyzer class="org.apache.lucene.analysis.KeywordAnalyzer">
 <property>mytext</property>
 </analyzer>
 <analyzer class="org.apache.lucene.analysis.WhitespaceAnalyzer">
 <property>mytext2</property>
 </analyzer>
 </analyzers>
</configuration>

The configuration above means that the property “mytext” for the entire
workspace is indexed (and searched) with the Lucene KeywordAnalyzer, and
property “mytext2” with the WhitespaceAnalyzer. Using different
analyzers for different languages is particularly useful.

The WhitespaceAnalyzer tokenizes a property, the KeywordAnalyzer takes
the property as a whole.

Characteristics of node scope searches

When using analyzers, you may encounter an unexpected behavior when
searching within a property compared to searching within a node scope.
The reason is that the node scope always uses the global analyzer.

Let’s suppose that the “mytext” property contains the “testing my
analyzers” text and that you have not configured any analyzers for the
“mytext” property (and not changed the default analyzer in SearchIndex).

For example, if your query is as follows:

xpath = "//*[jcr:contains(mytext,'analyzer')]"

This xpath does not return a hit in the node with the property above and
default analyzers.

Also a search on the node scope

xpath = "//*[jcr:contains(.,'analyzer')]"

will not give a hit. Realize that you can only set specific analyzers on
a node property, and that the node scope indexing/analyzing is always
done with the globally defined analyzer in the SearchIndex element.

Now, if you change the analyzer used to index the “mytext” property
above to

<analyzer class="org.apache.lucene.analysis.Analyzer.GermanAnalyzer">
 <property>mytext</property>
</analyzer>

and you do the same search again, then for

xpath = "//*[jcr:contains(mytext,'analyzer')]"

you would get a hit because of the word stemming (analyzers - analyzer).

The other search,

xpath = "//*[jcr:contains(.,'analyzer')]"

still would not give a result, since the node scope is indexed with the
global analyzer, which in this case does not take into account any word
stemming.

In conclusion, be aware that when using analyzers for specific
properties, you might find a hit in a property for some search text, and
you do not find a hit with the same search text in the node scope of the
property.

Note

Both index rules and index aggregates influence how content is
indexed in JCR. If you change the configuration, the existing
content is not automatically re-indexed according to the new rules.
You, therefore, have to manually re-index the content when you
change the configuration.

Advanced features

JCR supports some advanced features, which are not specified in
JSR-170 [http://www.jcp.org/en/jsr/detail?id=170]:

	Get a text excerpt with highlighted words that matches the query:
ExcerptProvider.

	Search a term and its synonyms:
SynonymSearch.

	Search similar nodes:
SimilaritySearch.

	Check spelling of a full text query statement:
SpellChecker.

	Define index aggregates and rules: IndexingConfiguration.

Lock Manager configuration

What LockManager does?

In general, LockManager stores Lock objects, so it can give a Lock
object or can release it. Also, LockManager is responsible for removing
Locks that live too long. This parameter may be configured with
“time-out” property.

JCR provides one basic implementations of LockManager:

org.exoplatform.services.jcr.impl.core.lock.infinispan.ISPNCacheableLockManagerImpl

CacheableLockManagerImpl

ISPNCacheableLockManagerImpl stores Lock objects in Infinispan, so Locks
are replicable and affect on cluster, not only a single node. Also,
Infinispan has a JdbcStringBasedStore, so Locks will be stored to the
database.

You can enable LockManager by adding lock-manager-configuration to
workspace-configuration.

For example:

<workspace name="ws">
 ...
 <lock-manager class="org.exoplatform.services.jcr.impl.core.lock.infinispan.ISPNCacheableLockManagerImpl">
 <properties>
 <property name="time-out" value="15m" />
 ...
 </properties>
 </lock-manager>
 ...
</workspace>

Where time-out parameter represents interval to remove Expired
Locks. LockRemover separates threads, that periodically ask LockManager
to remove Locks that live so long.

	Configuration:

The configuration uses the template Infinispan configuration for all
LockManagers.

The lock template configuration:

	test-infinispan-lock.xml:

<infinispan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:infinispan:config:8.2"
 xsi:schemaLocation="urn:infinispan:config:8.2 http://www.infinispan.org/schemas/infinispan-config-8.2.xsd">
 <threads>
 <thread-factory name="infinispan-factory" group-name="infinispan" thread-name-pattern="%G %i" priority="5"/>

 <!-- listener-executor -->
 <blocking-bounded-queue-thread-pool name="infinispan-listener" thread-factory="infinispan-factory" core-threads="1"
 max-threads="5" queue-length="0" keepalive-time="0"/>
 </threads>

 <jgroups transport="org.infinispan.remoting.transport.jgroups.JGroupsTransport">
 <stack-file name="stack" path="${exo.jcr.cluster.jgroups.config}"/>
 </jgroups>

 <cache-container name="lock-manager" default-cache="default" listener-executor="infinispan-listener"
 statistics="true">
 <jmx duplicate-domains="true" domain="jcr.ispn.cache" mbean-server-lookup="org.infinispan.jmx.PlatformMBeanServerLookup"/>
 <transport cluster="${exo.cluster.partition.name}-jcr-lock" stack="stack" lock-timeout="240000"/>
 <replicated-cache-configuration mode="SYNC" name="default" statistics="true" remote-timeout="${exo.jcr.cluster.lock.sync.repltimeout:240000}">
 <locking isolation="READ_COMMITTED" concurrency-level="500" striping="false" write-skew="false"
 acquire-timeout="${exo.jcr.lock.lockacquisitiontimeout:180000}"/>
 <transaction transaction-manager-lookup="org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup" mode="NON_XA"/>
 <state-transfer enabled="${exo.jcr.cluster.lock.statetransfer.fetchinmemorystate:false}"
 timeout="${exo.jcr.cluster.lock.statetransfer.timeout:240000}"/>
 <eviction strategy="NONE" />
 <expiration lifespan="-1" />
 <persistence passivation="false">
 <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:8.0" shared="true" fetch-state="true"
 read-only="false" purge="false" preload="true">
 <string-keyed-table drop-on-exit="${infinispan-cl-cache.jdbc.table.drop}" create-on-start="${infinispan-cl-cache.jdbc.table.create}"
 prefix="${infinispan-cl-cache.jdbc.table.name}">
 <id-column name="${infinispan-cl-cache.jdbc.id.column}" type="${infinispan-cl-cache.jdbc.id.type}" />
 <data-column name="${infinispan-cl-cache.jdbc.data.column}" type="${infinispan-cl-cache.jdbc.data.type}" />
 <timestamp-column name="${infinispan-cl-cache.jdbc.timestamp.column}" type="${infinispan-cl-cache.jdbc.timestamp.type}" />
 </string-keyed-table>
 </string-keyed-jdbc-store>
 </persistence>
 </replicated-cache-configuration>
 </cache-container>
</infinispan>

Note

To prevent any consistency issue regarding the lock data,
please ensure that your cache loader is
org.infinispan.persistence.jdbc.stringbased.JdbcStringBasedStore
and that your database engine is transactional.

For more information about JdbcStringBasedStore, refer to this
link [https://docs.jboss.org/infinispan/8.2/apidocs/org/infinispan/persistence/jdbc/stringbased/JdbcStringBasedStore.html].

As you see, all configurable parameters are filled by templates and will
be replaced by LockManagers configuration parameters:

<lock-manager class="org.exoplatform.services.jcr.impl.core.lock.infinispan.ISPNCacheableLockManagerImpl">
 <properties>
 <property name="time-out" value="15m" />
 <property name="infinispan-configuration" value="conf/standalone/cluster/test-infinispan-lock.xml" />
 <property name="jgroups-configuration" value="udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR-cluster" />
 <property name="infinispan-cl-cache.jdbc.table.name" value="lk" />
 <property name="infinispan-cl-cache.jdbc.table.create" value="true" />
 <property name="infinispan-cl-cache.jdbc.table.drop" value="false" />
 <property name="infinispan-cl-cache.jdbc.id.column" value="id" />
 <property name="infinispan-cl-cache.jdbc.data.column" value="data" />
 <property name="infinispan-cl-cache.jdbc.timestamp.column" value="timestamp" />
 <property name="infinispan-cl-cache.jdbc.datasource" value="jdbcjcr" />
 <property name="infinispan-cl-cache.jdbc.dialect" value="${dialect}" />
 <property name="infinispan-cl-cache.jdbc.connectionFactory" value="org.exoplatform.services.jcr.infinispan.ManagedConnectionFactory" />
 </properties>
</lock-manager>

Configuration requirements:

	infinispan-cl-cache.jdbc.id.type,
infinispan-cl-cache.jdbc.data.typeand
infinispan-cl-cache.jdbc.timestamp.type are injected in the
Infinispan configuration into the property respectively
idColumnType, dataColumnType and timestampColumnType. You can
set those data types according to your database type or set it
as AUTO (or do not set at all) and data type will be detected
automatically.

	jgroups-configuration is moved to separate the configuration
file udp-mux.xml. In this case, the udp-mux.xml file is
a common JGroup configuration for all components (QueryHandler,
Cache, LockManager), but we can still create our own
configuration.

	our udp-mux.xml:

<config>
 <UDP
 singleton_name="JCR-cluster"
 mcast_addr="${jgroups.udp.mcast_addr:228.10.10.10}"
 mcast_port="${jgroups.udp.mcast_port:45588}"
 tos="8"
 ucast_recv_buf_size="20000000"
 ucast_send_buf_size="640000"
 mcast_recv_buf_size="25000000"
 mcast_send_buf_size="640000"
 loopback="false"
 discard_incompatible_packets="true"
 max_bundle_size="64000"
 max_bundle_timeout="30"
 use_incoming_packet_handler="true"
 ip_ttl="${jgroups.udp.ip_ttl:2}"
 enable_bundling="false"
 enable_diagnostics="true"
 thread_naming_pattern="cl"

 use_concurrent_stack="true"

 thread_pool.enabled="true"
 thread_pool.min_threads="2"
 thread_pool.max_threads="8"
 thread_pool.keep_alive_time="5000"
 thread_pool.queue_enabled="true"
 thread_pool.queue_max_size="1000"
 thread_pool.rejection_policy="discard"

 oob_thread_pool.enabled="true"
 oob_thread_pool.min_threads="1"
 oob_thread_pool.max_threads="8"
 oob_thread_pool.keep_alive_time="5000"
 oob_thread_pool.queue_enabled="false"
 oob_thread_pool.queue_max_size="100"
 oob_thread_pool.rejection_policy="Run" />

 <PING timeout="2000"<config xmlns="urn:org:jgroups"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/JGroups-3.2.xsd">
 <UDP
 singleton_name="JCR-cluster"
 mcast_port="${jgroups.udp.mcast_port:45588}"
 tos="8"
 ucast_recv_buf_size="20M"
 ucast_send_buf_size="640K"
 mcast_recv_buf_size="25M"
 mcast_send_buf_size="640K"
 loopback="true"
 max_bundle_size="64K"
 max_bundle_timeout="30"
 ip_ttl="${jgroups.udp.ip_ttl:8}"
 enable_bundling="true"
 enable_diagnostics="true"
 thread_naming_pattern="cl"

 timer_type="old"
 timer.min_threads="4"
 timer.max_threads="10"
 timer.keep_alive_time="3000"
 timer.queue_max_size="500"

 thread_pool.enabled="true"
 thread_pool.min_threads="2"
 thread_pool.max_threads="8"
 thread_pool.keep_alive_time="5000"
 thread_pool.queue_enabled="true"
 thread_pool.queue_max_size="10000"
 thread_pool.rejection_policy="discard"

 oob_thread_pool.enabled="true"
 oob_thread_pool.min_threads="1"
 oob_thread_pool.max_threads="8"
 oob_thread_pool.keep_alive_time="5000"
 oob_thread_pool.queue_enabled="false"
 oob_thread_pool.queue_max_size="100"
 oob_thread_pool.rejection_policy="Run"/>

 <PING timeout="2000"
 num_initial_members="20"/>
 <MERGE2 max_interval="30000"
 min_interval="10000"/>
 <FD_SOCK/>
 <FD_ALL/>
 <VERIFY_SUSPECT timeout="1500" />
 <BARRIER />
 <pbcast.NAKACK2 xmit_interval="1000"
 xmit_table_num_rows="100"
 xmit_table_msgs_per_row="2000"
 xmit_table_max_compaction_time="30000"
 max_msg_batch_size="500"
 use_mcast_xmit="false"
 discard_delivered_msgs="true"/>
 <UNICAST xmit_interval="2000"
 xmit_table_num_rows="100"
 xmit_table_msgs_per_row="2000"
 xmit_table_max_compaction_time="60000"
 conn_expiry_timeout="60000"
 max_msg_batch_size="500"/>
 <pbcast.STABLE stability_delay="1000" desired_avg_gossip="50000"
 max_bytes="4M"/>
 <pbcast.GMS print_local_addr="true" join_timeout="3000"
 view_bundling="true"/>
 <UFC max_credits="2M"
 min_threshold="0.4"/>
 <MFC max_credits="2M"
 min_threshold="0.4"/>
 <FRAG2 frag_size="60K" />
 <RSVP resend_interval="2000" timeout="10000"/>
 <pbcast.STATE_TRANSFER />
 <!-- pbcast.FLUSH /-->
</config>

	Data, id and timestamp type in different databases:

	DataBase name

	Data type

	Id type

	Timestamp type

	HSQL

	VARBINARY(65535)

	VARCHAR(512)

	BIGINT

	MySQL

	LONGBLOB

	VARCHAR(512)

	BIGINT

	ORACLE

	BLOB

	VARCHAR2(512)

	NUMBER(19, 0)

	PostgreSQL/Postgre
Plus

	bytea

	VARCHAR(512)

	BIGINT

	MSSQL

	VARBINARY(MAX)

	VARCHAR(512)

	BIGINT

Query Handler configuration

Before going deeper into theQueryHandler configuration, you might
learn about the query-handler parameters in the following sample
configuration:

<workspace name="ws">
 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="shareddir/index/db1/ws" />
 <property name="changesfilter-class" value="org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIndexChangesFilter" />
 <property name="infinispan-configuration" value="infinispan-indexer.xml" />
 <property name="jgroups-configuration" value="udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR-cluster" />
 <property name="max-volatile-time" value="60" />
 <property name="rdbms-reindexing" value="true" />
 <property name="reindexing-page-size" value="1000" />
 <property name="index-recovery-mode" value="from-coordinator" />
 <property name="index-recovery-filter" value="org.exoplatform.services.jcr.impl.core.query.lucene.DocNumberRecoveryFilter" />
 <property name="indexing-thread-pool-size" value="16" />
 </properties>
 </query-handler>
</workspace>

	Variable

	Description

	index-dir

	Path to index.

	changesfilter
-class

	The FQN of the class to use to indicate the policy to
use to manage the lucene indexes changes. This class
must extend
org.exoplatform.services.jcr.impl.core.query.IndexerChan
gesFilter.
This must be set in cluster environment to define the
clustering strategy to adopt. To use the Shared Indexes
Strategy, you can set it to
org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIn
dexChangesFilter.
If you prefer the Local Indexes Strategy, you can set it
to
org.exoplatform.services.jcr.impl.core.query.ispn.LocalI
ndexChangesFilter.

	infinispan-co
nfiguration

	The template of Infinispan configuration for all
query-handlers in repository (search, cache, locks).

	jgroups-confi
guration

	This is the path to JGroups configuration that should
not be anymore jgroups’ stack definitions but a normal
jgroups configuration format with the shared transport
configured by simply setting the jgroups property
singleton_name to a unique name (it must remain unique
from one portal container to another). This file is also
pre-bundled with templates and is recommended for use..

	infinispan-cl
uster-name

	The cluster name (must be unique).

	max-volatile-
time

	The maximum time to live for Volatile Index.

	rdbms-reindex
ing

	Indicates whether the rdbms re-indexing mechanism must
be used, the default value is true.

	reindexing-pa
ge-size

	The maximum amount of nodes which can be retrieved from
storage for re-indexing purpose, the default value is
100.

	index-recover
y-mode

	If the parameter has been set to from-indexing, so a
full indexing will be automatically launched, if the
parameter has been set to from-coordinator (default
behavior), the index will be retrieved from coordinator.

	index-recover
y-filter

	Defines implementation class or classes of
RecoveryFilters, the mechanism of index synchronization
for Local Index strategy.

	indexing-thre
ad-pool-size

	Defines the total amount of indexing threads.

	async-reindex
ing

	Controls the process of re-indexing on JCR’s startup. If
flag set, indexing will be launched asynchronously,
without blocking the JCR. Default is “false”.

	max-volatile-
size

	The maximum volatile index size in bytes until it is
written to disk. The default value is 1048576 (1MB).

	indexing-load
-batching-thres
hold-property

	The total amount of properties from which the
application will decide to get by name all the
properties of a node to be indexed using one single
query instead of one query per property. The query used
is the equivalent of getProperties(String namePattern).
The default value is -1 which actually disables this
feature. The expected value is an integer.

	indexing-load
-batching-thres
hold-node

	The total amount of nodes to index within the same
transaction from which the application will decide to
get all the properties of the remaining nodes to be
indexed using one single query instead of one query per
property and a query that will get the list of
properties. The query used is the equivalent of
getProperties(). The default value is -1 which actually
disables this feature. The expected value is an integer.

	indexing-load
-batching-thres
hold-dynamic

	In case indexing-load-batching-threshold-property
and/or indexing-load-batching-threshold-node have
been enabled, you could expect to see the thresholds to
be updated automatically in order to better match with
the current performances of the database used. This is
possible if you set this parameter to true knowing that
the default value is false and if you enable the JCR
statistics. Based on the JCR statistics, the application
will be able to set the best possible values for your
thresholds to get the best possible performances.

	indexing-load
-batching-thres
hold-ttl

	In case indexing-load-batching-threshold-property
and/or indexing-load-batching-threshold-node,
indexing-load-batching-threshold-dynamic and the JCR
statistics have been enabled, the application will
regularily update if needed the thresholds. This
parameter defines the periodicity of the task that will
update the thresholds. The default value is 5 minutes.
The expected value is a time expressed in milliseconds.

Note

	If you use postgreSQL and the parameter rdbms-reindexing is

set to true, the performances of the queries used while indexing
can be improved by setting the parameter enable_seqscan to
“off” or default_statistics_target to at least “50” in the
configuration of your database. Then you need to restart DB
server and make analyze of the JCR_SVALUE (or JCR_MVALUE)
table.

Indexing in clustered environment

JCR offers multiple indexing strategies for both standalone and
clustered environments using the advantages of running in a single JVM
or doing the best to use all resources available in cluster. JCR uses
Lucene library as underlying search and indexing engine, but it has
several limitations that greatly reduce possibilities and limits the
usage of cluster advantages. That is why JCR offers three strategies
that are suitable for its own usecases. They are standalone, clustered
with shared index, clustered with local indexes, and RSync-based. Each
strategy has its pros and cons.

Standalone index

Standalone strategy provides a stack of indexes to achieve greater
performance within single JVM.

[image: image0]

It combines in-memory buffer index directory with delayed file-system
flushing. This index is called “Volatile” and it is invoked in searches
also. Within some conditions volatile index is flushed to the persistent
storage (file system) as new index directory. This allows to achieve
great results for write operations.

Shared index

For some reasons having a multiple index copies on each instance can be
costly, the shared index can be used.

[image: image1]

This indexing strategy combines advantages of in-memory index along with
shared persistent index offering “near” real time search capabilities.
This means that newly added content is accessible via search
immediately. This strategy allows nodes to index data in their own
volatile (in-memory) indexes, but persistent indexes are managed by
single “coordinator” node only. Each cluster instance has a read access
for shared index to perform queries combining search results found in
own in-memory index also. Take into account that shared folder must be
configured in your system environment (for example: mounted NFS folder).
However, this strategy in some extremely rare cases may have a bit
different volatile indexes within cluster instances for a while. In a
few seconds they will be updated.

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="/mnt/nfs_drive/index/db1/ws" />
 <property name="changesfilter-class"
 value="org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIndexChangesFilter" />
 <property name="infinispan-configuration" value="infinispan-indexer.xml" />
 <property name="jgroups-configuration" value="udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR-cluster" />
 <property name="max-volatile-time" value="60" />
 <property name="rdbms-reindexing" value="true" />
 <property name="reindexing-page-size" value="1000" />
 <property name="index-recovery-mode" value="from-coordinator" />
 </properties>
</query-handler>

Local index

Clustered implementation with local indexes is built upon same strategy
with volatile in-memory index buffer along with delayed flushing on
persistent storage.

[image: image2]

As this implementation designed for clustered environment, it has
additional mechanisms for data delivery within cluster. Actual text
extraction jobs are done on the same node that does content operations
(for example: write operation). Prepared “documents” (Lucene term that
means block of data ready for indexing) are replicated within cluster
nodes and processed by local indexes. So each cluster instance has the
same index content. When new node joins the cluster, it has no initial
index, so it must be created. There are some supported ways of doing
this operation. The simplest is to simply copy the index manually but
this is not intended for use. If no initial index is found, JCR will use
the automated scenarios. They are controlled via configuration (see the
index-recovery-mode
parameter)
offering full re-indexing from database or copying from another cluster
node.

To use cluster-ready strategy based on local indexes, the following
configuration must be applied when each node has its own copy of index
on local file system. Indexing directory must point to any folder on
local file system and “changesfilter-class” must be set to
“org.exoplatform.services.jcr.impl.core.query.ispn.LocalIndexChangesFilter”.

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="/mnt/nfs_drive/index/db1/ws" />
 <property name="changesfilter-class"
 value="org.exoplatform.services.jcr.impl.core.query.ispn.LocalIndexChangesFilter" />
 <property name="infinispan-configuration" value="infinispan-indexer.xml" />
 <property name="jgroups-configuration" value="udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR-cluster" />
 <property name="max-volatile-time" value="60" />
 <property name="rdbms-reindexing" value="true" />
 <property name="reindexing-page-size" value="1000" />
 <property name="index-recovery-mode" value="from-coordinator" />
 </properties>
</query-handler>

Local index recovery filters

Common usecase for all cluster-ready applications is a hot joining and
leaving of processing units. All nodes that are joining cluster for the
first time or after some downtime must be in a synchronized state.

When having a deal with shared value storages, databases and indexes,
cluster nodes are synchronized anytime. However it is an issue when
local index strategy is used. If the new node joins cluster having no
index, it will be retrieved or recreated. Node can be restarted also and
thus index is not empty. Usually existing index is thought to be actual,
but can be outdated.

JCR offers a mechanism called RecoveryFilters that will automatically
retrieve index for the joining node on startup. This feature is a set of
filters that can be defined via QueryHandler configuration:

<property name="index-recovery-filter" value="org.exoplatform.services.jcr.impl.core.query.lucene.DocNumberRecoveryFilter" />

Filter number is not limited so they can be combined:

<property name="index-recovery-filter" value="org.exoplatform.services.jcr.impl.core.query.lucene.DocNumberRecoveryFilter" />
 <property name="index-recovery-filter" value="org.exoplatform.services.jcr.impl.core.query.lucene.SystemPropertyRecoveryFilter" />

If any one fires, the index is re-synchronized. Please take in account
that DocNumberRecoveryFilter is used in cases no filter is configured.
So, if resynchronization should be blocked or strictly required on
start, then ConfigurationPropertyRecoveryFilter can be used.

This feature uses the standard index recovery mode defined by previously
described parameter (can be “from-indexing” or “from-coordinator”
(default value)).

<property name="index-recovery-mode" value="from-coordinator"
 />

There are couple implementations of filters:

	org.exoplatform.services.jcr.impl.core.query.lucene.DummyRecoveryFilter:
Always return true, for cases when index must be force resynchronized
(recovered) each time;

	org.exoplatform.services.jcr.impl.core.query.lucene.SystemPropertyRecoveryFilter:
Return value of system property
“org.exoplatform.jcr.recoveryfilter.forcereindexing”. So index
recovery can be controlled from the top without changing
documentation using system properties;

	
	``

	org.exoplatform.services.jcr.impl.core.query.lucene.ConfigurationPropertyRecoveryFilter``:

Return value of QueryHandler configuration property
“index-recovery-filter-forcereindexing” so the index recovery can be
controlled from configuration separately for each workspace. For
example:

<property name="index-recovery-filter"
 value="org.exoplatform.services.jcr.impl.core.query.lucene.ConfigurationPropertyRecoveryFilter" />
 <property name="index-recovery-filter-forcereindexing" value="true" />

	org.exoplatform.services.jcr.impl.core.query.lucene.DocNumberRecoveryFilter:
Check number of documents in index on coordinator side and self-side
and return true if differs. Advantage of this filter comparing to
other is it will skip reindexing for workspaces where index was not
modified. For example, there are 10 repositories with 3 workspaces in
each one. Only one is really heavily used in cluster:
frontend/production. So using this filter will only re-index those
workspaces that are really changed without affecting other indexes
thus greatly reduce the startup time.

Local index recovery strategy

Recovery local index with copy from coodinator strategy requires much
time for re-synchronization index on startup of a new cluster node.
RSync copy strategy solves this problem along with local file system
advantages in term of speed.

Note

This strategy is used only for linux based Operating Systems.

By default, index recovery from coordinator uses “copy” strategy, a new
strategy to recover index as added using RSync copy strategy.

System requirement

Mandatory requirement for RSync copy strategy is an installed and
properly configured RSync utility. It must be accessible by calling
“rsync” without defining its full path.

In addition, each cluster node should have a running RSync Server
supporting the “rsync://” protocol. For more details, refer to the
used RSync Server documentations. RSync-Server configuration example
will be shown below.

There are also some additional limitations such as:

	Parent index folder for each workspace must be the same across the
cluster, for example,
“/var/data/index/<repository-name>/<workspace-name>”.

	RSync Server configuration.

	It must share some of index’s parent folders. For example,
“/var/data/index”. In other words, index is stored inside of
RSync Server shared folder. Configuration details are given below.

Configuration

Configure JCR-Index to use “rsync” strategy requires some additional
parameters comparing to RSync options.

Enable recovery index profile by adding
recovery-index-rsyncrecovery-index-rsync to EXO_PROFILES:

EXO_PROFILES="${EXO_PROFILES},recovery-index-rsync"

Configure RSync server parameters on exo.properties:

The folder name to replicate using RSync (value must be the same for all cluster nodes)
exo.jcr.index.rsync-entry-name=index
Value must equals to index folder absolute path that is configured in RSync-Server configuration (Path can be different for each cluster node)
exo.jcr.index.rsync-entry-path=/var/data/index
Rsync-Server port (port must be the same for all cluster nodes)
exo.jcr.index.rsync-port=8085
rsync-user and rsync-password They are optional and can be skipped
if RSync Server configured to accept anonymous identity.
exo.jcr.index.rsync-user=
exo.jcr.index.rsync-password=

The RSync-Server (rsyncd) can be configured like the following example:

 uid = nobody
gid = nobody
use chroot = no
port = 8085
log file = rsyncd.log
pid file = rsyncd.pid
[index]
path = /var/data/index
comment = indexes
read only = true
auth users = rsyncexo
secrets file= rsyncd.secrets

Configure rsync synchronized mode via the system property
exo.jcr.index.rsync-strategy:

	rsync-with-delete : force delete slave index folder at each startup
before retrieving indexes from coordinator (the master). It is the
default value.

	rsync : synchronize index data from coordinator without removing old
index.

 # Optional setting. Default value set to "rsync-with-delete". If you won't delete index folder at each slave startup, switch this to "rsync" value.
exo.jcr.index.rsync-strategy=rsync

Configure in the coordinator (the master) the index online/offline mode
during slave startup. This could be done via system property
exo.jcr.index.rsync-offline.Default value is set to true (i.e it
sets to offline the index of coordinator node).

exo.jcr.index.rsync-offline=true

RSync index

Note

This guide and the configuration below are documented as an
experimental example. It could not be ready used for production
environments.

Shared index is consistent and stable enough but slow, while local index
is fast but requires much time for re-synchronization when cluster node
is leaving a cluster for a small period of time. RSync-based index
solves this problem along with local file system advantages in term of
speed.

[image: image3]

This strategy is the same as shared index, but stores actual data on
local file system, instead of shared. Eventually triggering a
synchronization job, that works on the level of file blocks,
synchronizing only modified data. Diagram shows it in action. Only
single node in the cluster is responsible for modifying index files,
this is the Coordinator node. When data persisted, corresponding command
fired, starting synchronization jobs all over the cluster.

System requirements

Mandatory requirement for Rsync-based indexing strategy is an installed
and properly configured RSync utility. It must be accessible by calling
“rsync” without defining its full path. In addition, each cluster
node should have a running RSync Server supporting the “rsync://”
protocol. For more details, refer to RSync and operation system
documentations. Sample RSync Server configuration will be shown below.
There are some additional limitations also. Path for index for each
workspace must be the same across the cluster, for example,
“/var/data/index/<repository-name>/<workspace-name>”. Next
limitation is RSync Server configuration. It must share some of index’s
parent folders. For example, “/var/data/index”. In other words,
index is stored inside of RSync Server shared folder. Configuration
details are given below.

Configuration

Configuration has much in common with shared index, it just requires
some additional parameters for RSync options. If they are present, JCR
switches from shared to RSync-based index. Here is an example
configuration:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="index-dir" value="/var/data/index/repository1/production" />
 <property name="changesfilter-class"
 value="org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIndexChangesFilter" />
 <property name="infinispan-configuration" value="jar:/conf/portal/cluster/infinispan-indexer.xml" />
 <property name="jgroups-configuration" value="jar:/conf/portal/cluster/udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR-cluster" />
 <property name="max-volatile-time" value="60" />
 <property name="rsync-entry-name" value="index" />
 <property name="rsync-entry-path" value="/var/data/index" />
 <property name="rsync-port" value="8085" />
 <property name="rsync-user" value="rsyncexo" />
 <property name="rsync-password" value="exo" />
 </properties>
</query-handler>

Let’s start with authentication: “rsync-user” and
“rsync-password”. They are optional and can be skipped if RSync
Server is configured to accept anonymous identity. Before reviewing
other RSync index, options need to have a look at RSync Server
configuration. Sample RSync Server (rsyncd) Configuration is as follows:

uid = nobody
 gid = nobody
 use chroot = no
 port = 8085
 log file = rsyncd.log
 pid file = rsyncd.pid
 [index]
 path = /var/data/index
 comment = indexes
 read only = true
 auth users = rsyncexo
 secrets file= rsyncd.secrets

This sample configuration shares the “/var/data/index” folder as an
“index” entry. Those parameters should match corresponding
“rsync-entry-name”, “rsync-entry-path”, “rsync-port”
properties in JCR configuration.

Note

Make sure “index-dir” is a descendant folder of RSync shared
folder and those paths are the same on each cluster node.

Asynchronous re-indexing

Managing a big set of data using JCR in production environment sometimes
requires special operations with Indexes stored on File System. One of
those maintenance operations is a recreation of it or “re-indexing”.
There are various usecases when re-indexing is important to do. They
include hardware faults, hard restarts, data-corruption, migrations and
JCR updates that brings new features related to index. Usually, index
re-creation requested on server’s startup or in runtime.

Note

First of all, you can not launch Hot re-indexing via JMX if index is
already in offline mode. It means that index is currently invoked in
some operations, like re-indexing at startup, copying in cluster to
another node or whatever. Another important notice is Hot
Asynchronous Reindexing via JMX and “on startup” re-indexing are
completely different features. So you can not get the state of
startup re-indexing using the getHotReindexingState command in
JMX interface, but there are some common JMX operations:

	getIOMode: return the current index IO mode (READ_ONLY /
READ_WRITE), belongs to clustered configuration states.

	getState: return the current state (ONLINE / OFFLINE).

On startup indexing

Common usecase for updating and re-creating the index is to stop the
server and manually remove indexes for workspaces requiring it. When the
server is started, missing indexes are automatically recovered by
re-indexing.

JCR Supports direct RDBMS re-indexing, that is usually faster than
ordinary and can be configured via the rdbms-reindexing QueryHandler
parameter set to “true” (Refer to the Query-handler configuration
overview for more information).

Another new feature is the asynchronous indexing on startup. Usually the
startup is blocked until the process is finished. Block can take any
period of time, depending on amount of data persisted in repositories.
However, this can be resolved by using an asynchronous approach of
startup indexation. In brief, it performs all operations with index in
background, without blocking the repository. This is controlled by the
value of “async-reindexing” parameter in QueryHandler configuration.
With asynchronous indexation active, JCR starts with no active indexes
present. Queries on JCR still can be executed without exceptions but no
results will be returned until the index creation has been completed.
Checking index state is possible via QueryManagerImpl:

boolean online =
 ((QueryManagerImpl)Workspace.getQueryManager()).getQueryHandeler().isOnline();

“OFFLINE” state means that index is currently re-creating. When the
state has been changed, the corresponding log event is printed. From the
start of background task, index is switched to “OFFLINE” with the
following log event:

[INFO] Setting index OFFLINE (repository/production[system]).

When the process has been finished, two events are logged:

[INFO] Created initial index for 143018 nodes (repository/production[system]).
 [INFO] Setting index ONLINE (repository/production[system]).

Those two log lines indicate the end of process for workspace given in
brackets. Calling isOnline() as mentioned above will also return
true.

Hot asynchronous workspace reindexing via JMX

Some hard system faults, error during upgrades, migration issues and
some other factors may corrupt the index. Most likely end customers
would like the production systems to fix index issues in run-time
without delays and restarts. The current version of JCR supports “Hot
Asynchronous Workspace Reindexing” feature. It allows end-user (Service
Administrator) to launch the process in background without stopping or
blocking the whole application by using any JMX-compatible console (see
the “JConsole in action” screenshot below).

[image: image4]

The server can continue working as expected while index is re-created.
This depends on the flag “allow queries”, passed via JMX interface to
re-index operation invocation. If the flag is set, the application
continues working. However, there is one critical limitation that the
end-users must be aware. If the index is frozen while background task is
running, it means queries are performed on index present on the moment
of task startup and data written into repository after startup will not
be available through the search until the process finished. Data added
during re-indexation is also indexed, but will be available only when
task is done. Briefly, JCR makes the snapshot of indexes on asynch task
startup and uses it for searches. When the operation is finished, the
stale indexes are replaced with the new creation, including newly added
data. If the “``allow

queries``” flag is set to “false”, all queries will throw an

exception while the task is running. The current state can be acquired
using the following JMX operation:

	getHotReindexingState(): return information about latest invocation:
start time, if in progress or finish time if done.

Lucene tuning

As mentioned above, JCR Indexing is based on the Lucene indexing library
as underlying search engine. It uses Directories to store index and
manages access to index by Lock Factories.

By default, JCR implementation uses optimal combination of Directory
implementation and Lock Factory implementation. When running on OS
different from Windows, NIOFSDirectory implementation is used and
SimpleFSDirectory is used for Windows stations.

NativeFSLockFactory is an optimal solution for wide variety of cases
including clustered environment with NFS shared resources. However,
those defaults can be overridden with the help of system properties.
There are two properties that are responsible for changing default
behavior:

	“org.exoplatform.jcr.lucene.store.FSDirectoryLockFactoryClass”:
define implementation of abstract Lucene LockFactory class.

	“org.exoplatform.jcr.lucene.FSDirectory.class”: set implementation
class for FSDirectory instances.

Note

Refer to Lucene documentation for more information, butmake sure
that you know what you are changing. JCR allows end users to
change implementation classes of Lucene internals, but does not
guarantee its stability and functionality.

Index optimization

From time to time, the Lucene index needs to be optimized. The process
is essentially a defragmentation. Until an optimization is triggered,
Lucene only marks deleted documents, no physical deletions are applied.
During the optimization process, the deletions will be applied.
Optimizing the Lucene index speeds up searches but has no effect on the
indexation (update) performance. First of all, ensure that repository is
suspended to avoid any possible inconsistency. It is recommended to
schedule optimization. Also, checking for pending deletions is
supported. If it is so, it is a first signal to index optimization. All
operation are available via JMX:

[image: image5]

Configuring JCR in cluster

Environment requirements

	Any RDBMS which supports cluster environment like MySQL, PostgreSQL,
MS SQL or Oracle. It is necessary to notice that HSQLDB is not in
this list.

	Shared storage. The simplest thing is to use shared FS like NFS or
SMB mounted in operation system, but they are rather slow. The best
thing is to use SAN (Storage Area Network).

	Fast network between JCR nodes.

	Every node of cluster MUST have the same mounted Network File System
with the read and write permissions on it.

“/mnt/tornado” - path to the mounted Network File System (all cluster
nodes must use the same NFS).

	Every node of cluster MUST use the same database.

	The same clusters on different nodes MUST have the same names (for
example, if Indexer cluster in workspace production on the first node
has the name “production_indexer_cluster”, then indexer clusters in
workspace production on all other nodes MUST have the same name
“production_indexer_cluster”).

	JBossTS Transaction Service and Infinispan Transaction Manager are
used. This can be checked via exo-configuration.xml as bellow:

<component>
<key>org.infinispan.transaction.lookup.TransactionManagerLookup</key>
<type>org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup</type>
</component>

<component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.infinispan.JBossTransactionsService</type>
 <init-params>
 <value-param>
 <name>timeout</name>
 <value>3000</value>
 </value-param>
 </init-params>
</component>

Configuration requirements

Configuration of every workspace in repository must contain the
following parts:

	Value Storage configuration:

<value-storages>
 <value-storage id="system" class="org.exoplatform.services.jcr.impl.storage.value.fs.TreeFileValueStorage">
 <properties>
 <property name="path" value="/mnt/tornado/temp/values/production" />
 </properties>
 <filters>
 <filter property-type="Binary" />
 </filters>
 </value-storage>
</value-storages>

	Path: Path within NFS where ValueStorage will hold its data.

	Cache configuration:

<cache enabled="true" class="org.exoplatform.services.jcr.impl.dataflow.persistent.infinispan.ISPNCacheWorkspaceStorageCache">
 <properties>
 <property name="infinispan-configuration" value="conf/standalone/cluster/test-infinispan-config.xml" />
 <property name="jgroups-configuration" value="jar:/conf/portal/udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR_Cluster_cache" />
 </properties>
</cache>

	infinispan-configuration: Path to Infinispan configuration for
data storage.

	jgroups-configuration: Path to JGroups configuration that
should not be anymore jgroups’ stack definitions but a normal
jgroups configuration format with the shared transport configured
by simply setting the singleton_name jgroups property to a
unique name (it must remain unique from one portal container to
another). This file is also pre-bundled with templates and is
recommended for use.

	infinispan-cluster-name: Infinispan data storage cluster name.
It should be different for each workspace and each workspace
component. For example:
`` <repository_name>-<ws_name>-<component(cache|lock|index)>``.

	Indexer configuration:

You must replace or add to the <query-handler> block, the
changesfilter-class parameter equals with:

<property name="changesfilter-class" value="org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIndexChangesFilter" />

Then, add the Infinispan Cache-oriented configuration. The
configuration should look like:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="changesfilter-class" value="org.exoplatform.services.jcr.impl.core.query.ispn.ISPNIndexChangesFilter" />
 <property name="index-dir" value="/mnt/tornado/temp/jcrlucenedb/production" />
 <property name="infinispan-configuration" value="conf/standalone/cluster/test-infinispan-indexer.xml" />
 <property name="jgroups-configuration" value="jar:/conf/portal/udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR_Cluster_indexer" />
 </properties>
</query-handler>

	index-dir: Path within NFS where ValueStorage will store its
data.

	infinispan-configuration: Path to Infinispan configuration for
indexer.

	jgroups-configuration: Path to the JGroups configuration.

	infinispan-cluster-name: Infinispan indexer cluster name.

These properties have the same meaning and restrictions as in the
previous code block.

	Lock Manager configuration:

This may be the hardest element to configure, because you have to
define access to the database where locks will be stored. Replace the
existing lock-manager with configuration shown below:

<lock-manager class="org.exoplatform.services.jcr.impl.core.lock.infinispan.ISPNCacheableLockManagerImpl">
 <properties>
 <property name="time-out" value="15m" />
 <property name="infinispan-configuration" value="conf/standalone/cluster/test-infinispan-lock.xml" />
 <property name="jgroups-configuration" value="jar:/conf/portal/udp-mux.xml" />
 <property name="infinispan-cluster-name" value="JCR_Cluster_locks" />
 <property name="infinispan-cl-cache.jdbc.table.name" value="lk"/>
 <property name="infinispan-cl-cache.jdbc.table.create" value="true"/>
 <property name="infinispan-cl-cache.jdbc.table.drop" value="false"/>
 <property name="infinispan-cl-cache.jdbc.id.column" value="id"/>
 <property name="infinispan-cl-cache.jdbc.data.column" value="data"/>
 <property name="infinispan-cl-cache.jdbc.timestamp.column" value="timestamp"/>
 <property name="infinispan-cl-cache.jdbc.datasource" value="jdbcjcr"/>
 <property name="infinispan-cl-cache.jdbc.dialect" value="${dialect}"/>
 <property name="infinispan-cl-cache.jdbc.connectionFactory" value="org.exoplatform.services.jcr.infinispan.ManagedConnectionFactory"/>
 </properties>
</lock-manager>

	infinispan-configuration: Path to Infinispan configuration for
lock manager.

	jgroups-configuration: Path to the JGroups configuration.

	infinispan-cluster-name: Infinispan locks cluster name.

	infinispan-cl-cache.jdbc.table.name: Name of the Database
table where lock’s data will be stored.

	infinispan-cl-cache.jdbc.table.create: Whether to create it or
not (the previous defined database). Usually set to “true”.

	infinispan-cl-cache.jdbc.table.drop: Whether to drop on a
start or not. Usually set to”false”.

	infinispan-cl-cache.jdbc.id.column: Name of one more column.
If you are not sure how to use, follow the example above (if much
interested, please refer to exojcr
documentation [http://docs.jboss.org/exojcr/1.16.4-GA/developer/en-US/html/]).

	infinispan-cl-cache.jdbc.data.column: Name of one more column.
If you are not sure how to use, follow the example above (if much
interested, please refer to exojcr
documentation [http://docs.jboss.org/exojcr/1.16.4-GA/developer/en-US/html/]).

	infinispan-cl-cache.jdbc.timestamp.column: Name of one more
column. If you are not sure how to use, follow the example above
if you are not sure (if much interested, please refer to exojcr
documentation [http://docs.jboss.org/exojcr/1.16.4-GA/developer/en-US/html/]).

	infinispan-cl-cache.jdbc.datasource: Name of the datasource
configured in Container datasource, where you want to store locks.
The best idea is to use the same as for workspace.

Few properties are the same as in the previous components, but here
you can see some strange infinispan-cl-cache.jdbc.* properties.
They define access parameters for the database where the lock is
persisted.

Infinispan configuration

This section will show you how to use and configure Infinispan in the
clustered environment. Also, you will know how to use a template-based
configuration offered by eXo JCR for Infinispan instances.

For indexer, lock manager and data container

Each mentioned components uses instances of Infinispan product for
caching in clustered environment. So every element has its own transport
and has to be configured in a proper way.

eXo JCR offers a template-based configuration for Infinispan instances.
You can have one template for Lock Manager, one for Indexer and one for
data container and use them in all the workspaces, defining the map of
substitution parameters in a main configuration file. Just simply define
${infinispan-<parameter name>} inside xml-template and list correct
value in JCR configuration file just below “infinispan-configuration”,
as shown:

 <jgroups transport="org.infinispan.remoting.transport.jgroups.JGroupsTransport">
 <stack-file name="stack" path="${jgroups-configuration}"/>
</jgroups>

and JCR configuration file:

...
<property name="infinispan-configuration" value="conf/standalone/cluster/test-infinispan-lock.xml" />
<property name="jgroups-configuration" value="udp-mux.xml" />
...

JGroups configuration

JGroups is used by Infinispan for network communications and transport
in a clustered environment. If the property jgroups-configuration is
defined in component configuration, it will be injected into the
configuration of the Infinispan instance on startup.

<property name="jgroups-configuration" value="your/path/to/modified-udp.xml" />

To prevent having to deal with several different cluster name and to
reduce the network overheads, it is now highly recommended to use the
JGroups shared transport, to do so simply set the property
singleton_name of your JGroups configuration to a unique name as
below:

<config xmlns="urn:org:jgroups"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:org:jgroups http://www.jgroups.org/schema/JGroups-3.2.xsd">
 <UDP
 singleton_name="JCR-cluster"
...

Shipped Infinispan configuration templates

eXo JCR implementation is shipped with ready-to-use Infinispan
configuration templates for JCR’s components. They are located in the
application package inside the folder /conf/portal/cluster.

Data container template

Data container template is cache-config.xml:

<infinispan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:infinispan:config:8.2"
 xsi:schemaLocation="urn:infinispan:config:8.2 http://www.infinispan.org/schemas/infinispan-config-8.2.xsd">
 <threads>
 <thread-factory name="infinispan-factory" group-name="infinispan" thread-name-pattern="%G %i" priority="5"/>

 <!-- listener-executor -->
 <blocking-bounded-queue-thread-pool name="infinispan-listener" thread-factory="infinispan-factory"
 core-threads="1" max-threads="5" queue-length="0" keepalive-time="0"/>
 <!-- expiration-executor -->
 <scheduled-thread-pool name="infinispan-expiration" thread-factory="infinispan-factory" />
 </threads>

 <jgroups transport="org.infinispan.remoting.transport.jgroups.JGroupsTransport">
 <stack-file name="stack" path="${exo.jcr.cluster.jgroups.config}"/>
 </jgroups>

 <cache-container name="jcr" default-cache="default" expiration-executor="infinispan-expiration" listener-executor="infinispan-listener"
 statistics="true">
 <jmx duplicate-domains="true" domain="jcr.ispn.cache" mbean-server-lookup="org.infinispan.jmx.PlatformMBeanServerLookup"/>
 <transport cluster="${exo.cluster.partition.name}-jcr" stack="stack" lock-timeout="240000"/>
 <replicated-cache-configuration mode="SYNC" name="default" statistics="true" remote-timeout="${exo.jcr.cluster.workspace.sync.repltimeout:240000}">
 <locking isolation="READ_COMMITTED" concurrency-level="500" striping="false" write-skew="false"
 acquire-timeout="${exo.jcr.workspace.lockacquisitiontimeout:180000}"/>
 <transaction locking="PESSIMISTIC" mode="NON_XA"
 transaction-manager-lookup="org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup" />
 <eviction size="${exo.jcr.workspace.eviction.maxEntries:1000000}" strategy="LIRS" thread-policy="DEFAULT"/>
 <state-transfer enabled="${exo.jcr.cluster.workspace.statetransfer.fetchinmemorystate:false}"
 timeout="${exo.jcr.cluster.workspace.statetransfer.timeout:240000}" />
 <expiration interval="${exo.jcr.workspace.expiration.wakeupinterval:60000}"/>
 </replicated-cache-configuration>
 </cache-container>
</infinispan>

	Variable

	Description

	exo.jcr.cluster.jgroups.c
onfig

	This is the path to JGroups configuration
that should not be anymore jgroups’ stack
definitions but a normal jgroups
configuration format with the shared
transport configured by simply setting the
jgroups property singleton_name to a unique
name (it must remain unique from one portal
container to another). This file is also
pre-bundled with templates and is recommended
for use.

	{exo.cluster.partition.na
me}-jcr

	This defines the name of the cluster. Needs
to be the same for all nodes in a cluster in
order to find each other.

Lock manager template

It’s template name is lock-config.xml:

<infinispan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:infinispan:config:8.2"
 xsi:schemaLocation="urn:infinispan:config:8.2 http://www.infinispan.org/schemas/infinispan-config-8.2.xsd">
 <threads>
 <thread-factory name="infinispan-factory" group-name="infinispan" thread-name-pattern="%G %i" priority="5"/>

 <!-- listener-executor -->
 <blocking-bounded-queue-thread-pool name="infinispan-listener" thread-factory="infinispan-factory" core-threads="1"
 max-threads="5" queue-length="0" keepalive-time="0"/>
 </threads>

 <jgroups transport="org.infinispan.remoting.transport.jgroups.JGroupsTransport">
 <stack-file name="stack" path="${exo.jcr.cluster.jgroups.config}"/>
 </jgroups>

 <cache-container name="lock-manager" default-cache="default" listener-executor="infinispan-listener"
 statistics="true">
 <jmx duplicate-domains="true" domain="jcr.ispn.cache" mbean-server-lookup="org.infinispan.jmx.PlatformMBeanServerLookup"/>
 <transport cluster="${exo.cluster.partition.name}-jcr-lock" stack="stack" lock-timeout="240000"/>
 <replicated-cache-configuration mode="SYNC" name="default" statistics="true" remote-timeout="${exo.jcr.cluster.lock.sync.repltimeout:240000}">
 <locking isolation="READ_COMMITTED" concurrency-level="500" striping="false" write-skew="false"
 acquire-timeout="${exo.jcr.lock.lockacquisitiontimeout:180000}"/>
 <transaction transaction-manager-lookup="org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup" mode="NON_XA"/>
 <state-transfer enabled="${exo.jcr.cluster.lock.statetransfer.fetchinmemorystate:false}"
 timeout="${exo.jcr.cluster.lock.statetransfer.timeout:240000}"/>
 <eviction strategy="NONE" />
 <expiration lifespan="-1" />
 <persistence passivation="false">
 <string-keyed-jdbc-store xmlns="urn:infinispan:config:store:jdbc:8.0" shared="true" fetch-state="true"
 read-only="false" purge="false" preload="true">
 <string-keyed-table drop-on-exit="${infinispan-cl-cache.jdbc.table.drop}" create-on-start="${infinispan-cl-cache.jdbc.table.create}"
 prefix="${infinispan-cl-cache.jdbc.table.name}">
 <id-column name="${infinispan-cl-cache.jdbc.id.column}" type="${infinispan-cl-cache.jdbc.id.type}" />
 <data-column name="${infinispan-cl-cache.jdbc.data.column}" type="${infinispan-cl-cache.jdbc.data.type}" />
 <timestamp-column name="${infinispan-cl-cache.jdbc.timestamp.column}" type="${infinispan-cl-cache.jdbc.timestamp.type}" />
 </string-keyed-table>
 </string-keyed-jdbc-store>
 </persistence>
 </replicated-cache-configuration>
 </cache-container>
</infinispan>

Note

To prevent any consistency issue regarding the lock data please
ensure that your cache store is
org.exoplatform.services.jcr.infinispan.JdbcStringBasedCacheStore
and that your database engine is transactional.

	Variable

	Description

	exo.jcr.cluster.jgroups.c
onfig

	This is the path to JGroups configuration
that should not be anymore jgroups’ stack
definitions but a normal jgroups
configuration format with the shared
transport configured by simply setting the
jgroups property singleton_name to a unique
name (it must remain unique from one portal
container to another). This file is also
pre-bundled with templates and is recommended
for use.

	{exo.cluster.partition.na
me}-jcr-lock

	This defines the name of the cluster. Needs
to be the same for all nodes in a cluster in
order to find each other.

	infinispan-cl-cache.jdbc.
table.name

	The table name.

	infinispan-cl-cache.jdbc.
id.column

	The name of the column id.

	infinispan-cl-cache.jdbc.
data.column

	The name of the column data.

	infinispan-cl-cache.jdbc.
timestamp.column

	The name of the column timestamp.

	infinispan-cl-cache.jdbc.
id.type

	The type of the column id.

	infinispan-cl-cache.jdbc.
data.type

	The type of the column data.

	infinispan-cl-cache.jdbc.
timestamp.type

	The type of the column timestamp.

	infinispan-cl-cache.jdbc.
table.drop

	Can be set to true or false. Indicates
whether to drop the table at stop phase.

	infinispan-cl-cache.jdbc.
table.create

	Can be set to true or false. Indicates
whether to create table at start phase. If
true, the table is created if it does not
already exist.

Query handler (indexer) template

Have a look at indexer-config.xml:

<infinispan xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="urn:infinispan:config:8.2"
 xsi:schemaLocation="urn:infinispan:config:8.2 http://www.infinispan.org/schemas/infinispan-config-8.2.xsd">
 <threads>
 <thread-factory name="infinispan-factory" group-name="infinispan" thread-name-pattern="%G %i" priority="5"/>

 <!-- listener-executor -->
 <blocking-bounded-queue-thread-pool name="infinispan-listener" thread-factory="infinispan-factory"
 core-threads="1" max-threads="5" queue-length="0" keepalive-time="0"/>

 <!-- expiration-executor -->
 <scheduled-thread-pool name="infinispan-expiration" thread-factory="infinispan-factory" />
 </threads>

 <jgroups transport="org.infinispan.remoting.transport.jgroups.JGroupsTransport">
 <stack-file name="stack" path="${exo.jcr.cluster.jgroups.config}"/>
 </jgroups>

 <cache-container name="indexer" default-cache="default" expiration-executor="infinispan-expiration" listener-executor="infinispan-listener"
 statistics="true">
 <jmx duplicate-domains="true" domain="jcr.ispn.cache" mbean-server-lookup="org.infinispan.jmx.PlatformMBeanServerLookup"/>
 <transport cluster="${exo.cluster.partition.name}-jcr-indexer" stack="stack" lock-timeout="240000"/>
 <replicated-cache-configuration mode="SYNC" name="default" statistics="true" >
 <eviction strategy="NONE"/>
 <transaction mode="NON_XA" transaction-manager-lookup="org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup"/>
 <locking isolation="READ_COMMITTED" concurrency-level="500" striping="false" write-skew="false"
 acquire-timeout="${exo.jcr.cluster.indexer.sync.repltimeout:180000}"/>
 <state-transfer enabled="${exo.jcr.cluster.indexer.statetransfer.fetchinmemorystate:false}"
 timeout="${exo.jcr.cluster.indexer.statetransfer.timeout:240000}" />
 <persistence passivation="false">
 <store class="${infinispan-cachestore-classname}" shared="false" fetch-state="true" read-only="false" purge="false" preload="false"></store>
 </persistence>
 </replicated-cache-configuration>
 </cache-container>
</infinispan>

	Variable

	Description

	exo.jcr.cluster.jgroups.c
onfig

	This is the path to JGroups configuration
that should not be anymore jgroups’ stack
definitions but a normal jgroups
configuration format with the shared
transport configured by simply setting the
jgroups property singleton_name to a unique
name (it must remain unique from one portal
container to another). This file is also
pre-bundled with templates and is recommended
for use.

	{exo.cluster.partition.na
me}-jcr-indexer

	This defines the name of the cluster. Needs
to be the same for all nodes in a cluster in
order to find each other.

Repository Creation Service

RepositoryCreationService is the service which is used to create
repositories in runtime. The service can be used in a standalone or
cluster environment.

Dependencies

RepositoryConfigurationService depends on the next components:

	DBCreator which is used to create new
database for each unbinded datasource.

	BackupManager which is used to create repository from backup.

	RPCService which is used for communicating
between cluster-nodes.

Note

RPCService may not be configured. In this case, RepositoryService
will work as a standalone service.

How it works

	The user executes reserveRepositoryName(String repositoryName) -
client-node calls coordinator-node to reserve repositoryName. If
this name is already reserved or repository with this name exists,
client-node will fetch RepositoryCreationException. If not,
Client will get token string.

	
	Instead of executing ``createRepository(String backupId,

	RepositoryEntry rEntry, String token)``, Coordinator-node

checks the token, and creates Repository.

	When the repository has been created, the user-node broadcasts a
message to all clusterNodes with RepositoryEntry, so each
cluster node starts new Repository.

There are two ways to create a repository: make it in single step - just
call createRepository(String backupId, RepositoryEntry); or reserve
`` repositoryName`` at first
(reserveRepositoryName(String repositoryName), then create the
reserved repository ``(createRepository(String backupId,

RepositoryEntry rEntry, String token)``.

Note

	Each datasource in RepositoryEntry of a new Repository must
have unbinded datasources. This means such a datasource must not
have database behind it. This restriction is to avoid corruption
with existing repositories data.

	RPCService is an optional component, but
RepositoryCreatorService cannot communicate with other
cluster-nodes without it.

Configuration

The RepositoryCreationService configuration is as follows:

<component>
 <key>org.exoplatform.services.jcr.ext.repository.creation.RepositoryCreationService</key>
 <type>
 org.exoplatform.services.jcr.ext.repository.creation.RepositoryCreationServiceImpl
 </type>
 <init-params>
 <value-param>
 <name>factory-class-name</name>
 <value>org.apache.commons.dbcp.BasicDataSourceFactory</value>
 </value-param>
 </init-params>
</component>

	factory-class-name: Indicate what the factory needs to use for
creating DataSource objects. This parameter is not mandatory.

Repository Creation Service interface

The following code shows all methods proposed by
RepositoryCreationService that is used to create a new repository:

public interface RepositoryCreationService
{
 /**
 * Reserves, validates and creates repository in a simplified form.
 *
 * @param rEntry - repository Entry - note that datasource must not exist.
 * @param backupId - backup id
 * @param creationProps - storage creation properties
 * @throws RepositoryConfigurationException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 * @throws RepositoryCreationServiceException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 */
 void createRepository(String backupId, RepositoryEntry rEntry, StorageCreationProperties creationProps)
 throws RepositoryConfigurationException, RepositoryCreationException;

 /**
 * Reserves, validates and creates repository in a simplified form.
 *
 * @param rEntry - repository Entry - note that datasource must not exist.
 * @param backupId - backup id
 * @throws RepositoryConfigurationException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 * @throws RepositoryCreationServiceException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 */
 void createRepository(String backupId, RepositoryEntry rEntry) throws RepositoryConfigurationException,
 RepositoryCreationException;

 /**
 * Reserve repository name to prevent repository creation with same name from other place in same time
 * via this service.
 *
 * @param repositoryName - repositoryName
 * @return repository token. Anyone obtaining a token can later create a repository of reserved name.
 * @throws RepositoryCreationServiceException if can't reserve name
 */
 String reserveRepositoryName(String repositoryName) throws RepositoryCreationException;

 /**
 * Creates repository, using token of already reserved repository name.
 * Good for cases, when repository creation should be delayed or made asynchronously in dedicated thread.
 *
 * @param rEntry - repository entry - note, that datasource must not exist
 * @param backupId - backup id
 * @param rToken - token
 * @param creationProps - storage creation properties
 * @throws RepositoryConfigurationException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 * @throws RepositoryCreationServiceException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 */
 void createRepository(String backupId, RepositoryEntry rEntry, String rToken, StorageCreationProperties creationProps)
 throws RepositoryConfigurationException, RepositoryCreationException;

 /**
 * Creates repository, using token of already reserved repository name. Good for cases, when repository creation should be delayed or
 * made asynchronously in dedicated thread.
 *
 * @param rEntry - repository entry - note, that datasource must not exist
 * @param backupId - backup id
 * @param rToken - token
 * @throws RepositoryConfigurationException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 * @throws RepositoryCreationServiceException
 * if some exception occurred during repository creation or repository name is absent in reserved list
 */
 void createRepository(String backupId, RepositoryEntry rEntry, String rToken)
 throws RepositoryConfigurationException, RepositoryCreationException;

 /**
 * Remove previously created repository.
 *
 * @param repositoryName - the repository name to delete
 * @param forceRemove - force close all opened sessions
 * @throws RepositoryCreationServiceException
 * if some exception occurred during repository removing occurred
 */
 void removeRepository(String repositoryName, boolean forceRemove) throws RepositoryCreationException;

}

Transaction Service

TransactionServices provides access to the TransactionManager and the
UserTransaction (See JTA specification for details).

	getTransactionManager()

	Get the used TransactionManager.

	getUserTransaction()

	Get UserTransaction on TransactionManager.

	getDefaultTimeout()

	Return the default TimeOut.

	setTransactionTimeout(int seconds)

	Set TimeOut in seconds.

	enlistResource(XAResource xares)

	Enlist XA resource in TransactionManager.

	delistResource(XAResource xares)

	Delist XA resource from TransactionManager.

Table: List methods

Existing Transaction Service implementations

JCR proposes out of the box several implementations, they all implement
the abstract class
org.exoplatform.services.transaction.impl.AbstractTransactionService.
This main class implement the biggest part of all the methods proposed
by the TransactionService. For each sub-class of
AbstractTransactionService, you can set the transaction timeout by
configuration using the value parameter timeout that is expressed in
seconds.

Generic TransactionService

If you intend to use Infinispan, you can use a generic
TransactionService based on its TransactionManagerLookup which is able
to automatically find the TransactionManager of several Application
Servers thanks to a set of JNDI lookups. This generic TransactionService
covers mainly the TransactionManager lookups, the UserTransaction is
actually simply the TransactionManager instance that has been wrapped.
See the configuration example as below:

<!-- Configuration of the TransactionManagerLookup -->
 <component>
 <key>org.infinispan.transaction.lookup.TransactionManagerLookup</key>
 <type>org.infinispan.transaction.lookup.GenericTransactionManagerLookup</type>
 </component>
 <!-- Configuration of the TransactionService -->
 <component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.infinispan.GenericTransactionService</type>
 <!-- Uncomment the lines below if you want to set default transaction timeout that is expressed in seconds -->
 <!--init-params>
 <value-param>
 <name>timeout</name>
 <value>60</value>
 </value-param>
 </init-params-->
 </component>

Specific GenericTransactionService for Infinispan and Arjuna

If you intend to use Infinispan with Arjuna, you can use a more specific
GenericTransactionService. It is mostly interesting in case you want
to use the real UserTransaction. See the configuration example as
below:

 <!-- Configuration of the TransactionManagerLookup -->
<component>
 <key>org.infinispan.transaction.lookup.TransactionManagerLookup</key>
 <type>org.exoplatform.services.transaction.infinispan.JBossStandaloneJTAManagerLookup</type>
</component>
<!-- Configuration of the TransactionService -->
<component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.infinispan.JBossTransactionsService</type>
 <!-- Uncomment the lines below if you want to set default transaction timeout that is expressed in seconds -->
 <!--init-params>
 <value-param>
 <name>timeout</name>
 <value>60</value>
 </value-param>
 </init-params-->
</component>

A very specific TransactionService for JBoss AS

If you intend to use JBoss AS with Infinispan, you can use a very
specific TransactionService for JBoss AS. See the configuration example
as below:

 <component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.impl.jboss.JBossTransactionService</type>
 <!-- Uncomment the lines below if you want to set default transaction timeout that is expressed in seconds -->
 <!--init-params>
 <value-param>
 <name>timeout</name>
 <value>60</value>
 </value-param>
 </init-params-->
</component>

TransactionsEssentials in standalone mode.

To use TransactionsEssentials, simply add the following component
configuration:

 <component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.impl.atomikos.TransactionsEssentialsTransactionService</type>
 <!-- Uncomment the lines below if you want to set default transaction timeout that is expressed in seconds -->
 <!--init-params>
 <value-param>
 <name>timeout</name>
 <value>60</value>
 </value-param>
 </init-params-->
</component>

JBoss Transaction Service

JBossTransactionsService implements eXo Transaction Service
and provides access to JBoss Transaction Service (JBossTS) JTA implementation via eXo container
dependency.

TransactionService is used in JCR cache
org.exoplatform.services.jcr.impl.dataflow.persistent.infinispan.ISPNCacheWorkspaceStorageCache
implementaion. See Cluster configuration for example.

Configuration

Example configuration:

<component>
 <key>org.exoplatform.services.transaction.TransactionService</key>
 <type>org.exoplatform.services.transaction.infinispan.JBossTransactionsService </type>
 <init-params>
 <value-param>
 <name>timeout</name>
 <value>3000</value>
 </value-param>
 </init-params>
</component>

	timeout: XA transaction timeout in seconds.

External Value Storages

By default JCR Values are stored in the Workspace Data container along
with the JCR structure (for example: Nodes and Properties). JCR offers
an additional option of storing JCR Values separately from Workspace
Data container, which can be extremely helpful to keep Binary Large
Objects (BLOBs) for instance.

Value storage configuration is a part of Repository configuration. See
more details here <JCR.ConfigurationPersister.ValueStoragePlugin>.

Tree-based storage is recommended for most of cases. Simple ‘flat’
storage is good in speed of creation/deletion of values, it might be a
compromise for a small storage.

Note

JCR allows disabling the value storage by adding the property below
into the configuration for the internal usage and testing purpose
only:

<property name="enabled" value="false"/>

Be careful, all stored values will be unaccessible.

Tree File Value Storage

Holds Values in tree-like FileSystem files. The path property points to
the root directory to store the files.

This is a recommended type of external storage, it can contain a large
amount of files limited only by disk/volume free space.

A disadvantage is that it is a higher time on Value deletion due to
unused tree-nodes remove.

<value-storage id="Storage #1" class="org.exoplatform.services.jcr.impl.storage.value.fs.TreeFileValueStorage">
 <properties>
 <property name="path" value="data/values"/>
 </properties>
 <filters>
 <filter property-type="Binary" min-value-size="1M"/>
 </filters>

	id: The value storage is a unique identifier, used for linking
with properties stored in workspace container.

	path: A location where value files will be stored.

Each file value storage can have the filter(s) for incoming values.
A filter can match values by property type (property-type), property
name (property-name), ancestor path (ancestor-path) and/or size of
values stored (min-value-size, in bytes). In code sample, we use a
filter with property-type and min-value-size only. For example, storage
for binary values with size greater of 1MB. It is recommended to store
properties with large values in file value storage only.

Another example shows a value storage with different locations for large
files (min-value-size: a 20Mb-sized filter). A value storage uses ORed
logic in the process of filter selection. That means the first filter in
the list will be asked first and if not matched the next will be called.
Here is a value which matches with the min-value-size 20 MB-sized filter
and will be stored in the “data/20Mvalues” path, all others in
“data/values”.

<value-storages>
 <value-storage id="Storage #1" class="org.exoplatform.services.jcr.impl.storage.value.fs.TreeFileValueStorage">
 <properties>
 <property name="path" value="data/20Mvalues"/>
 </properties>
 <filters>
 <filter property-type="Binary" min-value-size="20M"/>
 </filters>
 <value-storage>
 <value-storage id="Storage #2" class="org.exoplatform.services.jcr.impl.storage.value.fs.TreeFileValueStorage">
 <properties>
 <property name="path" value="data/values"/>
 </properties>
 <filters>
 <filter property-type="Binary" min-value-size="1M"/>
 </filters>
 <value-storage>
<value-storages>

Simple File Value Storage

Note

It is not recommended to use in production due to low capacity
capabilities on most file systems.

However, if you are sure that your file-system or data amount is
small, it may be useful for you as it will increase the speed of
Value removal.

Hold Values in flat FileSystem files. The path property points to the
root directory to store files.

<value-storage id="Storage #1" class="org.exoplatform.services.jcr.impl.storage.value.fs.SimpleFileValueStorage">
 <properties>
 <property name="path" value="data/values"/>
 </properties>
 <filters>
 <filter property-type="Binary" min-value-size="1M"/>
 </filters>

Content Addressable Value Storage (CAS) support

JCR supports Content-addressable storage feature for Values storing.

Note

Content-addressable storage, also referred to as associative storage
and abbreviated CAS, is a mechanism for storing information that can
be retrieved based on its content, not its storage location. It is
typically used for high-speed storage and retrieval of fixed
content, such as documents stored for compliance with government
regulations.

Content Addressable Value Storage stores unique content once. Different
properties (values) with the same content will be stored as one data
file shared between those values. You can tell the Value content will be
shared across some Values in storage and will be stored on one physical
file.

Storage size will be decreased for application which governs potentially
same data in the content.

Note

For example: if you have 100 different properties containing the
same data (for example: mail attachment), the storage stores only
one single file. The file will be shared with all referencing
properties.

If property Value changes, it is stored in an additional file.
Alternatively, the file is shared with other values, pointing to the
same content.

The storage calculates Value content address each time the property is
changed. CAS write operations are much more expensive compared to the
non-CAS storages.

Content address calculation is based on the
java.security.MessageDigest hash computation and tested with the MD5
and SHA1 algorithms.

Note

CAS storage works most efficiently on data that does not change
often. For data that changes frequently, CAS is not as efficient as
location-based addressing.

CAS support can be enabled for Tree and Simple File Value Storage types.

To enable CAS support, just configure it in JCR Repositories
configuration as you do for other Value Storages.

<workspaces>
 <workspace name="ws">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr"/>
 <property name="dialect" value="oracle"/>
 <property name="multi-db" value="false"/>
 <property name="update-storage" value="false"/>
 <property name="max-buffer-size" value="200k"/>
 <property name="swap-directory" value="target/temp/swap/ws"/>
 </properties>
 <value-storages>
<!------------------- here ----------------------->
 <value-storage id="ws" class="org.exoplatform.services.jcr.impl.storage.value.fs.CASableTreeFileValueStorage">
 <properties>
 <property name="path" value="target/temp/values/ws"/>
 <property name="digest-algo" value="MD5"/>
 <property name="vcas-type" value="org.exoplatform.services.jcr.impl.storage.value.cas.JDBCValueContentAddressStorageImpl"/>
 <property name="jdbc-source-name" value="jdbcjcr"/>
 <property name="jdbc-dialect" value="oracle"/>
 </properties>
 <filters>
 <filter property-type="Binary"/>
 </filters>
 </value-storage>
 </value-storages>

	digest-algo: Digest hash algorithm (MD5 and SHA1 were tested).

	vcas-type: Value CAS internal data type, JDBC backed is currently
implemented
org.exoplatform.services.jcr.impl.storage.value.cas.JDBCValueContentAddressStorageImpl.

	jdbc-source-name: the JDBCValueContentAddressStorageImpl
specific parameter, database will be used to save CAS metadata. It is
simple to use the same as in workspace container.

	jdbc-dialect: the JDBCValueContentAddressStorageImpl specific
parameter, database dialect. It is simple to use the same as in
workspace container.

Developer References

This chapter provides developers with the reference knowledge for
using and developing JCR via two main topics:

	Basic usage

Issues around how to use JCR, NodeType, Namespace, Searching
repository content, and Fulltext search.

	Advanced usage

Details of advanced usages in JCR, including Extensions,
Workspace data container, Binary values processing, and Link
producer service.

The main purpose of content repository is to maintain the data. The heart
of content repository is the data model:

	The main data storage abstraction of JCR’s data model is a workspace.

	Each repository should have one or more workspaces.

	The content is stored in a workspace as a hierarchy of items.

	Each workspace has its own hierarchy of items.

[image: Item hierarchy]
Item hierarchy

Node is intended to support the data hierarchy. It is of type using
namespaced names which allow the content to be structured in accordance
with standardized constraints. A node may be versioned through an
associated version graph (optional).

Property stored data are values of predefined types (String, Binary,
Long, Boolean, Double, Date, Reference, Path).

Note

The data model for the interface (repository model) is rarely the
same as the data models used by the repository’s underlying storage
subsystems. The repository knows how to make the client’s changes
persistent because that is a part of the repository configuration,
rather than part of the application programming task.

Basic usage

	Using JCR

Instructions on how to use JCR, such as how to obtain a Repository
object, JCR Session common considerations and JCR Application
practices.

	Node types

Instructions on how to define node types in the Repository at the
start-up time and register the node types.

	Namespaces

Instructions on how to define and alter namespaces.

	Searching for repository
content

Instructions on how to use the searching function for repository
content by providing with details of query lifecycle, query usecases,
and XPath queries containing node names starting with a number.

	Using fulltext search

Instructions on how to use fulltext search in JCR.

	Frequently asked questions

A list of FAQs that are very helpful for basic development.

Using JCR

Note

	Remember that javax.jcr.Session is not a thread safe object. Thus, never try to share it between threads.

	Do not use System session from the user related code
because a system session has unlimited rights. Call
ManageableRepository.getSystemSession() from process
related code only.

	Call Session.logout() explicitly to release resources
assigned to the session.

	When designing your application, take care of the Session policy
inside your application. Two strategies are possible:
Stateless (Session per business request) and Stateful
(Session per User) or some mixings.

Obtaining repository object

A javax.jcr.Repository object can be obtained by:

	Using the eXo Container “native” mechanism. All repositories are kept
with a single RepositoryService component. So it can be obtained
from eXo Container as described below:

RepositoryService repositoryService = (RepositoryService) container.getComponentInstanceOfType(RepositoryService.class);
 Repository repository = repositoryService.getRepository("repository");

	Using the eXo Container “native” mechanism with a thread local saved
“current” repository (especially if you plan to use a single
repository which covers more than 90% of usecases).

// set current repository at initial time
RepositoryService repositoryService = (RepositoryService) container.getComponentInstanceOfType(RepositoryService.class);
repositoryService.setCurrentRepositoryName("repository");
....
// retrieve and use this repository
Repository repository = repositoryService.getCurrentRepository();

	Using JNDI as specified in
JSR-170 [http://jcp.org/en/jsr/detail?id=170]. You should use
this way to configure the reference as follows.(See eXo JNDI Naming
configuration).

Context ctx = new InitialContext();
 Repository repository =(Repository) ctx.lookup("repository");

JCR application practices

Simplifying the management of a multi-workspace application

(one-shot logout for all opened sessions)

Use org.exoplatform.services.jcr.ext.common.SessionProvider which is
responsible for caching/obtaining your JCR Sessions and closing all
opened sessions at once.

public class SessionProvider implements SessionLifecycleListener {

 /**
 * Creates a SessionProvider for a certain identity
 * @param cred
 */
 public SessionProvider(Credentials cred)

 /**
 * Gets the session from internal cache or creates and caches a new one
 */
 public Session getSession(String workspaceName, ManageableRepository repository)
 throws LoginException, NoSuchWorkspaceException, RepositoryException

 /**
 * Calls a logout() method for all cached sessions
 */
 public void close()

 /**
 * a Helper for creating a System session provider
 * @return System session
 */
 public static SessionProvider createSystemProvider()

 /**
 * a Helper for creating an Anonimous session provider
 * @return System session
 */
 public static SessionProvider createAnonimProvider()

 /**
 * Helper for creating session provider from AccessControlEntry.
 *
 * @return System session
 */
 SessionProvider createProvider(List<AccessControlEntry> accessList)

 /**
 * Remove the session from the cache
 */
 void onCloseSession(ExtendedSession session)

 /**
 * Gets the current repository used
 */
 ManageableRepository getCurrentRepository()

 /**
 * Gets the current workspace used
 */
 String getCurrentWorkspace()

 /**
 * Set the current repository to use
 */
 void setCurrentRepository(ManageableRepository currentRepository)

 /**
 * Set the current workspace to use
 */
 void setCurrentWorkspace(String currentWorkspace)

}

The SessionProvider is a request or user object, depending on your
policy. Create it with your application before performing JCR
operations, then use it to obtain the Sessions and close at the end of
an application session (request). See the following example:

// (1) obtain current javax.jcr.Credentials, for example get it from AuthenticationService
Credentials cred =

// (2) create SessionProvider for current user
SessionProvider sessionProvider = new SessionProvider(ConversationState.getCurrent());

// NOTE: for creating an Anonymous or System Session use the corresponding static SessionProvider.create...() method
// Get appropriate Repository as described in "Obtaining Repository object" section for example
ManageableRepository repository = (ManageableRepository) ctx.lookup("repository");

// get an appropriate workspace's session
Session session = sessionProvider.getSession("collaboration", repository);

// your JCR code

 // Close the session provider
 sessionProvider.close();

Reusing SessionProvider

As shown above, creating the SessionProvider involves multiple steps and
you may not want to repeat them each time you need to get a JCR session.
To avoid the plumbing code, SessionProviderService is provided that
aims at helping you get a SessionProvider object.

The org.exoplatform.services.jcr.ext.app.SessionProviderService
interface is defined as follows:

public interface SessionProviderService {
 void setSessionProvider(Object key, SessionProvider sessionProvider);
 SessionProvider getSessionProvider(Object key);
 void removeSessionProvider(Object key);
}

Using this service is pretty straightforward, the main contract of an
implemented component is getting a SessionProvider by key. eXo Platform
provides the following implementation:

	Implementation

	Description

	Typical Use

	org.exoplatform.services.jcr.ext.app.ThreadLocalSessionProviderService

	per-request style: Keep a single SessionProvider in a static ThreadLocal variable.

	Always use null for the key.

Table: SessionProvider implementations

For the implementation, your code should follow the following sequence:

	Call
SessionProviderService.setSessionProvider(Object key, SessionProvider sessionProvider)
at the beginning of a business request for Stateless application or
application’s session for the Statefull policy.

	Call SessionProviderService.getSessionProvider(Object key) for
obtaining a SessionProvider object.

	Call SessionProviderService.removeSessionProvider(Object key) at
the end of a business request for Stateless application or
application’s session for the Statefull policy.

Node types

Note

Support of node types is required by the
JSR-170 <http://www.jcp.org/en/jsr/detail?id=170> specification.
Beyond the methods required by the specification, eXo JCR has its
own API extension for the Node type registration
as well as the ability to declaratively define node types in the
Repository at the start-up time.

Node type registration extension is declared in the
org.exoplatform.services.jcr.core.nodetype.ExtendedNodeTypeManager
interface.

Your custom service can register some necessary predefined node types at
the start-up time. The node definition should be placed in a special XML
file (see DTD below) and declared in the service’s configuration file
thanks to the eXo component plugin mechanism as described below:

<external-component-plugins>
 <target-component>org.exoplatform.services.jcr.RepositoryService</target-component>
 <component-plugin>
 <name>add.nodeType</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNodeTypePlugin</type>
 <init-params>
 <values-param>
 <name>autoCreatedInNewRepository</name>
 <description>Node types configuration file</description>
 <value>jar:/conf/test/nodetypes-tck.xml</value>
 <value>jar:/conf/test/nodetypes-impl.xml</value>
 </values-param>
 <values-param>
 <name>repo1</name>
 <description>Node types configuration file for repository with name repo1</description>
 <value>jar:/conf/test/nodetypes-test.xml</value>
 </values-param>
 <values-param>
 <name>repo2</name>
 <description>Node types configuration file for repository with name repo2</description>
 <value>jar:/conf/test/nodetypes-test2.xml</value>
 </values-param>
 </init-params>
 </component-plugin>

There are two registration types. The first type is the registration of
node types in all created repositories, it is configured in values-param
with the name autoCreatedInNewRepository. The second type is
registration of node types in specified repository and it is configured
in values-param with the name of repository.

Node type definition

The Node type definition file is in the following format:

 <?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE nodeTypes [
 <!ELEMENT nodeTypes (nodeType)*>
 <!ELEMENT nodeType (supertypes?|propertyDefinitions?|childNodeDefinitions?)>

 <!ATTLIST nodeType
 name CDATA #REQUIRED
 isMixin (true|false) #REQUIRED
 hasOrderableChildNodes (true|false)
 primaryItemName CDATA
 >
 <!ELEMENT supertypes (supertype*)>
 <!ELEMENT supertype (CDATA)>

 <!ELEMENT propertyDefinitions (propertyDefinition*)>

 <!ELEMENT propertyDefinition (valueConstraints?|defaultValues?)>
 <!ATTLIST propertyDefinition
 name CDATA #REQUIRED
 requiredType (String|Date|Path|Name|Reference|Binary|Double|Long|Boolean|undefined) #REQUIRED
 autoCreated (true|false) #REQUIRED
 mandatory (true|false) #REQUIRED
 onParentVersion (COPY|VERSION|INITIALIZE|COMPUTE|IGNORE|ABORT) #REQUIRED
 protected (true|false) #REQUIRED
 multiple (true|false) #REQUIRED
 >
 <!-- For example if you need to set ValueConstraints [],
 you have to add an empty element <valueConstraints/>.
 The same order is for other properties like defaultValues, requiredPrimaryTypes etc.
 -->
 <!ELEMENT valueConstraints (valueConstraint*)>
 <!ELEMENT valueConstraint (CDATA)>
 <!ELEMENT defaultValues (defaultValue*)>
 <!ELEMENT defaultValue (CDATA)>

 <!ELEMENT childNodeDefinitions (childNodeDefinition*)>

 <!ELEMENT childNodeDefinition (requiredPrimaryTypes)>
 <!ATTLIST childNodeDefinition
 name CDATA #REQUIRED
 defaultPrimaryType CDATA #REQUIRED
 autoCreated (true|false) #REQUIRED
 mandatory (true|false) #REQUIRED
 onParentVersion (COPY|VERSION|INITIALIZE|COMPUTE|IGNORE|ABORT) #REQUIRED
 protected (true|false) #REQUIRED
 sameNameSiblings (true|false) #REQUIRED
 >
 <!ELEMENT requiredPrimaryTypes (requiredPrimaryType+)>
 <!ELEMENT requiredPrimaryType (CDATA)>
]>

Node type registration

The eXo JCR implementation supports two ways of Nodetypes registration:

	From a NodeTypeValue POJO.

	From an XML document (stream).

This section shows you how to define and register a node type via
different manners. Also, you will know how to change and remove a node
type and more other instructions.

Interfaces and methods

ExtendedNodeTypeManager

The ExtendedNodeTypeManager interface provides the following methods
related to registering node types:

public static final int IGNORE_IF_EXISTS = 0;

public static final int FAIL_IF_EXISTS = 2;

public static final int REPLACE_IF_EXISTS = 4;

 /**
 * Return NodeType for a given InternalQName.
 *
 * @param qname nodetype name
 * @return NodeType
 * @throws NoSuchNodeTypeException if no nodetype found with the name
 * @throws RepositoryException Repository error
 */
NodeType findNodeType(InternalQName qname) throws NoSuchNodeTypeException, RepositoryException;

/**
 * Registers node type using value object.
 *
 * @param nodeTypeValue
 * @param alreadyExistsBehaviour
 * @throws RepositoryException
 */
NodeType registerNodeType(NodeTypeValue nodeTypeValue, int alreadyExistsBehaviour) throws RepositoryException;

/**
 * Registers all node types using XML binding value objects from xml stream.
 *
 * @param xml a InputStream
 * @param alreadyExistsBehaviour a int
 * @throws RepositoryException
 */
NodeTypeIterator registerNodeTypes(InputStream xml, int alreadyExistsBehaviour, String contentType)
 throws RepositoryException;

/**
 * Gives the {@link NodeTypeManager}
 *
 * @throws RepositoryException if another error occurs.
 */
NodeTypeDataManager getNodeTypesHolder() throws RepositoryException;

/**
 * Return <code>NodeTypeValue</code> for a given nodetype name. Used for
 * nodetype update. Value can be edited and registered via
 * <code>registerNodeType(NodeTypeValue nodeTypeValue, int alreadyExistsBehaviour)</code>
 * .
 *
 * @param ntName nodetype name
 * @return NodeTypeValue
 * @throws NoSuchNodeTypeException if no nodetype found with the name
 * @throws RepositoryException Repository error
 */
NodeTypeValue getNodeTypeValue(String ntName) throws NoSuchNodeTypeException, RepositoryException;

/**
 * Registers or updates the specified <code>Collection</code> of
 * <code>NodeTypeValue</code> objects. This method is used to register or
 * update a set of node types with mutual dependencies. Returns an iterator
 * over the resulting <code>NodeType</code> objects. <p/> The effect of the
 * method is "all or nothing"; if an error occurs, no node types are
 * registered or updated. <p/> Throws an
 * <code>InvalidNodeTypeDefinitionException</code> if a
 * <code>NodeTypeDefinition</code> within the <code>Collection</code> is
 * invalid or if the <code>Collection</code> contains an object of a type
 * other than <code>NodeTypeDefinition</code> . <p/> Throws a
 * <code>NodeTypeExistsException</code> if <code>allowUpdate</code> is
 * <code>false</code> and a <code>NodeTypeDefinition</code> within the
 * <code>Collection</code> specifies a node type name that is already
 * registered. <p/> Throws an
 * <code>UnsupportedRepositoryOperationException</code> if this implementation
 * does not support node type registration.
 *
 * @param values a collection of <code>NodeTypeValue</code>s
 * @param alreadyExistsBehaviour a int
 * @return the registered node types.
 * @throws InvalidNodeTypeDefinitionException if a
 * <code>NodeTypeDefinition</code> within the
 * <code>Collection</code> is invalid or if the
 * <code>Collection</code> contains an object of a type other than
 * <code>NodeTypeDefinition</code>.
 * @throws NodeTypeExistsException if <code>allowUpdate</code> is
 * <code>false</code> and a <code>NodeTypeDefinition</code> within
 * the <code>Collection</code> specifies a node type name that is
 * already registered.
 * @throws UnsupportedRepositoryOperationException if this implementation does
 * not support node type registration.
 * @throws RepositoryException if another error occurs.
 */
public NodeTypeIterator registerNodeTypes(List<NodeTypeValue> values, int alreadyExistsBehaviour)
 throws UnsupportedRepositoryOperationException, RepositoryException;

/**
 * Unregisters the specified node type.
 *
 * @param name a <code>String</code>.
 * @throws UnsupportedRepositoryOperationException if this implementation does
 * not support node type registration.
 * @throws NoSuchNodeTypeException if no registered node type exists with the
 * specified name.
 * @throws RepositoryException if another error occurs.
 */
public void unregisterNodeType(String name) throws UnsupportedRepositoryOperationException, NoSuchNodeTypeException,
 RepositoryException;

/**
 * Unregisters the specified set of node types.<p/> Used to unregister a set
 * of node types with mutual dependencies.
 *
 * @param names a <code>String</code> array
 * @throws UnsupportedRepositoryOperationException if this implementation does
 * not support node type registration.
 * @throws NoSuchNodeTypeException if one of the names listed is not a
 * registered node type.
 * @throws RepositoryException if another error occurs.
 */
public void unregisterNodeTypes(String[] names) throws UnsupportedRepositoryOperationException,
 NoSuchNodeTypeException, RepositoryException;

NodeTypeValue

The NodeTypeValue interface represents a simple container structure
used to define node types which are then registered through the
ExtendedNodeTypeManager.registerNodeType method. The implementation
of this interface does not contain any validation logic.

/**
 * @return Returns the declaredSupertypeNames.
 */
public List<String> getDeclaredSupertypeNames();

/**
 * @param declaredSupertypeNames
 *The declaredSupertypeNames to set.
 */
public void setDeclaredSupertypeNames(List<String> declaredSupertypeNames);

/**
 * @return Returns the mixin.
 */
public boolean isMixin();

/**
 * @param mixin
 *The mixin to set.
 */
public void setMixin(boolean mixin);

/**
 * @return Returns the name.
 */
public String getName();

/**
 * @param name
 *The name to set.
 */
public void setName(String name);

/**
 * @return Returns the orderableChild.
 */
public boolean isOrderableChild();

/**
 * @param orderableChild
 *The orderableChild to set.
 */
public void setOrderableChild(boolean orderableChild);

/**
 * @return Returns the primaryItemName.
 */
public String getPrimaryItemName();

/**
 * @param primaryItemName
 *The primaryItemName to set.
 */
public void setPrimaryItemName(String primaryItemName);

/**
 * @return Returns the declaredChildNodeDefinitionNames.
 */
public List<NodeDefinitionValue> getDeclaredChildNodeDefinitionValues();

/**
 * @param declaredChildNodeDefinitionNames
 *The declaredChildNodeDefinitionNames to set.
 */
public void setDeclaredChildNodeDefinitionValues(List<NodeDefinitionValue> declaredChildNodeDefinitionValues);

/**
 * @return Returns the declaredPropertyDefinitionNames.
 */
public List<PropertyDefinitionValue> getDeclaredPropertyDefinitionValues();

/**
 * @param declaredPropertyDefinitionNames
 *The declaredPropertyDefinitionNames to set.
 */
public void setDeclaredPropertyDefinitionValues(List<PropertyDefinitionValue> declaredPropertyDefinitionValues);

NodeDefinitionValue

The NodeDefinitionValue interface extends ItemDefinitionValue
with the addition of writing methods, enabling the characteristics of a
child node definition to be set. After that, the NodeDefinitionValue
is added to a NodeTypeValue.

/**
 * @return Returns the defaultNodeTypeName.
 */
public String getDefaultNodeTypeName()

/**
 * @param defaultNodeTypeName The defaultNodeTypeName to set.
 */
public void setDefaultNodeTypeName(String defaultNodeTypeName)

/**
 * @return Returns the sameNameSiblings.
 */
public boolean isSameNameSiblings()

/**
 * @param sameNameSiblings The sameNameSiblings to set.
 */
public void setSameNameSiblings(boolean multiple)

/**
 * @return Returns the requiredNodeTypeNames.
 */
public List<String> getRequiredNodeTypeNames()

/**
 * @param requiredNodeTypeNames The requiredNodeTypeNames to set.
 */
public void setRequiredNodeTypeNames(List<String> requiredNodeTypeNames)

PropertyDefinitionValue

The PropertyDefinitionValue interface extends
ItemDefinitionValue with the addition of writing methods, enabling
the characteristics of a child property definition to be set, after
that, the PropertyDefinitionValue is added to a NodeTypeValue.

/**
 * @return Returns the defaultValues.
 */
public List<String> getDefaultValueStrings();

/**
 * @param defaultValues The defaultValues to set.
 */
public void setDefaultValueStrings(List<String> defaultValues);

/**
 * @return Returns the multiple.
 */
public boolean isMultiple();

/**
 * @param multiple The multiple to set.
 */
public void setMultiple(boolean multiple);

/**
 * @return Returns the requiredType.
 */
public int getRequiredType();

/**
 * @param requiredType The requiredType to set.
 */
public void setRequiredType(int requiredType);

/**
 * @return Returns the valueConstraints.
 */
public List<String> getValueConstraints();

/**
 * @param valueConstraints The valueConstraints to set.
 */
public void setValueConstraints(List<String> valueConstraints);

ItemDefinitionValue

 /**
 * @return Returns the autoCreate.
 */
public boolean isAutoCreate();

/**
 * @param autoCreate The autoCreate to set.
 */
public void setAutoCreate(boolean autoCreate);

/**
 * @return Returns the mandatory.
 */
public boolean isMandatory();

/**
 * @param mandatory The mandatory to set.
 */
public void setMandatory(boolean mandatory);

/**
 * @return Returns the name.
 */
public String getName();

/**
 * @param name The name to set.
 */
public void setName(String name);

/**
 * @return Returns the onVersion.
 */
public int getOnVersion();

/**
 * @param onVersion The onVersion to set.
 */
public void setOnVersion(int onVersion);

/**
 * @return Returns the readOnly.
 */
public boolean isReadOnly();

/**
 * @param readOnly The readOnly to set.
 */
public void setReadOnly(boolean readOnly);

Registration methods

The JCR implementation supports various methods of the node type
registration.

Run time registration from .xml file

ExtendedNodeTypeManager nodeTypeManager = (ExtendedNodeTypeManager) session.getWorkspace()
 .getNodeTypeManager();
InputStream is = MyClass.class.getResourceAsStream("mynodetypes.xml");
nodeTypeManager.registerNodeTypes(is,ExtendedNodeTypeManager.IGNORE_IF_EXISTS);

Run time registration using NodeTypeValue

ExtendedNodeTypeManager nodeTypeManager = (ExtendedNodeTypeManager) session.getWorkspace()
 .getNodeTypeManager();
NodeTypeValue testNValue = new NodeTypeValue();

List<String> superType = new ArrayList<String>();
superType.add("nt:base");
testNValue.setName("exo:myNodeType");
testNValue.setPrimaryItemName("");
testNValue.setDeclaredSupertypeNames(superType);
List<PropertyDefinitionValue> props = new ArrayList<PropertyDefinitionValue>();
props.add(new PropertyDefinitionValue("*",
 false,
 false,
 1,
 false,
 new ArrayList<String>(),
 false,
 0,
 new ArrayList<String>()));
testNValue.setDeclaredPropertyDefinitionValues(props);

nodeTypeManager.registerNodeType(testNValue, ExtendedNodeTypeManager.FAIL_IF_EXISTS);

Changing/Removing a node type

Changing a node type

If you want to replace the existing node type definition, you should
pass ExtendedNodeTypeManager.REPLACE_IF_EXISTS as a second parameter
for the ExtendedNodeTypeManager.registerNodeType method.

ExtendedNodeTypeManager nodeTypeManager = (ExtendedNodeTypeManager) session.getWorkspace()
 .getNodeTypeManager();
InputStream is = MyClass.class.getResourceAsStream("mynodetypes.xml");
.....
nodeTypeManager.registerNodeTypes(is,ExtendedNodeTypeManager.REPLACE_IF_EXISTS);

Removing a node type

Note

Node type is possible to remove only when the repository does not contain nodes of this type.

nodeTypeManager.unregisterNodeType("myNodeType");

More How-tos

Adding a new PropertyDefinition

NodeTypeValue myNodeTypeValue = nodeTypeManager.getNodeTypeValue(myNodeTypeName);
List<PropertyDefinitionValue> props = new ArrayList<PropertyDefinitionValue>();
props.add(new PropertyDefinitionValue("tt",
 true,
 true,
 1,
 false,
 new ArrayList<String>(),
 false,
 PropertyType.STRING,
 new ArrayList<String>()));
myNodeTypeValue.setDeclaredPropertyDefinitionValues(props);

nodeTypeManager.registerNodeType(myNodeTypeValue, ExtendedNodeTypeManager.REPLACE_IF_EXISTS);

Adding a new child NodeDefinition

NodeTypeValue myNodeTypeValue = nodeTypeManager.getNodeTypeValue(myNodeTypeName);

List<NodeDefinitionValue> nodes = new ArrayList<NodeDefinitionValue>();
nodes.add(new NodeDefinitionValue("child",
 false,
 false,
 1,
 false,
 "nt:base",
 new ArrayList<String>(),
 false));
testNValue.setDeclaredChildNodeDefinitionValues(nodes);

nodeTypeManager.registerNodeType(myNodeTypeValue, ExtendedNodeTypeManager.REPLACE_IF_EXISTS);

Changing/Removing existing PropertyDefinition or child
NodeDefinition

Note

The existing data must be consistent before you change or remove any
existing definition. JCR does not allow you to change the node
type in the way in which the existing data would be incompatible
with a new node type. But if these changes are needed, you can do it
in several phases, consistently changing the node type and the
existing data.

There are two limitations that do not allow you to make the task with a
single call of the registerNodeType method.

	Existing nodes of the “myNodeType” type, which does not contain
the “downloadCount” property that conflicts with your needed node
type.

	The “myNodeType” registered node type will not allow you to add
the “downloadCount” property because it has no such specific
properties.

To complete the task, you need to do the following steps:

Change the “myNodeType” existing node type by adding the mandatory
“downloadCount” property.

Add the “myNodeType” node type with the “downloadCount” property
to all the existing node types.

Change the definition of the “downloadCount” property of the node
type “myNodeType” to mandatory.

Changing the list of super types

NodeTypeValue testNValue = nodeTypeManager.getNodeTypeValue("exo:myNodeType");

List<String> superType = testNValue.getDeclaredSupertypeNames();
superType.add("mix:versionable");
testNValue.setDeclaredSupertypeNames(superType);

nodeTypeManager.registerNodeType(testNValue, ExtendedNodeTypeManager.REPLACE_IF_EXISTS);

Namespaces

Support of namespaces is required by the
JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] specification.

Namespaces definition

The default namespaces are registered by repository at the start-up
time.

Your custom service can be extended with a set of namespaces with some
specific applications, declaring it in the service’s configuration file
thanks to the eXo component plugin mechanism as described below:

<component-plugin>
 <name>add.namespaces</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.AddNamespacesPlugin</type>
 <init-params>
 <properties-param>
 <name>namespaces</name>
 <property name="test" value="http://www.test.org/test"/>
 </properties-param>
 </init-params>
</component-plugin>

Namespaces altering

The JCR implementation supports the namespaces altering.

	Adding a new namespace

ExtendedNamespaceRegistry namespaceRegistry = (ExtendedNamespaceRegistry)
 workspace.getNamespaceRegistry();
 namespaceRegistry.registerNamespace("newMapping", "http://dumb.uri/jcr");

	Changing an existing namespace

ExtendedNamespaceRegistry namespaceRegistry = (ExtendedNamespaceRegistry)
 workspace.getNamespaceRegistry();
 namespaceRegistry.registerNamespace("newMapping", "http://dumb.uri/jcr");
 namespaceRegistry.registerNamespace("newMapping2", "http://dumb.uri/jcr");

	Removing an existing namespace

ExtendedNamespaceRegistry namespaceRegistry = (ExtendedNamespaceRegistry)
 workspace.getNamespaceRegistry();
 namespaceRegistry.registerNamespace("newMapping", "http://dumb.uri/jcr");
 namespaceRegistry.unregisterNamespace("newMapping");

Searching for repository content

eXo Platform supports two query languages - SQL and XPath. A query,
whether XPath or SQL, specifies a subset of nodes within a workspace,
called the result set. The result set constitutes all the nodes in the
workspace that meet the constraints stated in the query.

The Query Lifecycle can be illustrated as follows:

Creating and executing a query

	SQL

// get QueryManager
QueryManager queryManager = workspace.getQueryManager();
// make SQL query
Query query = queryManager.createQuery("SELECT * FROM nt:base ", Query.SQL);
// execute query
QueryResult result = query.execute();

	XPath

// get QueryManager
QueryManager queryManager = workspace.getQueryManager();
// make XPath query
Query query = queryManager.createQuery("//element(*,nt:base)", Query.XPATH);
// execute query
QueryResult result = query.execute();

Query result processing

// fetch query result
 QueryResult result = query.execute();

Now you can get results in an iterator of nodes:

NodeIterator it = result.getNodes();

Or, get the result in a table:

// get column names
 String[] columnNames = result.getColumnNames();
 // get column rows
 RowIterator rowIterator = result.getRows();
 while(rowIterator.hasNext()){
 // get next row
 Row row = rowIterator.nextRow();
 // get all values of row
 Value[] values = row.getValues();
 }

Scoring

The result returns a score for each row in the result set. The score
contains a value that indicates a rating of how well the result node
matches the query. A high value means a better matching than a low
value. This score can be used for ordering the result.

eXo JCR Scoring is a mapping of Lucene scoring. For more in-depth
understanding, see Lucene
documentation [http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/scoring.html].

jcr:score is counted in the next way - (lucene score)*1000f.

Score may be increased for specified nodes, see Indexing boost value.

Also, see an example Ordering by score.

Query usecases

The section shows you the different usecases of query. Through these
usercases, you will know how the repository structure is, and how to
create and execute a query, how to iterate over the result set and
according to the query what kind of results you will get.

Query result settings

SetOffset and SetLimit

Select all nodes with the ‘nt:unstructured’ primary type and returns
only 3 nodes starting with the second node in the list.

	Common info: The QueryImpl class has two methods: one to
indicate how many results shall be returned at most, and another to
fix the starting position.

	setOffset(long offset): Set the start offset of the result
set.

	setLimit(long position): Set the maximum size of the result
set.

	Repository structure: Repository contains mix:title nodes where
jcr:title has different values.

	root

	node1 (nt:unstructured)

	node2 (nt:unstructured)

	node3 (nt:unstructured)

	node4 (nt:unstructured)

	node5 (nt:unstructured)

	node6 (nt:unstructured)

	Query execution

SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:unstructured";
QueryImpl query = (QueryImpl)queryManager.createQuery(sqlStatement, Query.SQL);
//return starting with second result
query.setOffset(1);
// return 3 results
query.setLimit(3);
// execute query and fetch result
QueryResult result = query.execute();

	Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

In usual case (without using the setOffset and setLimit
methods), Node iterator returns all nodes (node1…node6). But in
this case, NodeIterator will return “node2”,”node3” and “node4”.

\[node1 node2 node3 node4 node5 node6\]

Type constraints

Finding all nodes

Only those nodes are found to which the session has READ permission. See
also Access Control.

Repository structure

Repository contains many different nodes.

	root

	folder1 (nt:folder)

	document1 (nt:file)

	folder2 (nt:folder)

	document2 (nt:unstructured)

	document3 (nt:folder)

Query execution

	SQL

// make SQL query
 QueryManager queryManager = workspace.getQueryManager();
 // create query
 String sqlStatement = "SELECT * FROM nt:base";
 Query query = queryManager.createQuery(sqlStatement, Query.SQL);
 // execute query and fetch result
 QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:base)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “folder1”,
“folder2”,”document1”,”document2”,”document3”, and another nodes in
workspace if they are here.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:path

	jcr:score

	/folder1

	1000

	/folder1/document1

	1000

	/folder1/folder2

	1000

	/folder1/folder2/document2

	1000

	/folder1/folder2/document3

	1000

	…

	…

Finding all nodes by primary type

Find all nodes whose primary type is “nt:file”.

Repository structure

The repository contains nodes with different primary types and mixin
types.

	root

	document1 primarytype = “nt:unstructured” mixintype = “mix:title”

	document2 primarytype = “nt:file” mixintype = “mix:lockable”

	document3 primarytype = “nt:file” mixintype = “mix:title”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:file";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:file)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document2” and “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:path

	jcr:score

	/document2

	2674

	/document3

	2674

Finding all nodes by mixin type

Find all nodes in repository that contains a “mix:title” mixin type.

Repository structure

The repository contains nodes with different primary types and mixin
types.

	root

	document1 primarytype = “nt:unstructured” mixintype = “mix:title”

	document2 primarytype = “nt:file” mixintype = “mix:lockable”

	document3 primarytype = “nt:file” mixintype = “mix:title”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “document1” and “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	…

	jcr:path

	jcr:score

	First document

	…

	/document1

	2674

	Second document

	…

	/document3

	2674

Property constraints

Property comparison

Find all nodes with the ‘mix:title’ mixin type where the
‘prop_pagecount’ property contains a value less than 90. Only select
the title of each node.

Repository structure

Repository contains several mix:title nodes, where each prop_pagecount
contains a different value.

	root

	document1 (mix:title) jcr:title=”War and peace”
prop_pagecount=1000

	document2 (mix:title) jcr:title=”Cinderella” prop_pagecount=100

	document3 (mix:title) jcr:title=”Puss in Boots” prop_pagecount=60

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT jcr:title FROM mix:title WHERE prop_pagecount < 90";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[@prop_pagecount < 90]/@jcr:title";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:title

	jcr:path

	jcr:score

	Puss in Boots

	/document3

	1725

LIKE constraint

Find all nodes with the ‘mix:title’ mixin type and where the ‘jcr:title’
property starts with ‘P’.

Note

See also the article about Find all mix:title nodes where jcr:title does NOT start with ‘P’.

Repository structure

The repository contains 3 mix:title nodes, where each jcr:title has a
different value.

	root

	document1 (mix:title) jcr:title=”Star wars” jcr:description=”Dart
rules!!”

	document2 (mix:title) jcr:title=”Prison break”
jcr:description=”Run, Forest, run))”

	document3 (mix:title) jcr:title=”Panopticum” jcr:description=”It’s
imagine film”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE jcr:title LIKE 'P%'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[jcr:like(@jcr:title, 'P%')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “document2” and “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:title

	jcr:description

	jcr:path

	jcr:score

	Prison break

	Run, Forest, run))

	/document2

	4713

	Panopticum

	It’s imagine film

	/document3

	5150

Escaping in LIKE statements

Find all nodes with the ‘mix:title’ mixin type and whose ‘jcr:title’
property starts with ‘P%ri’.

As you see “P%rison break” contains the symbol ‘%’. This symbol is
reserved for LIKE comparisons.

Within the LIKE pattern, literal instances of percent (“%”) or
underscore (“_”) must be escaped. The SQL ESCAPE clause allows the
definition of an arbitrary escape character within the context of a
single LIKE statement. The following example defines the backslash ‘ '
as escape character:

SELECT * FROM mytype WHERE a LIKE 'foo\%' ESCAPE '\'

XPath does not have any specification for defining escape symbols, so
you must use the default escape character (‘ ').

Repository structure

The repository contains mix:title nodes, where jcr:title can
have different values.

	root

	document1 (mix:title) jcr:title=”Star wars” jcr:description=”Dart
rules!!”

	document2 (mix:title) jcr:title=”P%rison break”
jcr:description=”Run, Forest, run))”

	document3 (mix:title) jcr:title=”Panopticum” jcr:description=”It’s
imagine film”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE jcr:title LIKE 'P#%ri%' ESCAPE '#'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[jcr:like(@jcr:title, 'P\\%ri%')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:title

	jcr:description

	jcr:path

	jcr:score

	P%rison break

	Run, Forest, run))

	/document2

	7452

NOT constraint

Find all nodes with a ‘mix:title’ mixin type and where the ‘jcr:title’
property does NOT start with a ‘P’ symbol.

Repository structure

The repository contains a mix:title node where the jcr:title has
different values.

	root

	document1 (mix:title) jcr:title=”Star wars” jcr:description=”Dart
rules!!”

	document2 (mix:title) jcr:title=”Prison break”
jcr:description=”Run, Forest, run))”

	document3 (mix:title) jcr:title=”Panopticum” jcr:description=”It’s
imagine film”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE NOT jcr:title LIKE 'P%'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[not(jcr:like(@jcr:title, 'P%'))]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get the nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document1”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	jcr:description

	jcr:path

	jcr:score

	Star wars

	Dart rules!!

	/document1

	4713

AND constraint

Find all “fairytales” with a page count more than 90 pages.

How does it sound in JCR terms - Find all nodes with the ‘mix:title’
mixin type where the ‘jcr:description’ property equals “fairytale” and
whose “prop_pagecount” property value is less than 90.

Note

See also Multivalue property comparison.

Repository structure

The repository contains “mix:title” nodes, where “prop_pagecount” has
different values.

	root

	document1 (mix:title) jcr:title=”War and peace”
jcr:description=”novel” prop_pagecount=1000

	document2 (mix:title) jcr:title=”Cinderella”
jcr:description=”fairytale” prop_pagecount=100

	document3 (mix:title) jcr:title=”Puss in Boots”
jcr:description=”fairytale” prop_pagecount=60

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE jcr:description = 'fairytale' AND prop_pagecount > 90";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[@jcr:description='fairytale' and @prop_pagecount > 90]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	jcr:description

	prop_pagecount

	jcr:path

	jcr:score

	Cinderella

	fairytale

	100

	/document2

	7086

OR constraint

Find all documents whose title is ‘Cinderella’ or whose description is
‘novel’.

How does it sound in jcr terms? - Find all nodes with the ‘mix:title’
mixin type whose ‘jcr:title’ property equals “Cinderella” or whose
“jcr:description” property value is “novel”.

Repository structure

The repository contains mix:title nodes, where jcr:title and
jcr:description have different values.

	root

	document1 (mix:title) jcr:title=”War and peace”
jcr:description=”novel”

	document2 (mix:title) jcr:title=”Cinderella”
jcr:description=”fairytale”

	document3 (mix:title) jcr:title=”Puss in Boots”
jcr:description=”fairytale”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE jcr:title = 'Cinderella' OR jcr:description = 'novel'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[@jcr:title='Cinderella' or @jcr:description = 'novel']";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document1” and “document2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	jcr:description

	jcr:path

	jcr:score

	War and peace

	novel

	/document1

	3806

	Cinderella

	fairytale

	/document2

	3806

Property existence constraint

Find all nodes with the ‘mix:title’ mixin type where the
‘jcr:description’ property does not exist (is null).

Repository structure

The repository contains mix:title nodes, in one of these nodes the
jcr:description property is null.

	root

	document1 (mix:title) jcr:title=”Star wars” jcr:description=”Dart
rules!!”

	document2 (mix:title) jcr:title=”Prison break”
jcr:description=”Run, Forest, run))”

	document3 (mix:title) jcr:title=”Titanic” // The description
property does not exist. This is the node we wish to find.

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE jcr:description IS NULL";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = ""//element(*,mix:title)[not(@jcr:description)]"";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	jcr:description

	jcr:path

	jcr:score

	Titanic

	null

	/document3

	1947

Finding nodes in a case-insensitive way

Find all nodes with the ‘mix:title’ mixin type and where the ‘jcr:title’
property equals ‘casesensitive’ in lower or upper case.

Repository structure

The repository contains mix:title nodes, whose jcr:title properties have
different values.

	root

	document1 (mix:title) jcr:title=”CaseSensitive”

	document2 (mix:title) jcr:title=”casesensitive”

	document3 (mix:title) jcr:title=”caseSENSITIVE”

Query execution

	UPPER case

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE UPPER(jcr:title) = 'CASESENSITIVE'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[fn:upper-case(@jcr:title)='CASESENSITIVE']";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

	LOWER case

	SQL

// make SQL query
 QueryManager queryManager = workspace.getQueryManager();
 // create query
 String sqlStatement = "SELECT * FROM mix:title WHERE LOWER(jcr:title) = 'casesensitive'";
 Query query = queryManager.createQuery(sqlStatement, Query.SQL);
 // execute query and fetch result
 QueryResult result = query.execute();

	XPath

// make XPath query
 QueryManager queryManager = workspace.getQueryManager();
 // create query
 String xpathStatement = "//element(*,mix:title)[fn:lower-case(@jcr:title)='casesensitive']";
 Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
 // execute query and fetch result
 QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document1”, “document2” and “document3” (in
all examples).

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	…

	jcr:path

	CaseSensitive

	…

	/document1

	casesensitive

	…

	/document2

	caseSENSITIVE

	…

	/document3

Date property comparison

Find all nodes of the “nt:resource” primary type whose
“jcr:lastModified” property value is greater than 2006-06-04 and less
than 2008-06-04.

Repository structure

Repository contains “nt:resource” nodes with different values of the
“jcr:lastModified” property

	root

	document1 (nt:file)

	jcr:content (nt:resource)
jcr:lastModified=”2006-01-19T15:34:15.917+02:00”

	document2 (nt:file)

	jcr:content (nt:resource)
jcr:lastModified=”2005-01-19T15:34:15.917+02:00”

	document3 (nt:file)

	jcr:content (nt:resource)
jcr:lastModified=”2007-01-19T15:34:15.917+02:00”

Query execution

	SQL

In SQL you have to use the keyword TIMESTAMP for date
comparisons. Otherwise, the date would be interpreted as a string.
The date has to be surrounded by single quotes (TIMESTAMP ‘datetime’)
and in the ISO standard format: YYYY-MM-DDThh:mm:ss.sTZD (
http://en.wikipedia.org/wiki/ISO_8601 and well explained in a W3C
note http://www.w3.org/TR/NOTE-datetime).

You will see that it can be a date only (YYYY-MM-DD) but also a
complete date and time with a timezone designator (TZD).

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
StringBuffer sb = new StringBuffer();
sb.append("select * from nt:resource where ");
sb.append("(jcr:lastModified >= TIMESTAMP '");
sb.append("2006-06-04T15:34:15.917+02:00");
sb.append("')");
sb.append(" and ");
sb.append("(jcr:lastModified <= TIMESTAMP '");
sb.append("2008-06-04T15:34:15.917+02:00");
sb.append("')");
String sqlStatement = sb.toString();
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

Compared to the SQL format, you have to use the keyword
xs:dateTime and surround the datetime by extra brackets:
xs:dateTime(‘datetime’). The actual format of the datetime also
conforms with the ISO date standard.

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
StringBuffer sb = new StringBuffer();
sb.append("//element(*,nt:resource)");
sb.append("[");
sb.append("@jcr:lastModified >= xs:dateTime('2006-08-19T10:11:38.281+02:00')");
sb.append(" and ");
sb.append("@jcr:lastModified <= xs:dateTime('2008-06-04T15:34:15.917+02:00')");
sb.append("]");
String xpathStatement = sb.toString();
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node foundNode = it.nextNode();
}

NodeIterator will return “/document3/jcr:content”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:lastModified

	…

	jcr:path

	2007-01-19T15:34:15.917+02:00

	…

	/document3/jcr:content

Node name constraint

Find all nodes with the ‘nt:file’ primary type whose node name is
‘document’. The node name is accessible by a function called
“fn:name()”.

Note

“fn:name()” can be used ONLY with an equal(‘=’) comparison.

Repository structure

The repository contains nt:file nodes with different names.

	root

	document1 (nt:file)

	file (nt:file)

	somename (nt:file)

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:file WHERE fn:name() = 'document'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:file)[fn:name() = 'document']";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return the node whose fn:name equals “document”.

Also, you can get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:path

	jcr:score

	/document1

	3575

Multivalue property comparison

Find all nodes with the ‘nt:unstructured’ primary type whose property
‘multiprop’ contains both values “one” and “two”.

Repository structure

The repository contains “nt:unstructured” nodes with different
‘multiprop’ properties.

	root

	node1 (nt:unstructured) multiprop = [“one”,”two”]

	node1 (nt:unstructured) multiprop = [“one”,”two”,”three”]

	node1 (nt:unstructured) multiprop = [“one”,”five”]

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:unstructured WHERE multiprop = 'one' AND multiprop = 'two'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:unstructured)[@multiprop = 'one' and @multiprop = 'two']";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “node1” and “node2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:primarytyp

	jcr:path

	jcr:score

	nt:unstructured

	/node1

	3806

	nt:unstructured

	/node2

	3806

Path constraints

Exact path constraint

Find a node with the ‘nt:file’ primary type that is located on the
“/folder1/folder2/document1” exact path.

Repository structure

Repository filled by different nodes. There are several folders which
contain other folders and files.

	root

	folder1 (nt:folder)

	folder2 (nt:folder)

	document1 (nt:file) // This document we want to find

	folder3 (nt:folder)

	document1 (nt:file)

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// we want find 'document1'
String sqlStatement = "SELECT * FROM nt:file WHERE jcr:path = '/folder1/folder2/document1'";
// create query
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// we want to find 'document1'
String xpathStatement = "/jcr:root/folder1[1]/folder2[1]/element(document1,nt:file)[1]";
// create query
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Remark: The indexes [1] are used in order to get the same result as
the SQL statement. SQL by default only returns the first node,
whereas XPath fetches by default all nodes.

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return expected “document1”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:path

	jcr:score

	/folder1/folder2/document1

	1030

Child node constraint

Find all nodes with the primary type ‘nt:folder’ that are children of
node by the “/root1/root2” path. Only find children, do not find further
descendants.

Repository structure

The repository is filled by “nt:folder” nodes. The nodes are placed in a
multilayer tree.

	root

	folder1 (nt:folder)

	folder2 (nt:folder)

	folder3 (nt:folder) // This node we want to find

	folder4 (nt:folder) // This node is not child but a
descendant of ‘/folder1/folder2/’.

	folder5 (nt:folder) // This node we want to find

Query execution

	SQL

The use of “%” in the LIKE statement includes any string, therefore
there is a second LIKE statement that excludes the string which
contains “/”. In this way, child nodes are included but descendant
nodes are excluded.

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:folder WHERE jcr:path LIKE '/folder1/folder2/%' AND NOT jcr:path LIKE '/folder1/folder2/%/%'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "/jcr:root/folder1[1]/folder2[1]/element(*,nt:folder)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “folder3” and “folder5”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:path

	jcr:score

	/folder1/folder2/folder3

	1707

	/folder1/folder2/folder5

	1707

Finding all descendant nodes

Find all nodes with the ‘nt:folder’ primary type that are descendants of
the “/folder1/folder2” node.

Repository structure

The repository contains “nt:folder” nodes. The nodes are placed in a
multilayer tree.

	root

	folder1 (nt:folder)

	folder2 (nt:folder)

	folder3 (nt:folder) // This node we want to find

	folder4 (nt:folder) // This node we want to find

	folder5 (nt:folder) // This node we want to find

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:folder WHERE jcr:path LIKE '/folder1/folder2/%'";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "/jcr:root/folder1[1]/folder2[1]//element(*,nt:folder)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return “folder3”, “folder4” and “folder5” nodes.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:path

	jcr:score

	/folder1/folder2/folder3

	1000

	/folder1/folder2/folder3/folder4

	1000

	/folder1/folder2/folder5

	1000

Ordering specifying

Ordering by property

Select all nodes with the ‘mix:title’ mixin type and order them by the
‘prop_pagecount’ property.

Repository structure

The repository contains several mix:title nodes, where ‘prop_pagecount’
has different values.

	root

	document1 (mix:title) jcr:title=”War and peace”
jcr:description=”roman” prop_pagecount=4

	document2 (mix:title) jcr:title=”Cinderella”
jcr:description=”fairytale” prop_pagecount=7

	document3 (mix:title) jcr:title=”Puss in Boots”
jcr:description=”fairytale” prop_pagecount=1

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title ORDER BY prop_pagecount ASC";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title) order by @prop_pagecount ascending";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

The NodeIterator will return nodes in the following order “document3”,
“document1”, “document2”.

You can also get a table:

Table content is:

	jcr:title

	jcr:description

	prop_pagecount

	jcr:path

	jcr:score

	Puss in Boots

	fairytale

	1

	/document3

	1405

	War and peace

	roman

	4

	/document1

	1405

	Cinderella

	fairytale

	7

	/document2

	1405

Ordering by descendant node property

Find all nodes with the ‘nt:unstructured’ primary type and sort them by
the property value of descendant nodes with the relative path ‘/a/b’.

Note

This ORDER BY construction only works in XPath.

Repository structure

	root

	node1 (nt:unstructured)

	a (nt:unstructured)

	b (nt:unstructured)

	node2 (nt:unstructured)

	a (nt:unstructured)

	b (nt:unstructured)

	c (nt:unstructured) prop = “a”

	node3 (nt:unstructured)

	a (nt:unstructured)

	b (nt:unstructured)

	c (nt:unstructured) prop = “b”

Query execution

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "/jcr:root/* order by a/b/c/@prop descending;
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return nodes in the following order - “node3”,”node2”
and “node1”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:primaryType

	jcr:path

	jcr:score

	nt:unstructured

	/testroot/node3

	1000

	nt:unstructured

	/testroot/node2

	1000

	nt:unstructured

	/testroot/node1

	1000

Ordering by score

Select all nodes with the mixin type ‘mix:title’ containing any word
from the set {‘brown’,’fox’,’jumps’}. Then, sort result by the score in
ascending node. This way nodes that match better the query statement are
ordered at the last positions in the result list.

Info

SQL and XPath queries support both score constructions: jcr:score
and jcr:score().

SELECT * FROM nt:base ORDER BY jcr:score [ASC|DESC]
SELECT * FROM nt:base ORDER BY jcr:score()[ASC|DESC]

//element(*,nt:base) order by jcr:score() [descending]
//element(*,nt:base) order by @jcr:score [descending]

Do not use “ascending” combined with jcr:score in XPath. The
following XPath statement may throw an exception:

... order by jcr:score() ascending

Do not set any ordering specifier - ascending is default:

... order by jcr:score()

Repository structure

The repository contains mix:title nodes, where the
jcr:description has different values.

	root

	document1 (mix:title) jcr:description=”The quick brown fox jumps
over the lazy dog.”

	document2 (mix:title) jcr:description=”The brown fox lives in the
forest.”

	document3 (mix:title) jcr:description=”The fox is a nice animal.”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(*, 'brown OR fox OR jumps') ORDER BY jcr:score() ASC";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
 QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[jcr:contains(., 'brown OR fox OR jumps')] order by jcr:score()";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return nodes in the following order: “document3”,
“document2”, “document1”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:description

	…

	jcr:path

	jcr:score

	The fox is a nice animal.

	…

	/document3

	2512

	The brown fox lives in the forest.

	…

	/document2

	3595

	The quick brown fox jumps over the lazy dog.

	…

	/document1

	5017

Ordering by path or name

Warning

Ordering by jcr:path or jcr:name does not supported.

There are two ways to order results, when path may be used as criteria:

	Order by property with the NAME or PATH value type (JCR supports it)

	Order by jcr:path `` or ``jcr:name - sort by the exact path or
name of node (JCR does not support it).

If no order specification is supplied in the query statement,
implementations may support document order on the result nodes (see the
6.6.4.2 Document Order section of
JSR-170 [http://www.jcp.org/en/jsr/detail?id=170]), and it is sorted
by order number.

By default, (if query does not contain any ordering statements) result
nodes are sorted by document order.

SELECT * FROM nt:unstructured WHERE jcr:path LIKE 'testRoot/%'

Fulltext search

Fulltext search by property

Find all nodes containing a ‘mix:title’ mixin type and whose
‘jcr:description’ contains “forest” string.

Repository structure

The repository is filled with nodes of the ‘mix:title’ mixin type and
different values of the ‘jcr:description’ property.

	root

	document1 (mix:title) jcr:description = “The quick brown fox jumps
over the lazy dog.”

	document2 (mix:title) jcr:description = “The brown fox lives in a
forest.” // This is the node we want to find

	document3 (mix:title) jcr:description = “The fox is a nice
animal.”

	document4 (nt:unstructured) jcr:description = “There is the word
forest, too.”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// we want find document which contains "forest" word
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(jcr:description, 'forest')";
// create query
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// we want find document which contains "forest" word
String xpathStatement = "//element(*,mix:title)[jcr:contains(@jcr:description, 'forest')]";
// create query
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:description

	…

	jcr:path

	The brown fox lives in forest.

	…

	/document2

Fulltext search by all properties

Find nodes with the ‘mix:title’ mixin type where any property contains
the ‘break’ string.

Repository structure

Repository filled with different nodes with the ‘mix:title’ mixin type
and different values of ‘jcr:title’ and ‘jcr:description’ properties.

	root

	document1 (mix:title) jcr:title =’Star Wars’ jcr:description =
‘Dart rules!!’

	document2 (mix:title) jcr:title =’Prison break’ jcr:description
= ‘Run, Forest, run))’

	document3 (mix:title) jcr:title =’Titanic’ jcr:description = ‘An
iceberg breaks a ship.’

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(*,'break')";
// create query
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// we want find 'document1'
String xpathStatement = "//element(*,mix:title)[jcr:contains(.,'break')]";
// create query
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

while(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document1” and “document2”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:title

	jcr:description

	…

	jcr:path

	Prison break.

	Run, Forest, run))

	…

	/document2

	Titanic

	An iceberg breaks a ship.

	…

	/document3

Finding nt:file document by content of child jcr:content node

The nt:file node type represents a file. It requires a single child
node called jcr:content. This node type represents images and other
binary content in a JCRWiki entry. The node type of jcr:content is
nt:resource which represents the actual content of a file.

Find node with the primary type is ‘nt:file’ and which whose
‘jcr:content’ child node contains “cats”.

Normally, you cannot find nodes (in this case) using just JCR SQL or
XPath queries. But you can configure indexing so that nt:file
aggregates jcr:content child node.

So, change indexing-configuration.xml:

<?xml version="1.0"?>
<!DOCTYPE configuration SYSTEM "http://www.exoplatform.org/dtd/indexing-configuration-1.2.dtd">
<configuration xmlns:jcr="http://www.jcp.org/jcr/1.0"
 xmlns:nt="http://www.jcp.org/jcr/nt/1.0">
 <aggregate primaryType="nt:file">
 <include>jcr:content</include>
 <include>jcr:content/*</include>
 <include-property>jcr:content/jcr:lastModified</include-property>
 </aggregate>
</configuration>

Now the content of ‘nt:file’ and ‘jcr:content’
(‘nt:resource’) nodes are concatenated in a single Lucene document.
Then, you can make a fulltext search query by content of ‘nt:file’.
This search includes the content of ‘jcr:content’ child node.

Repository structure

Repository contains different nt:file nodes.

	root

	document1 (nt:file)

	jcr:content (nt:resource) jcr:data = “The quick brown fox jumps
over the lazy dog.”

	document2 (nt:file)

	jcr:content (nt:resource) jcr:data = “Dogs do not like cats.”

	document3 (nt:file)

	jcr:content (nt:resource) jcr:data = “Cats jumping high.”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:file WHERE CONTAINS(*,'cats')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:file)[jcr:contains(.,'cats')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “document2” and “document3”.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:path

	jcr:score

	/document2

	1030

	/document3

	1030

Setting new analyzer and ignoring accent symbols

In this example, you will create a new Analyzer, set it in the
QueryHandler configuration, and make query to check it.

Standard analyzer does not normalize accents like é,è,à; therefore, a
word like ‘tréma’ will be stored to index as ‘tréma’. In case you want
to normalize such symbols and want to store ‘tréma’ word as ‘trema’, you
can do it.

There are two ways of setting up new Analyzer:

	The first way: Create a descendant class of SearchIndex with a new
Analyzer (see Search configuration);

There is only one way to create a new Analyzer (if there is no
previously created and accepted for your needs) and set it in Search
index.

	The second way: Register a new Analyzer in the QueryHandler
configuration;

You will use the last one:

Create a new MyAnalyzer.

public class MyAnalyzer extends Analyzer
{
 @Override
 public TokenStream tokenStream(String fieldName, Reader reader)
 {
 StandardTokenizer tokenStream = new StandardTokenizer(reader);
 // process all text with standard filter
 // removes 's (as 's in "Peter's") from the end of words and removes dots from acronyms.
 TokenStream result = new StandardFilter(tokenStream);
 // this filter normalizes token text to lower case
 result = new LowerCaseFilter(result);
 // this one replaces accented characters in the ISO Latin 1 character set (ISO-8859-1) by their unaccented equivalents
 result = new ISOLatin1AccentFilter(result);
 // and finally return token stream
 return result;
 }
}

Register the new MyAnalyzer in the configuration.

<workspace name="ws">
 ...
 <query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 <property name="analyzer" value="org.exoplatform.services.jcr.impl.core.MyAnalyzer"/>
 ...
 </properties>
 </query-handler>
 ...
</workspace>

Check it with query:

Find nodes with the ‘mix:title’ mixin type where ‘jcr:title’ contains
the “tréma” and “naïve” strings.

Repository structure

Repository filled by nodes with the ‘mix:title’ mixin type and different
values of the ‘jcr:title’ property.

	root

	node1 (mix:title) jcr:title = “tréma blabla naïve”

	node2 (mix:title) jcr:description = “trema come text naive”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(jcr:title, 'tr\u00E8ma na\u00EFve')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[jcr:contains(@jcr:title, 'tr\u00E8ma na\u00EFve')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “node1” and “node2”. How is it possible?
Remember that the MyAnalyzer transforms ‘tréma’ word to ‘trema’, so
node2 accepts the constraints too.

Also, you can get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	cr:title

	…

	cr:path

	trèma blabla naïve

	…

	/node1

	trema come text naive

	…

	/node2

Indexing rules and additional features

Highlighting search result

It is also called “Excerpt” (see Excerpt configuration in the Search Configuration
section and in the Searching Repository).

The goal of this query is to find words “eXo” and “implementation” with
fulltext search and high-light these words in the result value.

Basic info

High-lighting is not the default feature so you must set it in
jcr-config.xml, also excerpt provider must be defined:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="support-highlighting" value="true" />
 <property name="excerptprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.WeightedHTMLExcerpt"/>
 ...
 <properties>
</query-handler>

Also, remember that you can make indexing rules as in the example below:

Write rules for all nodes with the 'nt:unstructed' primary node type
where ‘rule’ property equals to the “excerpt” string. For those
nodes, you will exclude the “title” property from high-lighting and
set the “text” property as highlightable.
Indexing-configuration.xml must contain the next rule:

<index-rule nodeType="nt:unstructured" condition="@rule='excerpt'">
 <property useInExcerpt="false">title</property>
 <property>text</property>
</index-rule>

Repository structure

You have a single node with the 'nt:unstructured' primary type.

	document (nt:unstructured)

	rule = “excerpt”

	title = “eXoJCR”

	text = “eXo is a JCR implementation”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT rep:excerpt() FROM nt:unstructured WHERE CONTAINS(*, 'eXo implementation')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:unstructured)[jcr:contains(., 'eXo implementation')]/rep:excerpt(.)";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Now, see on the result table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is

	rep:excerpt()

	jcr:path

	jcr:score

	<div>eXois JCRimplementation<div>

	/testroot/node1

	335

As you see, words “eXo” and “implementation” are highlighted.

Also, you can get exactly the “rep:excerpt” value:

RowIterator rows = result.getRows();
Value excerpt = rows.nextRow().getValue("rep:excerpt(.)");
// excerpt will be equal to "<div><span\>eXo is a JCR implementation</div>"

Indexing boost value

In this example, you will set different boost values for predefined
nodes, and check effect by selecting those nodes and order them by
jcr:score.

The default boost value is 1.0. Higher boost values (a reasonable range
is 1.0 - 5.0) will yield a higher score value and appear as more
relevant.

Note

See Search configuration.

Indexing configuration

In the indexing-config.xml, set boost values for nt:ustructured
nodes ‘text’ property.

<!--
This rule actualy do nothing. 'text' property has default boost value.
-->
<index-rule nodeType="nt:unstructured" condition="@rule='boost1'">
 <!-- default boost: 1.0 -->
 <property>text</property>
</index-rule>

<!--
Set boost value as 2.0 for 'text' property in nt:unstructured nodes where property 'rule' equal to 'boost2'
-->
<index-rule nodeType="nt:unstructured" condition="@rule='boost2'">
 <!-- boost: 2.0 -->
 <property boost="2.0">text</property>
</index-rule>

<!--
Set boost value as 3.0 for 'text' property in nt:unstructured nodes where property 'rule' equal to 'boost3'
-->
<index-rule nodeType="nt:unstructured" condition="@rule='boost3'">
 <!-- boost: 3.0 -->
 <property boost="3.0">text</property>
</index-rule>

Repository structure

Repository contains many nodes with the “nt:unstructured” primary
type. Each node contains the ‘text’ property and the ‘rule’
property with different values.

	root

	node1(nt:unstructured) rule=’boost1’ text=’The quick brown fox
jump…’

	node2(nt:unstructured) rule=’boost2’ text=’The quick brown fox
jump…’

	node3(nt:unstructured) rule=’boost3’ text=’The quick brown fox
jump…’

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:unstructured WHERE CONTAINS(text, 'quick') ORDER BY jcr:score() DESC";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:unstructured)[jcr:contains(@text, 'quick')] order by @jcr:score descending";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return nodes in next order “node3”, “node2”, “node1”.

Exclusion from node scope index

This example will exclude some ‘text’ property of the
nt:unstructured node from indexing. Therefore, node will not be
found by the content of this property, even if it accepts all
constraints.

First of all, add rules to the indexing-configuration.xml file:

<index-rule nodeType="nt:unstructured" condition="@rule='nsiTrue'">
 <!-- default value for nodeScopeIndex is true -->
 <property>text</property>
</index-rule>

<index-rule nodeType="nt:unstructured" condition="@rule='nsiFalse'">
 <!-- do not include text in node scope index -->
 <property nodeScopeIndex="false">text</property>
</index-rule>

Note

See Search configuration.

Repository structure

Repository contains the “nt:unstructured” nodes with the same ‘text’
property and different ‘rule’ properties (even null).

	root

	node1 (nt:unstructured) rule=”nsiTrue” text=”The quick brown fox
…”

	node2 (nt:unstructured) rule=”nsiFalse” text=”The quick brown fox
…”

	node3 (nt:unstructured) text=”The quick brown fox …” // as you
see this node not mentioned in indexing-coniguration

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:unstructured WHERE CONTAINS(*,'quick')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:unstructured)[jcr:contains(., 'quick')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “node1” and “node3”. Node2, as you see, is not
in result set.

Also, you can get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:primarytype

	jcr:path

	jcr:score

	nt:unstructured

	/node1

	3806

	nt:unstructured

	/node3

	3806

Regular expressions as property name in indexing rule

As of eXo Platofmr 4.4 version, it is possible to put an index-rule that
allows to search all properties having any namespace (.*) and/or any
local node type name i.e matching only a node with namespace. To do so,
you need to add this rule:

<index-rule nodeType="nt:unstructured"">
 <property isRegexp="true">.*:.*</property>
</index-rule>

The following configuration .* expression matches property names with
or without prefix.

<index-rule nodeType="nt:unstructured"">
 <property isRegexp="true">.*</property>
</index-rule>

This example explains how to configure indexing in the next way. All
properties of nt:unstructured nodes must be excluded from search,
except properties whoes names end with the ‘Text’ string. First of all,
add rules to the indexing-configuration.xml file:

<index-rule nodeType="nt:unstructured"">
 <property isRegexp="true">.*Text</property>
</index-rule>

Note

See `Search Configuration. <#JCR.SearchConfiguration>`__

Now, check this rule with a simple query by selecting all nodes with the
'nt:unstructured' primary type and with the ‘quick' string
(fulltext search by full node).

Repository structure

Repository contains the “nt:unstructured” nodes with different
‘text’-like named properties.

	root

	node1 (nt:unstructured) Text=”The quick brown fox …”

	node2 (nt:unstructured) OtherText=”The quick brown fox …”

	node3 (nt:unstructured) Textle=”The quick brown fox …”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:unstructured WHERE CONTAINS(*,'quick')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,nt:unstructured)[jcr:contains(., 'quick')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “node1” and “node2”. “node3”, as you see, is
not in result set.

Also, you can get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

Table content is:

	jcr:primarytype

	jcr:path

	jcr:score

	nt:unstructured

	/node1

	3806

	nt:unstructured

	/node2

	3806

Synonym provider

Find all mix:title nodes where title contains synonyms to ‘fast’ word.

Note

See also about the synonym provider configuration in Searching for repository content.

The synonym provider must be configured in the
indexing-configuration.xml file:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="synonymprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.PropertiesSynonymProvider" />
 <property name="synonymprovider-config-path" value="../../synonyms.properties" />
 ...
 </properties>
</query-handler>

The synonym.properties file contains the next synonyms list:

ASF=Apache Software Foundation
quick=fast
sluggish=lazy

Repository structure

Repository contains mix:title nodes, where jcr:title has
different values.

	root

	document1 (mix:title) jcr:title=”The quick brown fox jumps over
the lazy dog.”

Query execution

SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM mix:title WHERE CONTAINS(jcr:title, '~fast')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*,mix:title)[jcr:contains(@jcr:title, '~fast')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return expected document1. This is a purpose of
synonym providers. Find by a specified word, but return by all synonyms.

Checking spell

Check the correct spelling of phrase ‘quik OR (-foo bar)’ according to
data already stored in index.

Note

See also SpellChecker configuration in Searching for repository content.

SpellChecker must be settled in query-handler config.

See the test-jcr-config.xml file as below:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="spellchecker-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker$FiveSecondsRefreshInterval" />
 ...
 </properties>
</query-handler>

Repository structure

Repository contains node with the “The quick brown fox jumps over the
lazy dog” string property.

	root

	node1 property=”The quick brown fox jumps over the lazy dog.”

Query execution

Query looks for the root node only, because spell checker looks for
suggestions by full index. So complicated query is redundant.

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT rep:spellcheck() FROM nt:base WHERE jcr:path = '/' AND SPELLCHECK('quik OR (-foo bar)')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "/jcr:root[rep:spellcheck('quik OR (-foo bar)')]/(rep:spellcheck())";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Get suggestion of the correct spelling as follows:

RowIterator it = result.getRows();
Row r = rows.nextRow();
Value v = r.getValue("rep:spellcheck()");
String correctPhrase = v.getString();

So, correct spelling for phrase “quik OR (-foo bar)” is “quick OR (-fox
bar)”.

Finding similar nodes

Find similar nodes to node by the ‘/baseFile/jcr:content' path.

In this example, the baseFile node will contain text where “terms”
word happens many times. That is a reason why the existence of this word
will be used as a criteria of node similarity (for the baseFile
node).

Note

See also similarity and configuration in Searching for repository content.

Highlighting support must be added to the test-jcr-config.xml
configuration file:

<query-handler class="org.exoplatform.services.jcr.impl.core.query.lucene.SearchIndex">
 <properties>
 ...
 <property name="support-highlighting" value="true" />
 ...
 </properties>
</query-handler>

Repository structure

Repository contains many “nt:file” nodes:

	root

	baseFile (nt:file)

	jcr:content (nt:resource) jcr:data=”Similarity” is
determined by looking up terms that are common to nodes.
There are some conditions that must be met for a term to be
considered. This is required to limit the number possibly
relevant terms.

	Only terms with at least 4 characters are considered.

	Only terms that occur at least 2 times in the source
node are considered.

	Only terms that occur in at least 5 nodes are
considered.”

	target1 (nt:file)

	jcr:content (nt:resource) jcr:data=”Similarity is determined by
looking up terms that are common to nodes.”

	target2 (nt:file)

	jcr:content (nt:resource) jcr:data=”There is no you know what”

	target3 (nt:file)

	jcr:content (nt:resource) jcr:data=” Terms occur here”

Query execution

	SQL

// make SQL query
QueryManager queryManager = workspace.getQueryManager();
// create query
String sqlStatement = "SELECT * FROM nt:resource WHERE SIMILAR(.,'/baseFile/jcr:content')";
Query query = queryManager.createQuery(sqlStatement, Query.SQL);
// execute query and fetch result
QueryResult result = query.execute();

	XPath

// make XPath query
QueryManager queryManager = workspace.getQueryManager();
// create query
String xpathStatement = "//element(*, nt:resource)[rep:similar(., '/testroot/baseFile/jcr:content')]";
Query query = queryManager.createQuery(xpathStatement, Query.XPATH);
// execute query and fetch result
QueryResult result = query.execute();

Fetching result

Let’s get nodes:

NodeIterator it = result.getNodes();

if(it.hasNext())
{
 Node findedNode = it.nextNode();
}

NodeIterator will return “/baseFile/jcr:content”,”/target1/jcr:content”
and “/target3/jcr:content”.

As you see the base node is also in the result set.

You can also get a table:

String[] columnNames = result.getColumnNames();
RowIterator rit = result.getRows();
while (rit.hasNext())
{
 Row row = rit.nextRow();
 // get values of the row
 Value[] values = row.getValues();
}

The table content is:

	jcr:path

	…

	jcr:score

	/baseFile/jcr:content

	…

	2674

	/target1/jcr:content

	…

	2674

	/target3/jcr:content

	…

	2674

XPath queries containing node names starting with a number

If you execute an XPath request like this:

	XPath

// get QueryManager
QueryManager queryManager = workspace.getQueryManager();
// make XPath query
Query query = queryManager.createQuery("/jcr:root/Documents/Publie/2010//element(*, exo:article)", Query.XPATH);

You will have an error: “Invalid request”. This happens because XML
does not allow names starting with a number - and XPath is part of
XML: http://www.w3.org/TR/REC-xml/#NT-Name

Therefore, you cannot do XPath requests using a node name that starts
with a number.

Easy workarounds:

	Use an SQL request.

	Use escaping.

Using fulltext search

In this section, you will discover all features around the full text
search provided out of the box into the product.

Note

The fulltext search is in the repository-configuration.xml file
which can be found in various
locations. Read
Search Configuration for more
information about index configuration.

Bi-directional RangeIterator

QueryResult.getNodes() will return bi-directional NodeIterator
implementation.

Note

Bi-directional NodeIterator is not supported in two following cases:

	SQL query: select * from nt:base.

	XPath query: //*.

TwoWayRangeIterator interface:

/**
 * Skip a number of elements in the iterator.
 *
 * @param skipNum the non-negative number of elements to skip
 * @throws java.util.NoSuchElementException if skipped past the first element
 * in the iterator.
 */
public void skipBack(long skipNum);

Usage:

NodeIterator iter = queryResult.getNodes();
while (iter.hasNext()) {
 if (skipForward) {
 iter.skip(10); // Skip 10 nodes in forward direction
 } else if (skipBack) {
 TwoWayRangeIterator backIter = (TwoWayRangeIterator) iter;
 backIter.skipBack(10); // Skip 10 nodes back
 }

}

Fuzzy searches

JCR supports such features as Lucene Fuzzy Searches Apache Lucene -
Query Parser
Syntax [http://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/queryparsersyntax.html].

To use it, you have to form a query like the one described below:

QueryManager qman = session.getWorkspace().getQueryManager();
Query q = qman.createQuery("select * from nt:base where contains(field, 'ccccc~')", Query.SQL);
QueryResult res = q.execute();

SynonymSearch

Searching with synonyms is integrated in the jcr:contains() function
and uses the same syntax as synonym searches in Google. If a search term
is prefixed by a tilde symbol (~), synonyms of the search term are
taken into consideration.

For example:

SQL: select * from nt:resource where contains(., '~parameter')

XPath: //element(*, nt:resource)[jcr:contains(., '~parameter')

This feature is disabled by default and you need to add a configuration
parameter to the query-handler element in your JCR configuration
file to enable it.

<param name="synonymprovider-config-path" value="..you path to configuration file....."/>
<param name="synonymprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.PropertiesSynonymProvider"/>

/**
 * <code>SynonymProvider</code> defines an interface for a component that
 * returns synonyms for a given term.
 */
public interface SynonymProvider {

 /**
 * Initializes the synonym provider and passes the file system resource to
 * the synonym provider configuration defined by the configuration value of
 * the <code>synonymProviderConfigPath</code> parameter. The resource may be
 * <code>null</code> if the configuration parameter is not set.
 *
 * @param fsr the file system resource to the synonym provider
 * configuration.
 * @throws IOException if an error occurs while initializing the synonym
 * provider.
 */
 public void initialize(InputStream fsr) throws IOException;

 /**
 * Returns an array of terms that are considered synonyms for the given
 * <code>term</code>.
 *
 * @param term a search term.
 * @return an array of synonyms for the given <code>term</code> or an empty
 * array if no synonyms are known.
 */
 public String[] getSynonyms(String term);
}

High-lighting

An ExcerptProvider retrieves text excerpts for a node in the query
result and marks up the words in the text that match the query terms.

By default, highlighting words matched the query is disabled because
this feature requires that additional information is written to the
search index. To enable this feature, you need to add a configuration
parameter to the query-handler element in your JCR configuration
file.

<param name="support-highlighting" value="true"/>

Additionally, there is a parameter that controls the format of the
excerpt created. In JCR, the default is set to
org.exoplatform.services.jcr.impl.core.query.lucene.DefaultHTMLExcerpt.
The configuration parameter for this setting is:

<param name="excerptprovider-class" value="org.exoplatform.services.jcr.impl.core.query.lucene.DefaultXMLExcerpt"/>

DefaultXMLExcerpt

This excerpt provider creates an XML fragment of the following form:

<excerpt>
 <fragment>
 <highlight>exoplatform</highlight> implements both the mandatory
 XPath and optional SQL <highlight>query</highlight> syntax.
 </fragment>
 <fragment>
 Before parsing the XPath <highlight>query</highlight> in
 <highlight>exoplatform</highlight>, the statement is surrounded
 </fragment>
</excerpt>

DefaultHTMLExcerpt

This excerpt provider creates an HTML fragment of the following form:

<div>

 exoplatform implements both the mandatory XPath
 and optional SQL query syntax.

 Before parsing the XPath query in
 exoplatform, the statement is surrounded

</div>

How to use

If you are using XPath, you must use the rep:excerpt() function in
the last location step:

QueryManager qm = session.getWorkspace().getQueryManager();
Query q = qm.createQuery("//*[jcr:contains(., 'exoplatform')]/(@Title|rep:excerpt(.))", Query.XPATH);
QueryResult result = q.execute();
for (RowIterator it = result.getRows(); it.hasNext();) {
 Row r = it.nextRow();
 Value title = r.getValue("Title");
 Value excerpt = r.getValue("rep:excerpt(.)");
}

The above code searches for nodes that contain the exoplatform word
and then gets the value of the Title property and an excerpt for
each result node.

It is also possible to use a relative path in the Row.getValue()
call while the query statement still remains the same. Also, you may use
a relative path to a string property. The returned value will then be an
excerpt based on string value of the property.

Both available excerpt providers will create fragments of about 150
characters and up to 3 fragments.

In SQL, the function is called excerpt() without the rep prefix,
but the column in the RowIterator will nonetheless be labelled
rep:excerpt(.).

QueryManager qm = session.getWorkspace().getQueryManager();
Query q = qm.createQuery("select excerpt(.) from nt:resource where contains(., 'exoplatform')", Query.SQL);
QueryResult result = q.execute();
for (RowIterator it = result.getRows(); it.hasNext();) {
 Row r = it.nextRow();
 Value excerpt = r.getValue("rep:excerpt(.)");
}

It is also possible to get an excerpt of all the properties at the same
time. See the example below:

QueryManager qm = session.getWorkspace().getQueryManager();
 queryManager.createQuery("select excerpt(.) from exo:article where contains(exo:title, 'excerpt') or contains(exo:text, 'excerpt') or contains(exo:summary, 'excerpt') ORDER BY exo:title", Query.SQL);
 QueryResult result = q.execute();
 for (RowIterator it = result.getRows(); it.hasNext();)
 {
 Row r = it.nextRow();
 Value excerpt = r.getValue("rep:excerpt(exo:text|exo:summary|exo:title)");
 }

Note

The maximum number of fragments to create can be changed thanks to
the exo.jcr.component.core.AbstractExcerpt.maxFragments System
property. The default value of this parameter is 3.

The maximum number of characters in a fragment can be changed thanks
to the exo.jcr.component.core.AbstractExcerpt.maxFragmentSize
System property. The default value of this parameter is 150
characters.

Spell checker

The Lucene-based query handler implementation supports a pluggable
spellchecker mechanism. By default, spell checking is not available and
you have to configure it first. See the spellCheckerClass parameter
on page Search Configuration. JCR
currently provides an implementation class which uses the
lucene-spellchecker [http://wiki.apache.org/jakarta-lucene/SpellChecker]
to contribute. The dictionary is derived from the fulltext indexed
content of the workspace and updated periodically. You can configure the
refresh interval by picking one of the available inner classes of
org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker:

	OneMinuteRefreshInterval

	FiveMinutesRefreshInterval

	ThirtyMinutesRefreshInterval

	OneHourRefreshInterval

	SixHoursRefreshInterval

	TwelveHoursRefreshInterval

	OneDayRefreshInterval

For example, if you want a refresh interval of six hours, the class name
is
org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker$SixHoursRefreshInterval.
If you use
org.exoplatform.services.jcr.impl.core.query.lucene.spell.LuceneSpellChecker,
the refresh interval will be one hour.

The spell checker dictionary is stored as a lucene index under
“index-dir”/spellchecker. If it does not exist, a background thread
will create it on startup. Similarly, the dictionary refresh is also
done in a background thread to not block regular queries.

How to use

You can do a spelling check of a fulltext statement either with an XPath
or a SQL query:

// rep:spellcheck('explatform') will always evaluate to true
Query query = qm.createQuery("/jcr:root[rep:spellcheck('explatform')]/(rep:spellcheck())", Query.XPATH);
RowIterator rows = query.execute().getRows();
// the above query will always return the root node no matter what string we check
Row r = rows.nextRow();
// get the result of the spell checking
Value v = r.getValue("rep:spellcheck()");
if (v == null) {
 // no suggestion returned, the spelling is correct or the spell checker
 // does not know how to correct it.
} else {
 String suggestion = v.getString();
}

And the same using SQL:

// SPELLCHECK('exoplatform') will always evaluate to true
Query query = qm.createQuery("SELECT rep:spellcheck() FROM nt:base WHERE jcr:path = '/' AND SPELLCHECK('explatform')", Query.SQL);
RowIterator rows = query.execute().getRows();
// the above query will always return the root node no matter what string we check
Row r = rows.nextRow();
// get the result of the spell checking
Value v = r.getValue("rep:spellcheck()");
if (v == null) {
 // no suggestion returned, the spelling is correct or the spell checker
 // does not know how to correct it.
} else {
 String suggestion = v.getString();
}

Similarity

JCR allows you to search for nodes that are similar to an existing node.

Similarity is determined by looking up terms that are common to nodes.
There are some conditions that must be met for a term to be considered.
This is required to limit the number possibly relevant terms.

	Only terms with at least 4 characters are considered.

	Only terms that occur at least 2 times in the source node are
considered.

	Only terms that occur in at least 5 nodes are considered.

Note

The similarity functionality requires that the Highlighting
support is enabled. Make sure that you have the following parameter
set for the query handler in your workspace.xml file.

<param name="support-highlighting" value="true"/>

The functions are called rep:similar() (in XPath) and similar()
(in SQL) and have two arguments:

	relativePath: a relative path for a descendant node or for the
current node.

	absoluteStringPath: a string literal that contains the path to
the node for which to find similar nodes.

Warning

Relative path is not supported yet.

Examples:

//element(*, nt:resource)[rep:similar(., '/parentnode/node.txt/jcr:content')]

Finds nt:resource nodes, which are similar to node by the
/parentnode/node.txt/jcr:content path.

Frequently asked questions

Q: How to open and close a session properly to avoid memory
leaks?

Session session = repository.login(credentials);
 try
 {
 // here your code
 }
 finally
 {
 session.logout();
 }

Q: What should I use to check if an Item exists before getting the
Value?

	A: Use Session.itemExists(String absPath), ``Node.hasNode(String

	relPath)`` or Property.hasProperty(String name). It is

also possible to check Node.hasNodes() and Node.hasProprties().

Q: Does it make sense to have all the nodes referable to use
``getNodeByUUID`` all the time?

A: Until it is applicable for a business logic, it can be. But take
into account the paths are human readable and let you think in
hierarchy. If it is important, a location based approach is preferable.

Q: Is it better to use ``Session.getNodeByUUID`` or
``Session.getItem``?

A: Session.getNodeByUUID() about 2.5 times faster of
Session.getItem(String) and only 25% faster of
Node.getNode(String). See the daily test results for such
comparisons in the following link as the following:
http://tests.exoplatform.org/jcr.html

Q: How to use Observation properly?

A: JCR Observation is a way to listen on persistence changes of a
Repository. It provides several options to configure the listener for
interesting changes only. To use properly, it is important to understand
concept of events filtering for a registered EventListener (8.3.3
Observation Manager). An often confusing part, it is the absPath, it
is an associated parent of a location you want to observe events on. For
example, it is a parent of child node(s) or this parent property(ies);
if isDeep is true, then you will get events of all the subtree of
child nodes also. The same actual for uuid and nodeTypeName
parameters of the ObservationManager.addEventListener() method.

Q: What is default query ordering?

A: By default, (if query does not contain any ordering statements)
result nodes are sorted by document order.

Q: How does eXo JCR indexer use content encoding?

A: 1. Indexer uses the jcr:encoding property of the
nt:resource node (used as the jcr:content child node of
nt:file).

2. If no jcr:encoding property is set, the Document Service will use
the one configured in the service (defaultEncoding).

	If nothing is configured a JVM, the default encoding will be used.

Q: Can I use Session after logging out?

A: No. Any instance of Session or Node (acquired through session)
should not be used after logging out anymore. At least, it is highly
recommended not to use.

Advanced usage

	Extensions

Details on advanced usage of eXo JCR extensions, including JCR
Service extensions, Access control, JCR API extensions, Registry
service and Groovy REST services.

	Workspace data container

Explanation on the architecture of workspace data container and
instructions on how to implement workspace data container.

	Binary values processing

Instructions on how to process binary large objects in eXo JCR.

	Link Producer service

Explanation on what link producer service is and why and how to use
it.

Extensions

eXo JCR fully covers the JSR
170 [http://jcp.org/en/jsr/detail?id=170] specification, but also
provides a set of out-of-box extensions. This may be very helpful to
better fulfil with some requirements that cannot be managed by what the
specification itself proposes.

The sub-sections below will show you how to use the extensions,
consisting of JCR service, Access control, JCR API, Registry Service,
and Groovy REST service.

JCR service

eXo JCR supports observation, which enables applications to register
interest in events that describe changes on a workspace, and then
monitor and respond to those events. The standard observation feature
allows dispatching events when persistent change on the workspace is
made.

eXo JCR also offers a proprietary Extension Action which dispatches
and fires an event upon each transient session level change,
performed by a client. In other words, the event is triggered when a
client’s program invokes some updating methods in a session or a
workspace, such asSession.addNode(),Session.setProperty(),
Workspace.move() and more.

By default, when an action fails, the related exception is simply
logged. In case you want to change the default exception handling, you
can implement the AdvancedAction interface. In case the JCR detects
that your action is of the AdvancedAction type, it will call the
onError method instead of simply logging it. A default
implementation of the onError method is available in the
AbstractAdvancedAction abstract class. It reverts all pending
changes of the current JCR session for any kind of event corresponding
to a write operation. Then, in case the provided exception is an
instance of the AdvancedActionException type, it will throw it;
otherwise it will log simply it. An AdvancedActionException will be
thrown in case the changes could not be reverted.

Warning

The AdvancedAction interface must be implemented with a lot of caution to avoid being a performance killer.

One important recommendation should be applied for an extension action
implementation. Each action will add its own execution time to standard
JCR methods (Session.addNode(), Session.setProperty(),
Workspace.move(), and more.) execution time. As a result, you need
to minimize the Action.execute(Context) body execution time.

To make the rule, you can use the dedicated Thread in the
Action.execute(Context) body for a custom logic. But if your
application logic requires the action to add items to a created/updated
item and you save these changes immediately after the JCR API method
call is returned, the suggestion with Thread is not applicable for you
in this case.

Implementation

The JCR Service’s implementation may be illustrated in the following
interceptor framework class diagram.

[image: image0]

Configuration

Add a SessionActionCatalog service and an appropriate
AddActionsPlugin configuration to your eXo Container configuration.
As usual, the plugin can be configured as in-component-place.

Each Action entry is exposed as
org.exoplatform.services.jcr.impl.ext.action.ActionConfiguration of
the actions collection of
org.exoplatform.services.jcr.impl.ext.action.AddActionsPlugin$ActionsConfig.
The mandatory field named actionClassName is the fully qualified
name of org.exoplatform.services.command.action.Action
implementation - the command will be launched in case the current event
matches the criteria. All other fields are criteria. The criteria
are *AND*ed together. In other words, for a particular item to be
listened to, it must meet ALL the criteria:

	workspace: A comma delimited (ORed) list of workspaces.

	eventTypes: A comma delimited (ORed) list of event names to
be listened to. This is the only mandatory field, others are optional
and if they are missing they are interpreted as ANY.

	path: A comma delimited (ORed) list of item absolute paths
(or within its subtree if isDeep is true, which is the
default value).

	nodeTypes: A comma delimited (ORed) list of the current
NodeType. JCR supports the functionality of nodeType and
parentNodeType. This parameter has different semantics, depending
on the type of the current item and the operation performed.

	If the current item is a property, it means parent node
type.

	If the current item is a node, the semantic depends on the
event type:

	add node event: the node type of the newly added node.

	add mixin event: the newly added mixing node type of the
current node.

	remove mixin event: the removed mixin type of the current
node.

	other events: the already assigned NodeType(s) of the
current node (can be both primary and mixin).

Note

	The list of fields can be extended.

	No spaces between list elements.

	isDeep=false means node, node properties and child nodes.

The list of supported Event names: addNode, addProperty,
changeProperty, removeProperty, removeNode, addMixin, removeMixin, lock,
unlock, checkin, checkout, read, moveNode..

<component>
 <type>org.exoplatform.services.jcr.impl.ext.action.SessionActionCatalog</type>
 <component-plugins>
 <component-plugin>
 <name>addActions</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.impl.ext.action.AddActionsPlugin</type>
 <description>add actions plugin</description>
 <init-params>
 <object-param>
 <name>actions</name>
 <object type="org.exoplatform.services.jcr.impl.ext.action.AddActionsPlugin$ActionsConfig">
 <field name="actions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.jcr.impl.ext.action.ActionConfiguration">
 <field name="eventTypes"><string>addNode,removeNode</string></field>
 <field name="path"><string>/test,/exo:test</string></field>
 <field name="isDeep"><boolean>true</boolean></field>
 <field name="nodeTypes"><string>nt:file,nt:folder,mix:lockable</string></field>
 <!-- field name="workspace"><string>backup</string></field -->
 <field name="actionClassName"><string>org.exoplatform.services.jcr.ext.DummyAction</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </component-plugins>
</component>

.. _PLF50/JCR.AccessControl:

Access control

eXo JCR is a complete implementation of the standard
JSR 170 - ContentRepository for Java TM Technology API [http://jcp.org/en/jsr/detail?id=170],
including Level 1, Level 2 and Additional Features specified in the JCR Specification.

Standard action permissions

The JCR specification (JSR 170 [http://jcp.org/en/jsr/detail?id=170])
does not have many requirements about Access Control. It only requires the implementation
of the Session.checkPermission(String absPath, String actions)
method. This method checks if a current session has permissions to
perform some actions on absPath:

	absPath: The string representation of a JCR absolute path.

	actions: eXo JCR interprets this string as a comma separated the list
of individual action names, such as 4 types defined in JSR 170:

	add_node: Permission to add a node.

	set_property: Permission to set a property.

	remove: Permission to remove an item (node or property).

	read: Permission to retrieve a node or read a property value.

For example:

	
	``session.checkPermission(“/Groups/organization”,

	“add_node,set_property”)`` will check if the session allows

adding a child node to “organization” and modifying its properties.
If one of the two permissions is denied, an AccessDeniedException
is thrown.

	
	``session.checkPermission(“/Groups/organization/exo:name”,

	“read,set_property”)`` will check if the session allows

reading and changing the “exo:name” property of the
“organization” node.

	
	``session.checkPermission(“/Groups/organization/exo:name”,

	“remove”)`` will check if the session allows removing the

“exo:name” property or node.

eXo access control

The JSR 170 [http://jcp.org/en/jsr/detail?id=170] specification does
not define how permissions are managed or checked. So eXo JCR has
implemented its own proprietary extension to manage and check
permissions on nodes. In essence, this extension uses an Access Control
List (ACL) [http://en.wikipedia.org/wiki/Access_control_list] policy
model applied to eXo Organization model.

Principal and Identity

At the heart of eXo Access Control, is the notion of the identity
concept. Access to JCR is made through sessions acquired against a
repository. Sessions can be authenticated through the standard (but
optional) repository login mechanism. Each session is associated with a
principal. The principal is an authenticated user or group that may
act on JCR data. The identity is a string identifying this group or
user.’

There are 3 reserved identities that have special meanings in eXo JCR:

	any: represent any authenticated session.

	anonim: represent a principal for non-authenticated sessions. (No
error, it’s really “anonim”).

	system: represent a principal for system sessions, typically used
for administrative purposes. System session has full access (all
permissions) to all nodes; therefore be careful when working with
system sessions.

Note

	Access control nodetypes are not extensible: The access control

	mechanism works for exo:owneable and exo:privilegeable
nodetypes only, not for their subtypes. So, you cannot extend those
nodetypes.

Autocreation: By default, newly created nodes are neither
exo:privilegeable nor exo:owneable but it is possible to
configure the repository to auto-create exo:privilegeable or/and
exo:owneable thanks to eXo’s JCR interceptors extension (see JCR Extensions.

OR-based Privilege Inheritance: Note, that eXo’s Access Control
implementation supports a privilege inheritance that follows a
strategy of either…or/ and has only an ALLOW privilege mechanism
(there is no DENY feature). This means that a session is allowed to
perform some operations on some nodes if its identity has an
appropriate permission assigned to this node. Only if there is no
exo:permission property assigned to the node itself, the permissions
of the node’s ancestors are used.

ACL

An access control list (ACL) is a list of permissions attached to an
object. An ACL specifies which users, groups or system processes are
granted access to JCR nodes, as well as what operations are allowed to
be performed on given objects.

eXo JCR Access Control is based on two facets applied to nodes:

	Privilegeable: Means that the user or group (also called
principal) needs the appropriate privileges to access this node. The
privileges are defined as (positive) permissions that are granted to
users or groups.

	Ownable: The node has an owner. The owner has always full
access (all permissions) to the node, independent of the
privilegeable facet.

Privilegeable

A privilegeable node defines the permissions required for actions on
this node. For this purpose, it contains an ACL.

At JCR level, this is implemented by an exo:privilegeable mixin.

<nodeType name="exo:privilegeable" isMixin="true" hasOrderableChildNodes="false" primaryItemName="">
 <propertyDefinitions>
 <propertyDefinition name="exo:permissions" requiredType="Permission" autoCreated="true" mandatory="true"
 onParentVersion="COPY" protected="true" multiple="true">
 <valueConstraints/>
 </propertyDefinition>
 </propertyDefinitions>
</nodeType>

A privilegeable node can have multiple exo:permissions values. The
type of these values is the eXo JCR specific Permission type. The
Permission type contains a list of ACL.

The possible values are corresponding to JCR standard actions:

	read: The node or its properties can be read.

	remove: The node or its properties can be removed.

	add_node: Child nodes can be added to this node.

	set_property: The node’s properties can be modified, added or
removed.

Ownable

An ownable node defines an owner identity. The owner has always
full privileges. These privileges are independent of the permissions
set by exo:permissions. At JCR level, the ownership is implemented by an
exo:owneable mixin. This mixin holds an owner property.

<nodeType name="exo:owneable" isMixin="true" hasOrderableChildNodes="false" primaryItemName="">
 <propertyDefinitions>
 <propertyDefinition name="exo:owner" requiredType="String" autoCreated="true" mandatory="true" onParentVersion="COPY"
 protected="true" multiple="false">
 <valueConstraints/>
 </propertyDefinition>
 </propertyDefinitions>
</nodeType>

The exo:owner property value contains exactly one identity string value.
There might be a long list of different permissions for different
identities (users or groups). All permissions are always positive
permissions; denials are not possible. When checking a permission of an
action, it is therefore perfectly sufficient that the principal of a
session belongs to the groups to which the concerned action is granted.

ACL inheritance

To grant or deny access to a node, eXo JCR applies a privilege resolving
logic at node access time.

If a node is privilegeable, the node’s ACL is used exclusively. If
the ACL does not match the principal’s identity, the principal has no
access (except the owner of the node).

Non-privilegeable nodes inherit permissions from their parent node. If
the parent node is not privilegeable either, the resolving logic looks
further up the node hierarchy and stops with the first privilegeable
ancestor of the current node. All nodes potentially inherit from the
workspace root node.

The owner of a node is inherited in accordance with the same logic: If
the node has no owner, the owner information of the closest owneable
ancestor is inherited.

This inheritance is implemented by browsing up the node’s hierarchy. At
access time, if the node does not have owner or permissions, the system
looks up into the node’s ancestor hierarchy for the first ACL.

Default ACL of the root node

When no matching ACL is found in the ancestor hierarchy, the system may
end up looking at the root node’s ACL. As ACL is optional, even for the
root node. If the root node has no ACL, the following rule is ultimately
applied to resolve privileges:

	any identity (any authenticated session) is granted all
permissions.

Example

XML

In the following example, you see a node named “Politics” which contains
two nodes named “Cats” and “Dogs”.

Note

These examples are exported from eXo DMS using the "document
view" representation of JCR. Each value of a multi-value property
is separated by a whitespace, each whitespace is escaped by x0020.

<Politics jcr:primaryType="nt:unstructured" jcr:mixinTypes="exo:owneable exo:datetime exo:privilegeable" exo:dateCreated="2009-10-08T18:02:43.687+02:00"
exo:dateModified="2009-10-08T18:02:43.703+02:00"
exo:owner="root"
exo:permissions="any_x0020_read *:/platform/administrators_x0020_read *:/platform/administrators_x0020_add_node *:/platform/administrators_x0020_set_property *:/platform/administrators_x0020_remove">

<Cats jcr:primaryType="exo:article"
jcr:mixinTypes="exo:owneable"
exo:owner="marry"
exo:summary="The_x0020_secret_x0020_power_x0020_of_x0020_cats_x0020_influences_x0020_the_x0020_leaders_x0020_of_x0020_the_x0020_world."
exo:text="" exo:title="Cats_x0020_rule_x0020_the_x0020_world" />

<Dogs jcr:primaryType="exo:article"
jcr:mixinTypes="exo:privilegeable"
exo:permissions="manager:/organization_x0020_read manager:/organization_x0020_set_property"
exo:summary="Dogs"
exo:text="" exo:title="Dogs_x0020_are_x0020_friends" />

</Politics>

The “Politics” node is exo:owneable and exo:privilegeable. It
has both an exo:owner property and an exo:permissions property.
There is an exo:owner="root" property so that the user root is the
owner. In the exo:permissions value, you can see the ACL that is a list
of access controls. In this example, the group
*:/platform/administrators has all rights on this node (remember
that the “*” means any kind of membership). any means that any
users also have the read permission.s

As you see in the jcr:mixinTypes property, the “Cats” node is
exo:owneable and there is an exo:owner="marry" property so that
the user marry is the owner. The “Cats” node is not
exo:privilegeable and has no exo:permissions. In this case, you
can see the inheritance mechanism here is that the “Cats” node has
the same permissions as “Politics” node.

Finally, the “Dogs” node is also a child node of “Politics”. This node
is not exo:owneable and inherits the owner of the “Politics”
node (which is the user root). Otherwise, “Dogs” is
exo:privilegeable and therefore, it has its own exo:permissions.
That means only the users having a “manager” role in the group
“/organization” and the user “root” have the rights to access this node.

Inheritance

Here is an example showing the accessibility of two nodes (to show
inheritance) for two sample users named manager and user:

The “+” symbol means that there is a child node “exo:owneable”.

[image: image1]

Permission validation

This session describes how permission is validated for different JCR
actions.

	read node: Check the read permission on a target node.

For example: Read /node1/subnode node, JCR will check the “read”
permission exactly on “subnode”.

	read property: Check the read permission on a parent node.

For example: Read /node1/myprop - JCR will check the “read”
permission on “node1”.

	add node: Check add_node on a parent node.

For example: Add /node1/subnode node, JCR will check the
“add_node” permission on “node1”.

	set property: set_property on a parent node.

For example: Try to set /node1/myprop property, JCR will check
the “set_property” permission on “node1”.

	remove node: Check the remove permission on a target node.

For example: Try to remove /node1/subnode node, JCR will check
the “remove” permission on “subnode”.

	remove property: Check the remove permission on a parent node.

For example: Try to remove /node1/myprop property, JCR will check
the “remove” permission on “node1”.

	add mixin: Check the “add_node” and “set_property” permission
on a target node.

For example: Try to add mixin to /node1/subnode node, JCR will
check the “add_node” and “set_property” permission on “subnode”.

Java API

eXo JCR’s ExtendedNode interface which extends javax.jcr.Node
interface provides additional methods for Access Control management.

	Method signature

	Description

	void setPermissions(Map<String, String[]> permissions

	Assign a set of Permissions to a node.

	void setPermission(String identity, String[] permission)

	Assign some Identities’ Permission to a node.

	void removePermission(String identity)

	Remove an Identity’s Permission.

	void removePermission(String identity, String permission)

	Remove the specified permission for a particular identity.

	void clearACL()

	Clear the current ACL so it becomes default.

	AccessControlList getACL()

	Return the current ACL.

	void checkPermission(String actions)

	Check Permission (AccessDeniedException will be thrown if being denied).

Table: Additional methods

The “identity” parameter is a user or a group name. The permissions
are the literal strings of the standard action permissions (add_node,
set_property, remove, and read).

Access control system

An extended Access Control system consists of:

	Specifically configured custom ExtendedAccessManager which is
called by eXo JCR internals to check if user’s Session (user) has
some privileges to perform some operations or not.

	The Action sets a thread local InvocationContext at runtime,
the InvocationContext instance is then used by the
ExtendedAccessManager in handling permissions of the current
Session.

	InvocationContext is a collection of properties which reflect the
state of a current Session. At present, it contains: the type of the
current operation on Session (event), current Item (javax.jcr.Item)
on which this operation is performed and the current eXo Container.

Access context action

SetAccessControlContextAction implements Action and may be called by
SessionActionInterceptor as a reaction of some events - usually
before writing methods and after reading (getNode(), getProperty(),
and more). This SetAccessControlContextAction calls the
AccessManager.setContext(InvocationContext context) method which
sets the ThreadLocal invocation context for the current call.

Action’s configuration may look like as the following:

<value>
 <object type="org.exoplatform.services.jcr.impl.ext.action.ActionConfiguration">
 <field name="eventTypes"><string>addNode,read</string></field>
 <field name="workspace"><string>production</string></field >
 <field name="actionClassName"><string>org.exoplatform.services.jcr.ext.access.SetAccessControlContextAction</string></field>
 </object>
</value>

Invocation context

The InvocationContext contains the current Item, the previous Item,
the current ExoContainer and the current EventType look like
below:

public class InvocationContext extends HashMap implements Context {

 /**
 * @return The related eXo container.
 */
 public final ExoContainer getContainer()

 /**
 * @return The current item.
 */
 public final Item getCurrentItem()

 /**
 * @return The previous item before the change.
 */
 public final Item getPreviousItem()

 /**
 * @return The type of the event.
 */
 public final int getEventType()
 }

Custom extended access manager

By default, all workspaces share an AccessManager instance, created
by RepositoryService at the startup (DefaultAccessManagerImpl)
which supports default access control policy as described in the
Access Control section. Custom Access
Control policy can be applied to certain Workspace configuring
access-manager element inside workspace as follows:

<workspace name="ws">
 ...
 <!-- after query-handler element -->
 <access-manager class="org.exoplatform.services.jcr.CustomAccessManagerImpl">
 <properties>
 <property name="someProperty" value="value"/>
 ...
 </properties>
 </access-manager>
 ...
</workspace>

When implementing AccessManager, the hasPermission() method has
to be overridden so it uses the current invocation context at its
discretion. For instance, it may get the current node’s metadata and
make a decision if the current User has appropriate permissions. Use
Invocation Context’s runtime properties to make a decision about current
Session’s privileges.

For example: The following is a simplified Sequence diagram for the
Session.getNode() method:

[image: image2]

Example of a custom access manager

The sample CustomAccessManagerImpl below extends the default access
manager and uses some DecisionMakingService in the overloaded
hasPermission method to find out if a current user has permission to
use current item, event type, user and some parameters of
AccessManager. To make this Access manager work, it is necessary to
configure it in the JCR configuration as mentioned in Extended Access Manager
and SetAccessControlContextAction should be configured in the way
mentioned in Access Context Action.

public class CustomAccessManagerImpl extends AccessManager {

 private String property;
 private DecisionMakingService theService;

 public CustomAccessManagerImpl (RepositoryEntry config, WorkspaceEntry wsConfig,
 DecisionMakingService someService) throws RepositoryException, RepositoryConfigurationException {
 super(config, wsConfig);
 this.property = wsConfig.getAccessManager().getParameterValue("someParam");
 this.theService = someService;
 }

 @Override
 public boolean hasPermission(AccessControlList acl, String[] permission, Identity user) {
 // call the default permission check
 if (super.hasPermission(acl, permission, user)) {

 Item curItem = context().getCurrentItem();
 int eventType = context().getEventType();
 ExoContainer container = context().getContainer();

 // call some service's method
 return theService.makeDecision(curItem, eventType, user, property);
 } else {
 return false;
 }
 }
}

JCR API

eXo JCR implementation offers a new extended feature beyond the JCR
specification. Sometimes one JCR Node has hundreds or even thousands of
child nodes. This situation is highly not recommended for content
repository data storage, but sometimes it occurs. They can be iterated
in a “lazy” manner by giving improvement in terms of performance and RAM
usage.

Note

Current “lazy” child nodes iterator supports caching, when pages are
cached atomically in safe and optimized way. Cache is always kept in
consistent state using invalidation if child list changed. Take into
account the following difference in getNodes and
getNodesLazily. Specification which defines the getNode
method reads the whole list of nodes, so child items added after
invocation will never be in results. GetNodesLazily does not
acquire full list of nodes, so child items added after iterator
creation can be found in result. So getNodesLazily can represent
some types of “real-time” results. But it is highly dependent on
numerous conditions and should not be used as a feature, it is more
likely an implementation specific issue typical for “lazy-pattern”.

Usage

Lazy child nodes iteration feature is accessible via the
org.exoplatform.services.jcr.core.ExtendedNode extended interface,
the inheritor of javax.jcr.Node. It provides a new single method
shown below:

/**
 * Returns a NodeIterator over all child Nodes of this Node. Does not include properties
 * of this Node. If this node has no child nodes, then an empty iterator is returned.
 *
 * @return A NodeIterator over all child Nodes of this <code>Node</code>.
 * @throws RepositoryException If an error occurs.
 */
public NodeIterator getNodesLazily() throws RepositoryException;

From the view of end-user or client application, getNodesLazily()
works similar to JCR specified getNodes() returning
NodeIterator. “Lazy” iterator supports the same set of features as
an ordinary NodeIterator, including skip() and excluding
remove() features. “Lazy” implementation performs reading from DB by
pages. Each time when it has no more elements stored in memory, it reads
the next set of items from persistent layer. This set is called “page”.
The getNodesLazily feature fully supports session and transaction
changes log, so it is a functionally-full analogue of specified
getNodes() operation. Therefore, when having a deal with huge list
of child nodes, getNodes() can be simply and safely substituted with
getNodesLazily().

JCR gives an experimental opportunity to replace all getNodes()
invocations with getNodesLazily() calls. It handles a boolean system
property named “org.exoplatform.jcr.forceUserGetNodesLazily” that
internally replaces one call with another, without any code changes. But
be sure using it only for development purposes. This feature can be used
with the top level products using eXo JCR to perform a quick
compatibility and performance tests without changing any code. This is
not recommended to be used as a production solution.

Configuration

In order to enable this feature, add the
“-Dorg.exoplatform.jcr.forceUserGetNodesLazily=true” to the java
system properties.

The “lazy” iterator reads the child nodes “page” after “page” into the
memory. In this context, a “page” is a set of nodes that is read at
once. The size of the page is by default 100 nodes and can be configured
though workspace container configuration using the
“lazy-node-iterator-page-size” parameter. For example:

<container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="multi-db" value="true" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 <property name="lazy-node-iterator-page-size" value="50" />
 ...
 </properties>

Note

It is not recommended to configure a large number for the page size.

Registry service

The Registry Service is one of the key parts of the infrastructure built
around eXo JCR. Each JCR that is based on service, applications, and
more may have its own configuration, settings data and other data that
have to be stored persistently and used by the appropriate service or
application (called “Consumer”).

The service acts as a centralized collector (Registry) for such data.
Naturally, a registry storage is JCR based i.e. stored in some JCR
workspaces (one per Repository) as an Item tree under /exo:registry
node.

Despite the fact that the structure of the tree is well defined (see the
scheme below), it is not recommended for other services to manipulate
data using JCR API directly for better flexibility. So the Registry
Service acts as a mediator between a Consumer and its settings.

The proposed structure of the Registry Service storage is divided into 3
logical groups: services, applications and users:

exo:registry/ <-- registry "root" (exo:registry)
 exo:services/ <-- service data storage (exo:registryGroup)
 service1/
 Consumer data (exo:registryEntry)
 ...
 exo:applications/ <-- application data storage (exo:registryGroup)
 app1/
 Consumer data (exo:registryEntry)
 ...
 exo:users/ <-- user personal data storage (exo:registryGroup)
 user1/
 Consumer data (exo:registryEntry)
 ...

At each upper level, eXo Service may store its configuration in eXo
Registry. At first, start from xml-config (in jar etc) and then from
Registry. In configuration file, you can add the
force-xml-configuration parameter to the component to ignore reading
parameters initialization from RegistryService and to use the file
instead:

<value-param>
 <name>force-xml-configuration</name>
 <value>true</value>
</value-param>

API

The main functionality of the Registry Service is pretty simple and
straightforward, it is described in the Registry abstract class as the
following:

public abstract class Registry
{

 /**
 * Returns Registry node object which wraps Node of "exo:registry" type (the whole registry tree)
 */
 public abstract RegistryNode getRegistry(SessionProvider sessionProvider) throws RepositoryConfigurationException,
 RepositoryException;

 /**
 * Returns existed RegistryEntry which wraps Node of "exo:registryEntry" type
 */
 public abstract RegistryEntry getEntry(SessionProvider sessionProvider, String entryPath)
 throws PathNotFoundException, RepositoryException;

 /**
 * creates an entry in the group. In a case if the group does not exist it will be silently
 * created as well
 */
 public abstract void createEntry(SessionProvider sessionProvider, String groupPath, RegistryEntry entry)
 throws RepositoryException;

 /**
 * updates an entry in the group
 */
 public abstract void recreateEntry(SessionProvider sessionProvider, String groupPath, RegistryEntry entry)
 throws RepositoryException;

 /**
 * removes entry located on entryPath (concatenation of group path / entry name)
 */
 public abstract void removeEntry(SessionProvider sessionProvider, String entryPath) throws RepositoryException;

}

As you can see it looks like a simple CRUD interface for the
RegistryEntry object which wraps registry data for some Consumer as
a Registry Entry. The Registry Service itself knows nothing about the
wrapping data, it is Consumer’s responsibility to manage and use its
data in its own way.

To create an Entity Consumer, you should know how to serialize the data
to some XML structure and then create a RegistryEntry from these data at
once or populate them in a RegistryEntry object (using the
RegistryEntry(String entryName) constructor and then obtain and fill
a DOM document).

Example of RegistryService using:

RegistryService regService = (RegistryService) container
.getComponentInstanceOfType(RegistryService.class);

RegistryEntry registryEntry = regService.getEntry(sessionProvider,
 RegistryService.EXO_SERVICES + "/my-service");

Document doc = registryEntry.getDocument();

String mySetting = getElementsByTagName("tagname").item(index).getTextContent();

Configuration

RegistryService has two optional parameters: the mixin-names and
the locations. The mixin-names is used for adding additional
mixins to the exo:registry, exo:applications, exo:services,
exo:users and exo:groups nodes of RegistryService. This
allows the top level applications to manage these nodes in a special
way. Locations is used to mention where exo:registry is placed for
each repository. The name of each property is interpreted as a
repository name and its value as a workspace name (a system workspace by
default).

<component>
 <type>org.exoplatform.services.jcr.ext.registry.RegistryService</type>
 <init-params>
 <values-param>
 <name>mixin-names</name>
 <value>exo:hideable</value>
 </values-param>
 <properties-param>
 <name>locations</name>
 <property name="db1" value="ws2"/>
 </properties-param>
 </init-params>
</component>

Groovy REST services

JCR service supports REST services creation on Groovy
script [http://groovy.codehaus.org].

The feature is based on RESTful framework and uses the
ResourceContainer concept.

Usage

Scripts should extend ResourceContainer and should be stored in JCR as a
node of the exo:groovyResourceContainer type.

The component configuration enables Groovy services loader:

<component>
 <type>org.exoplatform.services.jcr.ext.script.groovy.GroovyScript2RestLoader</type>
 <init-params>
 <object-param>
 <name>observation.config</name>
 <object type="org.exoplatform.services.jcr.ext.script.groovy.GroovyScript2RestLoader$ObservationListenerConfiguration">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspaces">
 <collection type="java.util.ArrayList">
 <value>
 <string>collaboration</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component>

Workspace data container

Before going through Workspace Data Container, you need to learn about
the following concepts:

Container and connection

Workspace Data Container (container) serves Repository Workspace
persistent storage. WorkspacePersistentDataManager (data manager)
uses container to perform CRUD operation on the persistent storage.
Accessing the storage in the data manager is implemented via the storage
connection obtained from the container (WorkspaceDataContainer
interface implementation). Each connection represents a transaction on
the storage. Storage Connection (connection) should be an implementation
of WorkspaceStorageConnection.

	Container acts as a factory of a new storage connection. Usually,
this method is designed to be synchronized to avoid possible
concurrent issues.

WorkspaceStorageConnection openConnection() throws RepositoryException;

	Open read-only WorkspaceStorageConnection. Read-only connections
can be potentially a bit faster in some cases.

WorkspaceStorageConnection openConnection(boolean readOnly) throws RepositoryException;

Note

Read-only ``WorkspaceStorageConnection`` is an experimental feature
and not currently handled in JCR. Actually, such connections did not
prove their performance, so JCR Core does not use them.

	Storage connection might also be reused. This means that the reuse of
physical resource (for example, JDBC Connection) is allocated by one
connection in another. This feature is used in a data manager for
saving ordinary and system changes on the system Workspace. But the
reuse is an optional feature and it can work, otherwise a new
connection will open.

WorkspaceStorageConnection reuseConnection(WorkspaceStorageConnection original) throws RepositoryException;

	When you check Same-Name Siblings (SNS) existence, JCR Core can use a
new connection or not. This is defined via Workspace Data Container
configuration and retrieved by using a special method.

boolean isCheckSNSNewConnection();

Container initialization is only based on a configuration. After the
container has been created, it is not possible to change parameters.
Configuration consists of implementation class and set of properties and
Value Storages configuration.

Value storages

Container provides an optional special mechanism for Value storing. It
is possible to configure external Value Storages via container
configuration (available only via configuration). Value Storage works as
a fully independent pluggable storage. All required parameters of the
storage obtains from its configuration. Some storages are possible for
one container. Configuration describes such parameters as the
ValueStoragePluginimplementation class, set of implementation
specific properties and filters. The filters declares criteria for Value
matching to the storage. Only matched Property Values will be stored.
So, in common case, the storage might contains only the part of the
Workspace content. Value Storages are very useful for BLOB storing, for
example, storing on the File System instead of a database.

Container obtains Values Storages from the
ValueStoragePluginProvider component. Provider acts as a factory of
Value channels (ValueIOChannel). Channel provides all CRUD operation for
Value Storage respecting the transaction manner of work (how it can be
possible due to implementation specifics of the storages).

Lifecycle

Container is used for read and write operations by data manager. Read
operations (getters) use connection once and finally close it. The
write operations perform in the commit method as a sequence of
creating/ updating calls and the final commit (or rollback on error).
Write uses one connection (or two - another for system workspace)
per commit call. One connection guaranties transaction support for the
write operations. Commit or rollback should free/clean all resources
consumed by the container (connection).

Value storage lifecycle

Value storage is used from the container inside. Reads are related to a
container reads. Writes are commit-related. Container (connection)
implementation should use transaction capabilities of the storages in
the same way as for other operations.

Requirements

Connection creation and reuse should be a thread safe operation.
Connection provides CRUD operations support on the storage.

Read operations

	Read ItemData from the storage by item identifier.

ItemData getItemData(String identifier) throws RepositoryException, IllegalStateException;

	Find Item by parent (Id) and name (with the path index) of a
given type.

ItemData getItemData(NodeData parentData, QPathEntry name, ItemType itemType) throws RepositoryException, IllegalStateException;

	Get child Nodes of the parent node.

List<NodeData> getChildNodesData(NodeData parent) throws RepositoryException, IllegalStateException;

	Get child Nodes of the parent node. ItemDataFilter is used to
reduce count of returned items, but it does not guarantee that only
items matching filter will be returned.

List<NodeData> getChildNodesData(NodeData parent, ListList<QPathEntryFilter> pattern) throws RepositoryException, IllegalStateException;

	Read List of PropertyData from the storage by using the
parent location of the item.

List<PropertyData> getChildPropertiesData(NodeData parent) throws RepositoryException, IllegalStateException;

	Get child properties of the parent node. ItemDataFilter is used
to reduce count of returned items, but it does not guarantee that
only items matching filter will be returned.

List<PropertyData> getChildPropertiesData(NodeData parent, List<QPathEntryFilter> pattern) throws RepositoryException, IllegalStateException;

	Read List of PropertyData with the empty ValueData from
the storage by using the parent location of the item.

This method is specially dedicated for non-content modification
operations (for example, Items delete).

List<PropertyData> listChildPropertiesData(NodeData parent) throws RepositoryException, IllegalStateException;

	Read List of PropertyData from the storage by using the
parent location of the item.

It is the REFERENCE type: Properties referencing Node with the given
nodeIdentifier. See more in javax.jcr.Node.getReferences().

List<PropertyData> getReferencesData(String nodeIdentifier) throws RepositoryException, IllegalStateException, UnsupportedOperationException;

	Get child Nodes of the parent node whose value of order number is
between fromOrderNum and toOrderNum. Return “true” if there
are data to retrieve for the next request and “false” in other case.

boolean getChildNodesDataByPage(NodeData parent, int fromOrderNum, int toOrderNum, List<NodeData> childs) throws RepositoryException;

	Get children nodes count of the parent node.

int getChildNodesCount(NodeData parent) throws RepositoryException;

	Get order number of parent’s last child node.

int getLastOrderNumber(NodeData parent) throws RepositoryException;

Write operations

	Add single NodeData.

void add(NodeData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Add single PropertyData.

void add(PropertyData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Update NodeData.

void update(NodeData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Update PropertyData.

void update(PropertyData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Rename NodeData by using a Node identifier, a new name and
indexing from the data.

void rename(NodeData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Delete NodeData.

void delete(NodeData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Delete PropertyData.

void delete(PropertyData data) throws RepositoryException,UnsupportedOperationException,InvalidItemStateException,IllegalStateException;

	Prepare the commit phase.

void prepare() throws IllegalStateException, RepositoryException;

	Persist changes and closes connection. It can be database transaction
commit for instance.

void commit() throws IllegalStateException, RepositoryException;

	Refuse persistent changes and closes connection. It can be database
transaction rollback for instance.

void rollback() throws IllegalStateException, RepositoryException;

All methods throw IllegalStateException if connection is closed,
UnsupportedOperationException if the method is not supported (for
example, JCR Level 1 implementation) and RepositoryException if some
errors occur during preparation, validation or persistence.

State operations

	Return true if connection can be used.

boolean isOpened();

Validation of write operations

Container has to care about storage consistency (JCR constraints) on
write operations: (InvalidItemStateException should be thrown
according the specification). At least, the following checks should be
performed:

	On ADD errors

	Parent not found. Condition: Parent ID (Item with ID does not
exists).

	Item already exists. Condition: ID (Item with ID already exists).

	Item already exists. Condition: Parent ID, Name, Index (Item with
parent ID, name and index already exists).

	On DELETE errors

	Item not found. Condition ID.

	Cannot delete parent until its children exist.

	On UPDATE errors

	Item not found. Condition ID.

	Item already exists with the higher Version. Condition: ID,
Version (Some Session had updated Item with ID prior to this
update).

Consistency of save

The container (connection) should implement consistency of Commit
(Rollback) in transaction manner. For example, if a set of
operations was performed before the future Commit and another
next operation fails. It should be possible to rollback applied
changes using the Rollback command.

Value storages API

Storages provider

Container implementation obtains Values Storages option via the
ValueStoragePluginProvider component. Provider acts as a factory of
Value channels (ValueIOChannel) and has two methods for this purpose:

	Return ValueIOChannel matched this property and
valueOrderNumer. Null will be returned if no channel matches.

ValueIOChannel getApplicableChannel(PropertyData property, int valueOrderNumer) throws IOException;

	Return `` ValueIOChannel`` associated with given storageId.

ValueIOChannel getChannel(String storageId) throws IOException, ValueStorageNotFoundException;

There is also a method for consistency check, but this method is not
used anywhere and storage implementations has it empty.

Value storage plugin

Provider implementation should use the ValueStoragePlugin abstract
class as a base for all storage implementations. Plugin provides support
for provider implementation methods. Plugin’s methods should be
implemented:

	Initialize this plugin. Used at start time in
ValueStoragePluginProvider.

public abstract void init(Properties props, ValueDataResourceHolder resources) throws RepositoryConfigurationException, IOException;

	Open ValueIOChannel.Used in
`` ValueStoragePluginProvider.getApplicableChannel(PropertyData, int)``
and getChannel(String).

public abstract ValueIOChannel openIOChannel() throws IOException;

	Return true if this storage has the same storageId.

public abstract boolean isSame(String valueDataDescriptor);

Value I/O channel

Channel should implement the ValueIOChannel interface. CRUD
operation for Value Storage:

	Read Property value.

ValueData read(String propertyId, int orderNumber, int maxBufferSize) throws IOException;

	Add or update Property value.

void write(String propertyId, ValueData data) throws IOException;

	Delete Property all values.

void delete(String propertyId) throws IOException;

Transaction support via channel

Modification operations should be applied only when committing. Rollback
is required for data created cleanup.

	Commit channel changes.

void commit() throws IOException;

	Rollback channel changes.

void rollback() throws IOException;

	Prepare Value content.

void prepare() throws IOException;

	Commit Value content (two phases).

void twoPhaseCommit() throws IOException;

How to implement workspace data container

Creating a dynamic workspace

Workspaces can be added dynamically during runtime.

This can be performed in two steps:

	
	Firstly, ``ManageableRepository.configWorkspace(WorkspaceEntry

	
wsConfig)

`` - register a new configuration in RepositoryContainer

and create a WorkspaceContainer.

	Secondly, the main step,
``ManageableRepository.createWorkspace(String

workspaceName)

`` - creation of a new workspace.

Implementing a workspace data container

To implement Workspace data container, you need to do the following:

	Read a bit about the
contract.

	Start a new implementation project pom.xml with
org.exoplatform.jcr parent. It is not required, but will ease the
development.

	Update sources of JCR Core and read JavaDoc on
org.exoplatform.services.jcr.storage.WorkspaceDataContainer and
org.exoplatform.services.jcr.storage.WorkspaceStorageConnection
interfaces. They are the main part for the implementation.

	Look at
org.exoplatform.services.jcr.impl.dataflow.persistent.WorkspacePersistentDataManager
sourcecode, check how data manager uses container and its
connections (see in the save() method)

	Create WorkspaceStorageConnection dummy implementation class. It
is a freeform class, but to be close to the eXo JCR, check how to
implement JDBC
(org.exoplatform.services.jcr.impl.storage.jdbc.JDBCStorageConnection).
Take into account usage of ValueStoragePluginProvider in both
implementations. Value storage is a useful option for production
versions, but leave it to the end of the implementation work.

	Create the connection implementation unit tests to play TTD. This
step is optional but brings many benefits for the process.

	Implement CRUD starting from, for example, the read to write. Test
the methods by using the external implementation ways of data
read/write in your backend.

	When all methods of the connection are done, start
WorkspaceDataContainer. Container class is very simple, it is
like a factory for the connections only.

	Care about the reuseConnection(WorkspaceStorageConnection) logic
container method. For some backends, it can be same as
openConnection(); but for some others, it is important to reuse
physical backend connection, for example, to be in the same
transaction - see JDBC container.

	It is almost ready to use in data manager. Start another test.

When the container is ready to run as JCR persistence storage (for
example, for this level testing), it should be configured in Repository
configuration.

Assuming that the new implementation class name is
org.project.jcr.impl.storage.MyWorkspaceDataContainer.

<repository-service default-repository="repository">
<repositories>
 <repository name="repository" system-workspace="production" default-workspace="production">

 <workspaces>
 <workspace name="production">
 <container class="org.project.jcr.impl.storage.MyWorkspaceDataContainer">
 <properties>
 <property name="propertyName1" value="propertyValue1" />
 <property name="propertyName2" value="propertyValue2" />

 <property name="propertyNameN" value="propertyValueN" />
 </properties>
 <value-storages>

 </value-storages>
 </container>

Container can be configured by using set properties.

Value storage usage

Value storages are pluggable to the container but if they are used, the
container implementation should respect set of interfaces and external
storage usage principles.

If the container has ValueStoragePluginProvider (for example, via
constructor), it is just a method to manipulate external Values data.

// get channel for ValueData write (add or update)
ValueIOChannel channel = valueStorageProvider.getApplicableChannel(data, i);
if (channel == null) {
 // write
 channel.write(data.getIdentifier(), vd);
 // obtain storage id, id can be used for linkage of external ValueData and PropertyData in main backend
 String storageId = channel.getStorageId();
}

....

// delete all Property Values in external storage
ValueIOChannel channel = valueStorageProvider.getChannel(storageId);
channel.delete(propertyData.getIdentifier());

....

// read ValueData from external storage
ValueIOChannel channel = valueStorageProvider.getChannel(storageId);
ValueData vdata = channel.read(propertyData.getIdentifier(), orderNumber, maxBufferSize);

Note

After a sequence of write and/or delete operations on the storage
channel, the channel should be committed (or rolled back on an
error). See ValueIOChannel.commit() and
ValueIOChannel.rollback() and how those methods are used in the
JDBC container.

Binary values processing

Processing binary large object (BLOB) is very important in eXo JCR, so
this section focuses on explaining how to do it.

Configuration

Binary large object (BLOB) properties can be stored in two ways in eXo
JCR: in the database with items information or in an external storage on
host file system. These options can be configured at workspace in the
repository-configuration.xml repository configuration file. The
database storage cannot be completely disabled.

The first case is optimal for most of cases which you do not use very
large values or/and do not have too many BLOBs. The configuration of the
BLOBs size and BLOBs quantity in a repository depends on your database
features and hardware.

The second case is to use an external values storage. The storage can be
located on a built-in hard disk or on an attached storage. But in any
cases, you should access the storage as if it is a regular file. The
external value storage is optional and can be enabled in a database
configuration.

Note

eXo JCR Repository service configuration basics is discussed in JCR Configuration.

Database and workspace persistence storage configuration is discussed in
JDBC Data Container configuration.

See configuration details for External Value Storages.

Usage

In both of the cases, a developer can set/update the binary Property via
Node.setProperty(String, InputStream),
Property.setValue(InputStream) as described in the
JSR-170 [http://www.jcp.org/en/jsr/detail?id=170] specification.
Also, there is the setter with a ready Value object (obtaining from
ValueFactory.createValue(InputStream)).

An example of a specification usage.

// Set the property value with given stream content.
Property binProp = node.setProperty("BinData", myDataStream);
// Get the property value stream.
InputStream binStream = binProp.getStream();

// You may change the binary property value with a new Stream, all data will be replaced
// with the content from the new stream.
Property updatedBinProp = node.setProperty("BinData", newDataStream);
// Or update an obtained property
updatedBinProp.setValue(newDataStream);
// Or update using a Value object
updatedBinProp.setValue(ValueFactory.createValue(newDataStream));
// Get the updated property value stream.
InputStream newStream = updatedBinProp.getStream();

But if you need to update the property sequentially and with partial
content, you have no choice but to edit the whole data stream outside
and get it back to the repository each time. In case of really
large-sized data, the application will be stuck and the productivity
will decrease a lot. JCR stream setters will also check constraints and
perform common validation each time.

There is a feature of the eXo JCR extension that can be used for binary
values partial writing without frequent session level calls. The main
idea is to use a value object obtained from the property as the storage
of the property content while writing/reading during runtime.

According to the JSR-170 [http://www.jcp.org/en/jsr/detail?id=170]
specification, Value interface provides the state of property that
cannot be changed (edited). The eXo JCR core provides the
ReadableBinaryValue and EditableBinaryValue interfaces which
themselves extend the JCR value. The interfaces allow the user to
partially read and change a value content.

The ReadableBinaryValue value can be casted from any values, such as
String, Binary, Date, and more.

// get the property value of type PropertyType.STRING
ReadableBinaryValue extValue = (ReadableBinaryValue) node.getProperty("LargeText").getValue();
// read 200 bytes to a destStream from the position 1024 in the value content
OutputStream destStream = new FileOutputStream("MyTextFile.txt");
extValue.read(destStream, 200, 1024);

But EditableBinaryValue can be applied only to properties of the
PropertyType.BINARY type. In other cases, a cast to
EditableBinaryValue will fail.

After the value has been edited, the EditableBinaryValue value can be
applied to the property using the standard setters (for example,
Property.setValue(Value), Property.setValues(Value),
Node.setProperty(String, Value)). Only after the
EditableBinaryValue has been set to the property, it can be obtained
in this session by getters (for example, Property.getValue(),
Node.getProperty(String)).

The user can obtain an EditableBinaryValue instance and fill it with
data in an interaction manner (or any other appropriated to the targets)
and return (set) the value to the property after the content is done.

// get the property value for PropertyType.BINARY Property
EditableBinaryValue extValue = (EditableBinaryValue) node.getProperty("BinData").getValue();

// update length bytes from the stream starting from the position 1024 in existing Value data
extValue.update(dataInputStream, dataLength, 1024);

// apply the edited EditableBinaryValue to the Property
node.setProperty("BinData", extValue);

// save the Property to persistence
node.save();

See a practical example of the iterative usage. In this example, the
value is updated with data from the sequence of streams and after the
update is done, the value will be applied to the property and be visible
during the session.

// update length bytes from the stream starting from the particular
// position in the existing Value data
int dpos = 1024;
while (source.dataAvailable()) {
 extValue.update(source.getInputStream(), source.getLength(), dpos);
 dpos = dpos + source.getLength();
}

// apply the edited EditableBinaryValue to the Property
node.setProperty("BinData", extValue);

Value implementations

[image: image3]

	ReadableBinaryValue has one method to read Value.

The value of read length bytes is counted from the binary value to
the given position into the stream.

long read(OutputStream stream, long length, long position) throws IOException, RepositoryException ;

	EditableBinaryValue has two methods to edit value.

	Update with length bytes from the specified stream to this value
data at a position. If the position is lower than 0, the
IOException exception will be thrown. If the position is higher
than the current Value length, the Value length will be increased
at first to the size of position and length bytes will be added
after the position.

	Set the length of the Value in bytes to the specified size. If the
size is lower than 0, the IOException exception will be thrown.
This operation can be used to extend or truncat the Value size.
This method is used internally in the update operation in case of
extending the size to the given position.

void setLength(long size) throws IOException;

An application can perform JCR binary operations more flexibly and
will have less I/O and CPU usage using these methods.

Link Producer service

Link Producer service - a simple service, generates an .lnk file
that is compatible with the Microsoft link file format. It is an
extension of the REST Framework library and is included into the WebDav
service. On dispatching a GET request, the service generates the content
of an .lnk file, which points to a JCR resource via WebDav.

Link Producer has a simple configuration as described below:

<component>
 <key>org.exoplatform.services.jcr.webdav.lnkproducer.LnkProducer</key>
 <type>org.exoplatform.services.jcr.webdav.lnkproducer.LnkProducer</type>
</component>

When JRS is used, the resource can be addressed by WebDav reference
(href) like
http://host:port/rest/jcr/repository/workspace/somenode/somefile.extension.
The link servlet must be called for this resource by several hrefs, like
http://localhost:8080/rest/lnkproducer/openit.lnk?path=/repository/workspace/somenode/somefile.extension.

Note

In eXo Platform the REST servlet is available using a reference (href) like http://localhost:8080/portal/rest/…

To have the best compatibility, the name of the .lnk file must be
the same as that of the JCR resource.

Here is a step-by-step sample of a usecase of the link producer. First,
type the valid reference to the resource using the link producer in your
browser’s address field:

[image: image4]

Internet Explorer will give a dialog window requesting to Open a
file or to Save it. Click the Open button.

[image: image5]

In Windows system an .lnk file will be downloaded and opened with
the application which is registered to open the files, which are pointed
to by the .lnk file. In case of a .doc file, Windows opens
Microsoft Office Word which will try to open a remote file
(test0000.doc). Maybe, it will be necessary to enter USERNAME and
PASSWORD.

[image: image6]

Next, you will be able to edit the file in Microsoft Word.

[image: image7]

The Link Producer is necessary for opening/editing and then saving the
remote files in Microsoft Office Word without any further updates.

Also, the Link Producer can be referenced from an HTML page. If page
contains a code snippet like:

somefile.extention

The somefile.extension file will be opened directly.

Administration

This chapter is divided into 4 administration groups, including:

	Connectors

Details of WebDAV, FTP and JCA resource adapter, including
configuration, parameters and examples.

	Database

Issues related to the database administration, including
multi-language support and DBCleanService; and instructions on
how to host several JCR instances on the same database instance.

	Tools

Necessary information about Session leak detector, Consistency
checker, and Statistics.

	Performance tuning

Instructions on JBoss AS tuning, JCR cache tuning, Clustering,
JVM parameters, and Force query hints.

Connectors

	WebDAV

All necessary information about WebDAV, including configuration,
examples, commands, and restrictions. Also, this part also provides a
set of frequently asked questions.

	FTP

Details of configuration parameters of FTP, such as command-port,
data-min-port and data-max-port, system, and client-side-encoding.

	JCA resource adapter

Details of SessionFactory, configuration, and deployment.

WebDAV

The WebDAV protocol enables you to use third party tools to communicate
with hierarchical content servers via HTTP. It is possible to add and
remove documents or a set of documents from a path on the server. DeltaV
is an extension of the WebDav protocol that allows managing document
versioning. Locking guarantees protection against multiple access when
writing resources. The ordering support allows changing the position of
the resource in the list and sorts the directory to make the directory
tree viewed conveniently. The fulltext search makes it easy to find the
necessary documents. You can search by using two languages: SQL and
XPATH.

In JCR, you plug in the WebDAV layer on the top of your JCR
implementation, based on the code taken from the extension modules of
the reference implementation, so it is possible to browse a workspace
using third party tools (it can be Windows folders or Mac ones as well
as a Java WebDAV client, such as DAVExplorer or IE using File > Open as
a Web Folder).

Now WebDAV is an extension of the REST service. To get the WebDAV server
ready, you must deploy the REST application. Then, you can access any
workspaces of your repository by using the following URL:

	http://host:port/portal/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path}

For example, when accessing the WebDAV server with the URL
http://localhost:8080/portal/rest/jcr/repository/collaboration, you will
be asked to enter your login and password. Those will then be checked by
using the organization service that can be implemented thanks to an
InMemory (dummy) module or a DB module or an LDAP one and the JCR user
session will be created with the correct JCR Credentials.

Note

When you use an external WebDav client, you can acces any workspace of your repository through this link:
http://host:port/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path} <http://host:port/rest/private/jcr/{RepositoryName}/{WorkspaceName}/{Path}>

Note

If you try the “in ECM” option, add “@ecm” to the user’s password.
Alternatively, you may modify jaas.conf by adding the domain=ecm
option as follows:

exo-domain {
org.exoplatform.services.security.jaas.BasicLoginModule required domain=ecm;
};

Related documents

	Link Producer

Configuration

The WebDAV configuration is located at
platform-extension/WEB-INF/conf/platform/dms/dms-configuration.xml.

<component>
 <key>org.exoplatform.services.jcr.webdav.WebDavServiceImpl</key>
 <type>org.exoplatform.services.cms.webdav.WebDavServiceImpl</type>
 <init-params>

 <!-- default node type which is used for the creation of collections -->
 <value-param>
 <name>def-folder-node-type</name>
 <value>${webdav.def-folder-node-type:nt:folder}</value>
 </value-param>

 <!-- default node type which is used for the creation of files -->
 <value-param>
 <name>def-file-node-type</name>
 <value>${webdav.def-file-node-type:nt:file}</value>
 </value-param>

 <!-- if MimeTypeResolver can't find the required mime type,
 which conforms with the file extension, and the mimeType header is absent
 in the HTTP request header, this parameter is used as the default mime type-->

 <value-param>
 <name>def-file-mimetype</name>
 <value>${webdav.def-file-mimetype:application/octet-stream}</value>
 </value-param>

 <!-- This parameter indicates one of the three cases when you update the content of the resource by PUT command.
 In case of "create-version", PUT command creates the new version of the resource if this resource exists.
 In case of "replace" - if the resource exists, PUT command updates the content of the resource and its last modification date.
 In case of "add", the PUT command tries to create the new resource with the same name (if the parent node allows same-name siblings).
 In case of "update", if the resource exists, PUT command updates the content of the resource and its last modification date.
 -->

 <value-param>
 <name>update-policy</name>
 <value>${webdav.update-policy:update}</value>
 <!--value>create-version</value-->
 <!--value>replace</value -->
 <!-- value>add</value -->
 </value-param>

 <!--
 This parameter determines how service responds to a method that attempts to modify file content.
 In case of "checkout-checkin" value, when a modification request is applied to a checked-in version-controlled resource, the request is automatically preceded by a checkout and followed by a checkin operation.
 In case of "checkout" value, when a modification request is applied to a checked-in version-controlled resource, the request is automatically preceded by a checkout operation.
 -->
 <value-param>
 <name>auto-version</name>
 <!--value>checkout-checkin</value-->
 <value>${webdav.auto-version:checkin-checkout}</value>
 </value-param>

 <!--
 This parameter will define the path to the folder nodes icon.
 -->
 <value-param>
 <name>folder-icon-path</name>
 <value>${webdav.folder-icon-path:/eXoWCMResources/skin/images/file/nt-folder.png}</value>
 </value-param>

 <!--
 This parameter is responsible for managing Cache-Control header value which will be returned to the client.
 You can use patterns like "text/*", "image/*" or wildcard to define the type of content.
 -->
 <value-param>
 <name>cache-control</name>
 <value>${webdav.cache-control:text/*:max-age=3600;image/*:max-age=1800;*/*:no-cache}</value>
 </value-param>

 <values-param>
 <name>untrusted-user-agents</name>
 <value>Microsoft Office Core Storage Infrastructure/1.0</value>
 </values-param>

 </init-params>
 </component>

Note

If the MimeTypeResolver throws exceptions of type
“eu.medsea.mimeutil.detector.InvalidMagicMimeEntryException: Invalid
Magic Mime Entry” on RHEL or CentOS, you should use the MIME cache
file instead of the magic MIME file. To provide the full path to the
MIME cache file, you will need to use the exo.mime.cache system
property.

Examples

At present, the JCR WebDAV server is tested by using MS Internet
Explorer, Dav Explorer [http://www.ics.uci.edu/~webdav], Xythos
Drive [http://www.blackboard.com/Platforms/Learn/Products/Blackboard-Learn/Blackboard-Xythos/Xythos-Drive.aspx],
Microsoft Office 2003 (as client), and Ubuntu Linux.

	MS Internet Explorer: Click File > eXo JCR WebDav.

[image: image0]

	DAV Explorer

[image: image1]

	Xythos Drive

[image: image2]

	Microsoft Office 2003 (as client): Select File > Open with typing
http://… href in the file name box.

[image: image3]

	Ubuntu Linux

[image: image4]

WebDAV and JCR commands

	WebDAV

	JCR

	COPY

	Workspace.copy(…)

	DELETE

	Node.remove()

	GET

	Node.getProperty(…); Property.getValue()

	HEAD

	Node.getProperty(…); Property.getLength()

	MKCOL

	Node.addNode(…)

	MOVE

	Session.move(…) or Workspace.move(…)

	PROPFIND

	Session.getNode(…); Node.getNode(…);Node.getNodes(…); Node.getProperties()

	PROPPATCH

	Node.setProperty(…);Node.getProperty(…).remove()

	PUT

	Node.addNode(“node”,”nt:file”);Node.setProperty(“jcr:data”, “data”)

	CHECKIN

	Node.checkin()

	CHECKOUT

	Node.checkout()

	REPORT

	Node.getVersionHistory(); VersionHistory.getAllVersions();Version.getProperties()

	UNCHECKOUT

	Node.restore(…)

	VERSION-CONTROL

	Node.addMixin(“mix:versionable”)

	LOCK

	Node.lock(…)

	UNLOCK

	Node.unlock()

	ORDERPATCH

	Node.orderBefore(…)

	SEARCH

	Workspace.getQueryManager(); QueryManager.createQuery();Query.execute()

	ACL

	Node.setPermission(…)

Restrictions

There are some restrictions for WebDAV in different Operating systems.

Windows 7/Windows 8

When you try to set up a web folder by “adding a network location” or
“mapping a network drive” through My Computer, you can get an error
message saying that either “The folder you entered does not appear to
be valid. Please choose another” or “Windows cannot access… Check the
spelling of the name. Otherwise, there might be…”. These errors may
appear when you are using SSL or non-SSL.

To fix this problem, do as follows:

Windows 7

Go to Windows Registry Editor.

Find a key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlset\services\WebClient\Parameters.

Select BasicAuthLevel (you might create it as REG_DWORD key if it
does not exist) and change its value to 2.

Reboot.

Windows 8

Go to Windows Registry Editor.

Find a key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlset\services\WebClient\Parameters.

Select UseBasicAuth (you might create it as REG_DWORD key if it
does not exist) and change its value to 1.

Select BasicAuthLevel (you might create it as REG_DWORD key if it
does not exist) and change its value to 2.

Reboot.

Microsoft Office 2010

If you have Microsoft Office 2010 or Microsoft Office 2007 applications
installed on a client computer, try to access an Office file that is
stored on a web server that is configured for Basic authentication from
the client computer. The connection between your computer and the web
server does not use Secure Sockets Layer (SSL). When you try to open or
to download the file, you experience the following symptoms:

	The Office file does not open or download.

	You do not receive a Basic authentication password prompt when you
try to open or to download the file.

	You do not receive an error message when you try to open the file.
The associated Office application starts. However, the selected file
does not open.

To enable the Basic authentication on the client computer, do as
follows:

Click Start, type regedit in the Start Search box, and then
press Enter.

Locate and then click the following registry subkey:

HKEY_CURRENT_USER\Software\Microsoft\Office\14.0\Common\Internet

On the Edit menu, point to New, and then click DWORD Value.

Type BasicAuthLevel, and then press Enter.

Right-click BasicAuthLevel, and then click Modify.

In the Value data box, type 2, and then click OK.

Frequently asked questions

Q: Can I manage the ‘``cache-control``’ value for different
media-types from server configuration?

A: Use the “cache-control” configuration parameter.

The value of this parameter must contain colon-separated pairs of the
“MediaType:cache-control” value.

For example, if you need to cache all text/xml and text/plain files for
5 minutes (300 sec.) and other text/* files for 10 minutes (600
sec.), use the next configuration:

<component>
 <type>org.exoplatform.services.jcr.webdav.WebDavServiceImpl</type>
 <init-params>
 <value-param>
 <name>cache-control</name>
 <value>text/xml,text/plain:max-age=300;text/*:max-age=600;</value>
 </value-param>
 <init-params>
<component>

Q: How to perform WebDAV requests using curl?

A: Simple Requests:

For simple requests, such as GET, HEAD, MKCOL, COPY, MOVE, DELETE,
CHECKIN, CHECKOUT, UNCHECKOUT, LOCK, UNLOCK, VERSIONCONTROL, and
OPTIONS, perform:

curl -i -u 'user:pass' -X 'METHOD_NAME' 'resource_url'

For example, to create a folder named “test”, perform as follows:

curl -i -u 'root:exo' -X MKCOL 'http://localhost:8080/rest/private/jcr/repository/production/test

To PUT the test.txt file from your current folder to the “test”
folder on the server, perform as follows:

curl -i -u 'root:exo' -X PUT 'http://localhost:8080/rest/private/jcr/repository/production/test/test.txt'
 -d
 @test.txt

Requests with XML body:

For requests which contain the XML body, such as ORDER, PROPFIND,
PROPPATCH, REPORT, and SEARCH, add -d ‘xml_body text’ or -d
@body.xml to your curl-command:

curl -i -u 'user:pass' -X 'METHOD_NAME' -H 'Headers' 'resource_url' -d 'xml_body text'

Note

``body.xml`` must contain a valid xml request body.

For example, to find all files containing “test”, perform as follows:

curl -i -u "root:exo" -X "SEARCH" "http://192.168.0.7:8080/rest/jcr/repository/production/" -d
 "<?xml version='1.0' encoding='UTF-8' ?>
 <D:searchrequest xmlns:D='DAV:'>
 <D:sql>SELECT * FROM nt:base WHERE contains(*, 'text')</D:sql>
 </D:searchrequest>"

If you need to add some headers to your request, use -H key.

To have more information about methods parameters, you can find in
HTTP Extensions for Distributed Authoring [http://www.ietf.org/rfc/rfc2518.txt]
specification.

Q: How does eXo JCR WebDAV server treat content encoding?

A: OS client (Windows, Linux, and more) does not set an encoding in
a request, but the JCR WebDAV server looks for an encoding in a
Content-Type header and set it to jcr:encoding. See
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html 14.17
Content-Type (e.g. Content-Type: text/html; charset=ISO-8859-4). So, if
a client sets the Content-Type header, for example, JS code from a
page, it will work for a text file as expected.

If WebDAV request does not contain a content encoding, it is possible to
write a dedicated action in a customer application. The action will set
jcr:encoding using its own logic, for example, based on IP or user
preferences.

FTP

The JCR-FTP Server represents the standard eXo service, operates as an
FTP server with an access to a content stored in JCR repositories in the
form of nt:file/nt:folder nodes or their successors. The client of
an executed Server can be any FTP client. The FTP server is supported by
a standard configuration which can be changed as required.

FTP includes the following configuration parameters:

	command-port

<value-param>
 <name>command-port</name>
 <value>21</value>
</value-param>

The value of the command channel port. The value ‘21’ is set by
default.

When you have already some FTP servers installed in your system, this
parameter needs to be changed (for example, 2121) to avoid conflicts
or if the port is protected.

	data-min-port & data-max-port

<value-param>
 <name>data-min-port</name>
 <value>52000</value>
</value-param>

<value-param>
 <name>data-max-port</name>
 <value>53000</value>
</value-param>

These two parameters indicate the minimal and maximal values of the
range of ports respectively, used by the server. The usage of the
additional data channel is required by the FTP - protocol, which is
used to transfer the file content and the categories list. This range
of ports should be free from listening by other server-programs.

	system

<value-param>
 <name>system</name>

 <value>Windows_NT</value>
 or
 <value>UNIX Type: L8</value>
</value-param>

Types of formats of listing of catalogues which are supported.

	client-side-encoding

<value-param>
 <name>client-side-encoding</name>

 <value>windows-1251</value>
 or
 <value>KOI8-R</value>

</value-param>

This parameter specifies the coding which is used for dialogue with
the client.

	def-folder-node-type

<value-param>
 <name>def-folder-node-type</name>
 <value>nt:folder</value>
</value-param>

This parameter specifies the type of a node, when an FTP-folder is
created.

	def-file-node-type

<value-param>
 <name>def-file-node-type</name>
 <value>nt:file</value>
</value-param>

This parameter specifies the type of a node, when an FTP file is
created.

	def-file-mime-type

<value-param>
 <name>def-file-mime-type</name>
 <value>application/zip</value>
</value-param>

The MIME type of a created file is chosen by using its file
extention. In case a server cannot find the corresponding mime type,
this value is used.

	cache-folder-name

<value-param>
 <name>cache-folder-name</name>
 <value>../temp/ftp_cache</value>
</value-param>

The Path of the cache folder.

	upload-speed-limit

<value-param>
 <name>upload-speed-limit</name>
 <value>20480</value>
</value-param>

Restriction of the upload speed. It is measured in bytes.

	download-speed-limit

<value-param>
 <name>download-speed-limit</name>
 <value>20480</value>
</value-param>

Restriction of the download speed. It is measured in bytes.

	timeout

<value-param>
 <name>timeout</name>
 <value>60</value>
</value-param>

Define the value of a timeout.

	replace-forbidden-chars

<value-param>
 <name>replace-forbidden-chars</name>
 <value>true</value>
</value-param>

Indicate whether or not the forbidden characters must be replaced.

	forbidden-chars

<value-param>
 <name>forbidden-chars</name>
 <value>:[]*'"|</value>
</value-param>

Define the list of forbidden characters.

	replace-char

<value-param>
 <name>replace-char</name>
 <value>_</value>
 </value-param>

Define the character that will be used to replace the forbidden
characters.

JCA resource adapter

Note

JCA is currently supported in eXo Platform JBoss bundle.

JCR supports J2EE Connector Architecture 1.5, thus if you want to
delegate the JCR Session lifecycle to your application server, you can
use the JCA resource adapter for eXo JCR. This adapter only supports XA
Transaction, in other words you cannot use it for local transactions.
Since the JCR Sessions have not been designed to be shareable, the
session pooling is simply not covered by the adapter.

SessionFactory

The equivalent of the javax.resource.cci.ConnectionFactory in JCA
terminology is org.exoplatform.connectors.jcr.adapter.SessionFactory
in the context of eXo JCR. The resource that you will get thanks to a
JNDI lookup is of the SessionFactory type and provides the following
methods:

/**
 * Get a JCR session corresponding to the repository
 * defined in the configuration and the default workspace.
 * @return a JCR session corresponding to the criteria
 * @throws RepositoryException if the session could not be created
 */
Session getSession() throws RepositoryException;

/**
 * Get a JCR session corresponding to the repository
 * defined in the configuration and the default workspace, using
 * the given user name and password.
 * @param userName the user name to use for the authentication
 * @param password the password to use for the authentication
 * @return a JCR session corresponding to the criteria
 * @throws RepositoryException if the session could not be created
 */
Session getSession(String userName, String password) throws RepositoryException;

/**
 * Get a JCR session corresponding to the repository
 * defined in the configuration and the given workspace.
 * @param workspace the name of the expected workspace
 * @return a JCR session corresponding to the criteria
 * @throws RepositoryException if the session could not be created
 */
Session getSession(String workspace) throws RepositoryException;

/**
 * Get a JCR session corresponding to the repository
 * defined in the configuration and the given workspace, using
 * the given user name and password.
 * @param workspace the name of the expected workspace
 * @param userName the user name to use for the authentication
 * @param password the password to use for the authentication
 * @return a JCR session corresponding to the criteria
 * @throws RepositoryException if the session could not be created
 */
Session getSession(String workspace, String userName, String password) throws RepositoryException;

Configuration

	PortalContainer

	If no portal container can be found in the context of the request, the adapter will use the value of this parameter to get the name of the expected portal container to create the JCR sessions. This parameter is optional. By default, the default portal container will be used.

	Repository

	The repository name used to create JCR sessions. This parameter is optional. By default, the current repository will be used.

Deployment

Get/Download the JBoss bundle of eXo Platform 4 or higher.

Go to the exo.jcr.connectors.jca folder, then run the
mvn clean install -Pplatform command.

Deploy
exo.jcr.connectors.jca/target/exo.jcr.connectors.jca-1.15.x-GA.rar
in PLATFORM_JBOSS_HOME/standalone/deployments/, then rename it to
exo-jcr.rar.

Configure the resource adapter in
PLATFORM_JBOSS_HOME/standalone/configuration/standalone-exo.xml by
replacing:

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.1"/>

with

<subsystem xmlns="urn:jboss:domain:resource-adapters:1.1">
 <resource-adapters>
 <resource-adapter>
 <archive>exo-jcr.rar</archive>
 <transaction-support>XATransaction</transaction-support>
 <connection-definitions>
 <connection-definition class-name="org.exoplatform.connectors.jcr.impl.adapter.ManagedSessionFactory"
 jndi-name="java:/jcr/Repository">
 <config-property name="PortalContainer">portal</config-property>
 <config-property name="Repository">repository</config-property>
 </connection-definition>
 </connection-definitions>
 </resource-adapter>
 </resource-adapters>
</subsystem>

Database

	Multi-language support in eXo JCR RDB backend

Details of multi-language JCR on Oracle, DB2, MySQL and PostgreSQL.

	DB Clean Service

Methods of DBCleanService, and instructions on how to clean only
single workspace and the whole repository.

	How to host several JCR instances on the same database instance?

How to apply configuration changes on LockManager and
HibernateService.

	Frequently asked questions

Many useful questions and their answers which are common in Database.

General settings

Note

Note that JCR requires at least READ_COMMITED isolation level and
other RDBMS configurations can cause some side-effects and issues.
So, make sure proper isolation level is configured on database
server side.

DB2 configuration

	Statistics is collected
automatically [http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0011762.htm]
starting from DB2 Version 9, however it is needed to launch
statistics collection manually during the very first start, otherwise
it could be very long. You need to run the following
‘RUNSTATS [http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/r0001980.htm]’
command for JCR_SITEM (or JCR_MITEM) and JCR_SVALUE (or
JCR_MVALUE) tables.

RUNSTATS ON TABLE <scheme>.<table> WITH DISTRIBUTION AND INDEXES ALL

MySQL configuration

	To prevent any consistency issues, ensure that InnoDB is configured
as the default MySQL engine (instead of MyISAM by default) before
launching your application for the very first time. Otherwise, when
the application creates the tables, MyISAM will be used as the MySQL
engine which is not transactional and does not support integrity
constraints. Even if later you switch to InnoDB using an alter table,
all the integrity constraints would be missing as they would have
been removed tables at the time of the table creation.

	MyISAM is not supported due to its lack of transaction support and
integrity check. Use it only if you do not expect any support and if
performances in read accesses are more important than the consistency
in your usecase. Therefore, the mysql-myisam and
mysql-myisam-utf8 dialects are only dedicated to the community.

	MySQL relies on collected statistics for keeping track of data
distribution in tables and for optimizing join statements, but you
can manually call
‘ANALYZE [http://dev.mysql.com/doc/refman/5.0/en/analyze-table.html]’
to update statistics if needed.

For example:

ANALYZE TABLE JCR_SITEM, JCR_SVALUE

PostgreSQL/PostgrePlus configuration

	When using the RDBMS re-indexing, you need to set
“enable_seqscan” to “off” or “default_statistics_target”
to at least “50”.

	Though the PostgreSQL/PostgrePlus server performs query optimization
automatically, you can manually call the
‘ANALYZE [http://www.postgresql.org/docs/8.1/static/sql-analyze.html]’
command to collect statistics which can affect the performance.

For example:

ANALYZE JCR_SITEM
ANALYZE JCR_SVALUE

	For a version prior to 9.1, the standard_conforming_strings
parameter is enabled, you need to use “pgsql-scs” as dialect.

MS SQL configuration

	One more mandatory JCR requirement for underlying databases is a case
sensitive collation. Microsoft SQL Server both 2005 and 2008
customers must configure their server with collation corresponding to
personal needs and requirements, but obligatorily case sensitive.
Refer
here [http://msdn.microsoft.com/en-us/library/ms144250.aspx] for
more information on selecting SQL Server Collation.

	MS SQL DB server’s optimizer automatically processes queries to
increase performance. Optimization is based on statistical data which
is collected automatically, but you can manually call
Transact-SQL [http://en.wikipedia.org/wiki/Transact-SQL] by the
‘UPDATE
STATISTICS [http://msdn.microsoft.com/en-us/library/ms187348.aspx]’
command which in very few situations may increase performance.

For example:

UPDATE STATISTICS JCR_SITEM
UPDATE STATISTICS JCR_SVALUE

Sybase configuration

	Sybase DB Server optimizer automatically processes queries to
increase performance. Optimization is based on statistical data which
is collected automatically, but you can manually call
Transact-SQL [http://en.wikipedia.org/wiki/Transact-SQL] by the
‘update
statistics [http://manuals.sybase.com/onlinebooks/group-as/asg1250e/sqlug/@Generic__BookTextView/37166;pt=37125]’
command which may increase performance in very few situations.

For example:

update statistics JCR_SITEM
update statistics JCR_SVALUE

Oracle configuration

	Oracle DB automatically collects statistics to optimize performance
of queries, but you can manually call the
‘ANALYZE [http://docs.oracle.com/cd/B13789_01/server.101/b10759/statements_4005.htm]’
command to start collecting statistics immediately which may improve
performance.

For example:

ANALYZE INDEX JCR_PK_SITEM COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SITEM_PARENT_FK COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SITEM_PARENT COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SITEM_PARENT_NAME COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SITEM_PARENT_ID COMPUTE STATISTICS
ANALYZE INDEX JCR_PK_SVALUE COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SVALUE_PROPERTY COMPUTE STATISTICS
ANALYZE INDEX JCR_PK_SREF COMPUTE STATISTICS
ANALYZE INDEX JCR_IDX_SREF_PROPERTY COMPUTE STATISTICS
ANALYZE INDEX JCR_PK_SCONTAINER COMPUTE STATISTICS

Multi-language support in eXo JCR RDB backend

Whenever relational database is used to store multilingual text data of
eXo Java Content Repository, it is necessary to adapt configuration in
order to support UTF-8 encoding. Here is a short instruction for several
supported RDBMS with examples.

Modify the repository-configuration.xml file which can be found in
various locations.

Note

The jdbcjcr datasource used in examples can be configured via
the InitialContextInitializer component.

	Oracle

In order to run multilanguage JCR on an Oracle backend Unicode
encoding for characters set should be applied to the database. Other
Oracle globalization parameters do not make any impact. The only
property to modify is NLS_CHARACTERSET.

We have tested NLS_CHARACTERSET = AL32UTF8 and it works well
for many European and Asian languages.

Example of the database configuration:

NLS_LANGUAGE AMERICAN
NLS_TERRITORY AMERICA
NLS_CURRENCY $
NLS_ISO_CURRENCY AMERICA
NLS_NUMERIC_CHARACTERS .,
NLS_CHARACTERSET AL32UTF8
NLS_CALENDAR GREGORIAN
NLS_DATE_FORMAT DD-MON-RR
NLS_DATE_LANGUAGE AMERICAN
NLS_SORT BINARY
NLS_TIME_FORMAT HH.MI.SSXFF AM
NLS_TIMESTAMP_FORMAT DD-MON-RR HH.MI.SSXFF AM
NLS_TIME_TZ_FORMAT HH.MI.SSXFF AM TZR
NLS_TIMESTAMP_TZ_FORMAT DD-MON-RR HH.MI.SSXFF AM TZR
NLS_DUAL_CURRENCY $
NLS_COMP BINARY
NLS_LENGTH_SEMANTICS BYTE
NLS_NCHAR_CONV_EXCP FALSE
NLS_NCHAR_CHARACTERSET AL16UTF16

Warning

JCR does not use the NVARCHAR columns so that the value of the
``NLS_NCHAR_CHARACTERSET`` parameter does not matter for JCR.

Create database with Unicode encoding and use Oracle dialect for the
Workspace Container:

<workspace name="collaboration">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="dialect" value="oracle" />
 <property name="multi-db" value="false" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 </properties>

	DB2

DB2 Universal Database (DB2 UDB) supports UTF-8 and
UTF-16/UCS-2 [http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=/com.ibm.db2.udb.admin.doc/doc/c0004821.htm].
When a Unicode database is created, CHAR, VARCHAR, LONG VARCHAR data
are stored in UTF-8 form. It is enough for JCR multi-lingual support.

Example of UTF-8 database creation:

DB2 CREATE DATABASE dbname USING CODESET UTF-8 TERRITORY US

Create database with UTF-8 encoding and use db2 dialect for Workspace
Container on DB2 v.9 and higher:

<workspace name="collaboration">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="dialect" value="db2" />
 <property name="multi-db" value="false" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 </properties>

Note

For DB2 v.8.x support change the property “dialect” to db2v8.

	MySQL

JCR MySQL-backend requires special dialect
MySQL-UTF8 [http://dev.mysql.com/doc/refman/5.0/en/charset-unicode-utf8.html]
to be used for internationalization support. But the database default
charset should be latin1 to use limited index space effectively (1000
bytes for MyISAM engine, 767 for InnoDB). If database default charset
is multibyte, a JCR database initialization error is thrown
concerning index creation failure. In other words, JCR can work on
any singlebyte default charset of database, with UTF8 supported by
MySQL server. But we have tested it only on latin1 database default
charset.

Repository configuration, workspace container entry example:

<workspace name="collaboration">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="dialect" value="mysql-utf8" />
 <property name="multi-db" value="false" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 </properties>

You will also need to indicate the charset name either at the server
level using the --character-set-server server parameter (See more
details
here [http://dev.mysql.com/doc/refman/5.0/en/server-options.html#option_mysqld_character-set-server])
or at the datasource configuration level by adding a new property as
below:

<property name="connectionProperties" value="useUnicode=yes;characterEncoding=utf8;characterSetResults=UTF-8;" />

	PostgreSQL/PostgrePlus

On PostgreSQL/PostgrePlus-backend, multilingual support can be
enabled in different
ways [http://www.postgresql.org/docs/8.3/interactive/charset.html]:

	Using the locale features of the operating system to provide
locale-specific collation order, number formatting, translated
messages, and other aspects. UTF-8 is widely used on Linux
distributions by default, so it can be useful in such case.

	Providing a number of different character sets defined in the
PostgreSQL/PostgrePlus server, including multiple-byte character
sets, to support storing text of any languages, and providing
character set translation between client and server. It is
recommended that you use the UTF-8 database charset, it will allow
any-to-any conversations and make this issue transparent for the
JCR.

Create database with UTF-8 encoding and use a PgSQL dialect for
Workspace Container:

<workspace name="collaboration">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" valBut some of our customersue="jdbcjcr" />
 <property name="dialect" value="pgsql" />
 <property name="multi-db" value="false" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 </properties>
 :.

DB Clean Service

It is a special service for data removal from database. The section
shortly describes the working principles of DBCleanerTool under all
databases.

	Methods of DBCleanService

Note

	Code that invokes the methods of DBCleanService must have the

	JCRRuntimePermissions.MANAGE_REPOSITORY_PERMISSION
permission.

There are several methods of DBCleanService:

	public static void cleanWorkspaceData(WorkspaceEntry wsEntry) throws DBCleanException

	Cleans up workspace data from database.

	public static void cleanRepositoryData(RepositoryEntry rEntry) throws DBCleanException

	Cleans up repository data from database.

	public static DBCleanerTool getWorkspaceDBCleaner(Connection jdbcConn, WorkspaceEntry wsEntry) throws DBCleanException

	Returns database cleaner of workspace.

	public static DBCleanerTool getRepositoryDBCleaner(Connection jdbcConn, RepositoryEntry rEntry)

	Returns database cleaner of repository. The “null” value is returned in case of the multi-db configuration.

The cleaning is a part of restoring from backup and it is used in the
following restore phases:

	clean

	DBCleanerTool.clean();

	restore

	Does nothing with DBCleanerTool.

	commit

	DBCleanerTool.commit();

	rollback

	DBCleanerTool.rollback();

Different approaches are used for database cleaning depending on
database and JCR configuration.

	Need to clean only single workspace

Simple cleaning records from JCR table is used in case of single-db
configuration.

PostgreSQL/PostgrePlus, DB2 and MSSQL

	clean()

	Removes all records from the database. Foreign key of JCR_SITEM table is also removed.

	commit()

	Adds the foreign key.

	rollback()

	

Oracle, Sybase, HSQLDB, MySQL

	clean()

	Removes all records from the database. The foreign key of JCR_SITEM table is also removed.

	commit()

	Adds the foreign key.

	rollback()

	Adds the foreign key.

Either removing or renaming JCR tables are used in case of the
mult-db configuration.

PostgreSQL/PostgrePlus, DB2 and MSSQL

	clean()

	Removes tables JCR_MVALUE, JCR_MREF, JCR_MITEM, initializes new tables without the foreign key of the JCR_MITEM table, adds root.

	commit()

	Adds the foreign key.

	rollback()

	

Oracle, Sybase, HSQLDB, MySQL

	clean()

	Renames the current tables, initializes new tables without the foreign key of the JCR_MITEM table, adds root node, and removes indexes for some databases.

	commit()

	Renames tables, and adds indexes.

	rollback()

	Removes the previously renamed tables, adds indexes, and adds the foreign key.

	Need to clean the whole repository

In case of single-db, all workspaces will be processed simultaneously
as in case of single workspace multi-db configuration. For multi-db,
every workspace will be processed separately as in case of single
workspace multi-db configuration.

How to host several JCR instances on the same database instance?

Frequently, a single database instance must be shared by several other
applications, but you can host several JCR instances in the same
database instance. To fulfill this need, you have to review your queries
and scope them to the current schema; it is now possible to have one JCR
instance per DB schema instead of per DB instance. Also, you will need
to apply the configuration changes described below.

	Lock Manager configuration

To enable this feature, you need to replace
org.jboss.cache.loader.JDBCCacheLoader with
org.exoplatform.services.jcr.impl.core.lock.jbosscache.JDBCCacheLoader
in the JBossCache configuration file.

Here is an example of this very part of the configuration:

<jbosscache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="urn:jboss:jbosscache-core:config:3.1">

 <locking useLockStriping="false" concurrencyLevel="500" lockParentForChildInsertRemove="false"
 lockAcquisitionTimeout="20000" />

 <clustering mode="replication" clusterName="${jbosscache-cluster-name}">
 <stateRetrieval timeout="20000" fetchInMemoryState="false" />
 <sync />
 </clustering>

 <loaders passivation="false" shared="true">
 <!-- All the data of the JCR locks needs to be loaded at startup -->
 <preload>
 <node fqn="/" />
 </preload>
 <!--
 For another cache-loader class you should use another template with
 cache-loader specific parameters
 -->
 <loader class="org.exoplatform.services.jcr.impl.core.lock.jbosscache.JDBCCacheLoader" async="false" fetchPersistentState="false"
 ignoreModifications="false" purgeOnStartup="false">
 <properties>
 cache.jdbc.table.name=${jbosscache-cl-cache.jdbc.table.name}
 cache.jdbc.table.create=${jbosscache-cl-cache.jdbc.table.create}
 cache.jdbc.table.drop=${jbosscache-cl-cache.jdbc.table.drop}
 cache.jdbc.table.primarykey=${jbosscache-cl-cache.jdbc.table.primarykey}
 cache.jdbc.fqn.column=${jbosscache-cl-cache.jdbc.fqn.column}
 cache.jdbc.fqn.type=${jbosscache-cl-cache.jdbc.fqn.type}
 cache.jdbc.node.column=${jbosscache-cl-cache.jdbc.node.column}
 cache.jdbc.node.type=${jbosscache-cl-cache.jdbc.node.type}
 cache.jdbc.parent.column=${jbosscache-cl-cache.jdbc.parent.column}
 cache.jdbc.datasource=${jbosscache-cl-cache.jdbc.datasource}
 </properties>
 </loader>
 </loaders>
</jbosscache>

You can also obtain a file example from
GitHub [https://github.com/exoplatform/jcr/tree/stable/2.5.x/exo.jcr.component.core/src/test/resources/conf/standalone/cluster/test-jbosscache-lock.xml].

	HibernateService configuration

If you use HibernateService for JDBC connections management, you
will need to specify explicitly the default schema by setting the
“hibernate.default_schema” property in the configuration of
HibernateService.

Here is an example:

<component>
 <key>org.exoplatform.services.database.HibernateService</key>
 <jmx-name>database:type=HibernateService</jmx-name>
 <type>org.exoplatform.services.database.impl.HibernateServiceImpl</type>
 <init-params>
 <properties-param>
 <name>hibernate.properties</name>
 <description>Default Hibernate Service</description>

 <property name="hibernate.default_schema" value="${gatein.idm.datasource.schema:}"/>
 </properties-param>
 </init-params>
</component>

Frequently asked questions

Q: Which database server is better for eXo JCR?

A: If the question is about the performance, it is difficult to
answer, because each database can be configured to have better
performance in a special case. According to the results of our internal
tests, the best choice is Oracle 11G R2 even when you store the
binary data in the database. For other databases, it is recommended to
store the binary data in the file system unless you have only small file
content to store. MySQL and PostgreSQL are also demonstrated in our
benchmark results that they could provide good performance. DB2 and
MSSQL are slower in default configurations. The default configuration of
Sybase is the slowest, but in this question, take the database server
maintenance into account. The installation of MySQL and PostgreSQL is
simple and they can work even on any limited hardware. The same actual
for maintenance during the work. Note for Sybase:
“check-sns-new-connection” data container configuration parameter should
be set to “true”. For testing purpose, embedded database such as HSQLDB
is the best choice. Apache Derby and H2 are also supported. But, H2
surprisingly needs “beta” feature enabled - MVCC=TRUE in JDBC URL.

Q: How to setup eXo JCR for multilingual content on MySQL?

A: MySQL database should be created in utf8 encoding with collation
utf8_bin, since eXo JCR is case-sensitive:

CREATE DATABASE db1 CHARACTER SET utf8 COLLATE utf8_bin;

The eXo JCR application (for example, GateIn) should use JCR dialect
“MySQL-UTF8”.

Note

The “MySQL-UTF8” dialect cannot be auto-detected, it should be set
explicitly in the configuration.

Q: Does MySQL have limitation affecting on eXo JCR features?

A: Index’s key length of JCR_SITEM (JCR_MITEM) table for
mysql-utf8 dialect is reduced to 765 bytes (or 255 chars).

Q: Does use of Sybase database need special options in eXo JCR
configuration?

A: To enable JCR to work properly with Sybase, a
check-sns-new-connection property with the ‘false’ value is
required for each workspace data container:

<container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="source-name" value="jdbcjcr" />
 <property name="dialect" value="auto" />
 <property name="multi-db" value="true" />
 <property name="update-storage" value="false" />
 <property name="max-buffer-size" value="200k" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 <property name="swap-directory" value="target/temp/swap/ws" />
 <property name="check-sns-new-connection" value="false" />
 </properties>

Q: It is better to use queries which access data by the JCR API?

A: No, direct access to items via JCR API is more efficient. Search
will consume additional resources for index querying and only then
return the items.

Q: Is ordering by jcr:path or Item name supported?

A: No, it is not supported. There are two ways to order results,
when the path may be used as criteria:

	Order by property with the NAME or PATH value type (JCR supports it).

	Order by jcr:path - sort by the exact path of node (JCR does not
support it).

Order by jcr:path

If no order specification is supplied in the query statement,
implementations may support document order on the result nodes (see
6.6.4.2 Document Order of
JSR-170 [http://jcp.org/en/jsr/detail?id=170]), and it is sorted by
order number.

By default, (if query does not contain any ordering statements) result
nodes are sorted by the document order.

SELECT * FROM nt:unstructured WHERE jcr:path LIKE 'testRoot/%'

For specified jcr:path ordering, there is different proceeding in XPath
and SQL:

	SQL no matter ascending or descending - query returns result nodes in
random order:

SELECT * FROM nt:unstructured WHERE
 jcr:path LIKE 'testRoot/%' ORDER BY jcr:path

	XPath - jcr:path order construction is ignored (so result is not
sorted according to the path):

/testRoot/*
 @jcr:primaryType='nt:unstructured'
 order by jcr:path

Tools

	Session leak detector

All necessary information about this tool, including activation and
report.

	Consistency checker

Details of consistency checker, and Recommendations on how to fix
corrupted JCR.

	JCR statistics

Instructions on how to get and manage statistics on database access
layer and on JCR API accesses, and statistics manager.

Session leak detector

The session leak detector is able to help you debug your application
based on JCR when you suspect that you have a bug related to a wrong
usage of JCR sessions. It works by creating a queue of weak references
to JCR sessions and the queue is periodically cleaned. When a session
reference is dequeued and is not cleared it is considered as a leaked
session. Obviously what matters here is the time by which a session is
stale known as max age. If the max age is too short, it will suspect
that many sessions are leaked although they are not. The default max age
value is configured at 2 minutes.

	Activation

Setting the exo.jcr.session.tracking.active virtual machine
system property to “true” activates the session detector with a
default time period of 2 minutes.

You can set the max age with the virtual machine system property
exo.jcr.session.tracking.maxage in seconds. The default value is
120 (2 minutes) if you do not override.

For example, you can do this easily in start_eXo.sh.

	On Linux/Macs:

JCR_SESSION_TRACK="-Dexo.jcr.session.tracking.active=true -Dexo.jcr.session.tracking.maxage=60"
JAVA_OPTS="$JCR_SESSION_TRACK $JAVA_OPTS $LOG_OPTS $SECURITY_OPTS $EXO_OPTS $EXO_CONFIG_OPTS $REMOTE_DEBUG"

	On Windows:

set JCR_SESSION_TRACK=-Dexo.jcr.session.tracking.active=true -Dexo.jcr.session.tracking.maxage=60
set JAVA_OPTS="%JCR_SESSION_TRACK% %JAVA_OPTS% %LOG_OPTS% %SECURITY_OPTS% %EXO_OPTS% %EXO_CONFIG_OPTS% %REMOTE_DEBUG%"

Activate the session tracking and configure a maxage of 1 minute. Any
JCR session older than 1 minute will cause an alert.

	Report

Each detector execution starts with

Starting detector task

and ends with

Finished detector task

When a session is considered as leaked, debug information is printed
on the console with a stack trace of the code that created the
session in order to help you find out where the leaked session was
created at runtime.

For example:

java.lang.Exception
 at org.exoplatform.services.jcr.impl.core.SessionReference.<init>(SessionReference.java:113)
 at org.exoplatform.services.jcr.impl.core.TrackedXASession.<init>(TrackedXASession.java:32)
 at org.exoplatform.services.jcr.impl.core.SessionFactory.createSession(SessionFactory.java:128)
 at org.exoplatform.services.jcr.impl.core.RepositoryImpl.getSystemSession(RepositoryImpl.java:314)
 at org.exoplatform.services.jcr.impl.core.RepositoryImpl.getSystemSession(RepositoryImpl.java:71)
 at org.exoplatform.services.jcr.ext.common.SessionProvider.getSession(SessionProvider.java:157)
 at org.exoplatform.faq.service.impl.JCRDataStorage.getFAQServiceHome(JCRDataStorage.java:323)
 ...

In this Stacktrace, you learn that the
org.exoplatform.faq.service.impl.JCRDataStorage.getFAQServiceHome
method has opened a session that seems to be leaked. You need to
verif:y in the code if Session.logout() is properly called in all
cases (calling it in finally clause usually resolves the issue).

Consistency checker

Warning

It is highly recommended to back up your data before repairing
inconsistencies (either automatically or manually). It is also
recommended to store the results of queries that check the data
consistency. This may be useful for the support team in case of
deeper restoration process.

Production and any systems may have faults in some days. They may be
caused by hardware and/or software problems, human faults during updates
and in many other circumstances. It is important to check integrity and
consistency of the system if it is not backed up or stale, or it takes
the recovery process much time. The eXo JCR implementation offers an
innovative JMX-based complex checking tool. Running inspection, this
tool checks every major JCR component, such as persistent data layer and
index. The persistent layer includes JDBC Data Container and Value
Storage if they are configured. The database is verified using the set
of complex specialized domain-specific queries. The Value Storage tool
checks the existence and access to each file. Index verification
contains two-way pass cycle, existence of each node in the index checks
on persistent layer along with opposite direction, when each node from
Data Container is validated in the index. Access to the checking tool is
exposed via the JMX interface (RepositoryCheckController MBean) with
the following operations available:

[image: image5]

	Operation

	Description

	checkAll()

	Inspects the full repository data (database, value storage and search indexes).

	checkDataBase()

	Inspects only the DB.

	checkValueStorage()

	Inspects only the value storage.

	checkIndex()

	Inspects only the search indexes.

Among the list of known inconsistencies described in the next section,
see below what can be checked and repaired automatically:

	An item has no parent node: Properties will be removed and the root
UUID will be assigned in case of nodes.

	A node has a single valued property with nothing declared in the
VALUE table: This property will be removed if it is not required by
primary type of its node.

	A node has no primary type property: This node and the whole subtree
will be removed if it is not required by primary type of its parent.

	Value record has no related property record: Value record will be
removed from database.

	An item is its own parent: Properties will be removed and root UUID
will be assigned in case of nodes.

	Several versions of same item: All earlier records with earlier
versions will be removed from ITEM table.

	Reference properties without reference records: The property will be
removed if it is not required by the primary type of its node.

	A node is marked as locked in the lockmanager’s table but not in ITEM
table or the opposite: All lock inconsistencies will be removed from
both tables.

Note

The only inconsistency that cannot be fixed automatically is
Corrupted VALUE records. Both *STORAGE_DESC* and *DATA* fields
contain not null value. Since there is no way to determinate which
value is valid: either on the file system or in the database.

The list of ValueStorage inconsistencies which can be checked and
repaired automatically:

	Property’s value is stored in the File System but the content is
missing: A new empty file corresponding to this value will be
created.

The following is the list of SearchIndex inconsistencies which can be
checked. To repair them, you need to reindex the content completely,
what also can be done using JMX:

	Not indexed document

	Document indexed more than one time

	Document corresponding to removed node

	Operation

	Description

	repairDataBase()

	Repairs DB inconsistencies declared above.

	repairValueStorage()

	Repairs value storage inconsistencies declared above.

All tool activities are stored into a file, which can be found in the
app directory. The syntax of the file name is
report-<repository name>-dd-MMM-yy-HH-mm.txt.

Note

You can use the nThreads JMX parameter to set the number of
threads used for checking and repairing repository (the
RepositoryCheckController uses a single thread by default).

Warning

When the multi-threaded mode is used, the
RepositoryCheckController uses more memories. So, it is
recommended to avoid setting a large number of threads.

	Operation

	Description

	getCheckingThreadPoolSize()

	Gets the number of threads used for checking and repairing the repository.

	setCheckingThreadPoolSize()

	Sets the number of threads used for checking and repairing the repository.

Note

By default, the RepositoryCheckController uses only one thread
to check and repair your repository.

Recommendations on how to fix corrupted JCR

Here are examples of corrupted JCR and ways to eliminate them:

Note

	It is assumed that queries for single and multiple database
configurations differ only by the JCR_xITEM table name,
otherwise queries will be explicitly introduced.

	In some examples, you will be asked to replace some
identificators with their corresponding values. This basically
means that you need to insert values, from each row result of
query executed during the issue detection stage, to the
corresponding place. Explicit explanation of what to do will be
introduced in case replacing is needed to be fulfilled in other
way.

	Items have no parent

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM I where NOT EXISTS(select * from JCR_SITEM P where P.ID = I.PARENT_ID)

	Fix description: Assign root as parent node to be able to delete
this node later if the node is not needed anymore.

	To fix this problem, do the following:

	For all query results rows containing items belonging to
I_CLASS = 1 (nodes):

Execute the next query by replacing ${ID} and
${CONTAINER_NAME} with corresponding values:

	Single DB

update JCR_SITEM set PARENT_ID='${CONTAINER_NAME}00exo0jcr0root0uuid0000000000000' where ID = '${ID}'

	Multiple DB

update JCR_MITEM set PARENT_ID='00exo0jcr0root0uuid0000000000000' where ID = '${ID}'

	For all query results rows containing items belonging to the
I_CLASS = 2 (property):

delete from JCR_SREF where PROPERTY_ID = '${ID}'
delete from JCR_SVALUE where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where PARENT_ID = '${ID}' or ID='${ID}'

	A node has a single valued property with no declaration in the
VALUE table.

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM P where P.I_CLASS=2 and P.P_MULTIVALUED=0 and NOT EXISTS (select * from JCR_SVALUE V where V.PROPERTY_ID=P.ID)

Note

	P_MULTIVALUED=0 should be replaced by

	P_MULTIVALUED='f' for PostgreSQL.

	Fix description: Simply remove corrupted properties.

	To fix every row, execute next queries by replacing ${ID}
with a corresponding value:

delete from JCR_SREF where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where ID = '${ID}'

	Nodes have no primary type property.

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM N where N.I_CLASS=1 and NOT EXISTS (select * from JCR_SITEM P where P.I_CLASS=2 and P.PARENT_ID=N.ID and P.NAME='[http://www.jcp.org/jcr/1.0]primaryType')

	Fix description: Remove node, all its children, properties,
values and reference records.

	To fix this problem, do the following:

	Recursively traver to the bottom of the tree until query
results are in empty value:

select * from JCR_SITEM where PARENT_ID='${ID}' and I_CLASS=1

You will receive a tree structure containing a node, its
children and properties.

	Execute the following steps with tree structure elements in
reverse order (from leaves to head).

Execute a query for tree element’s ${ID}.

select * from JCR_SITEM where PARENT_ID='${ID}'

Execute queries for each ${ID} received during the query
execution mentioned above.

delete from JCR_SREF where PROPERTY_ID = '${ID}'
delete from JCR_SVALUE where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where PARENT_ID = '${ID}' or ID='${ID}'

	All value records have no related property record.

	To detect this issue, you need to execute the following query:

select * from JCR_SVALUE V where NOT EXISTS(select * from JCR_SITEM P where V.PROPERTY_ID = P.ID and P.I_CLASS=2)

	Fix description: Remove these unnecessary records from the
JCR_SVALUE table.

	To fix this problem, execute next queries by replacing ${ID}
with a corresponding value as below for every row.

delete from JCR_SVALUE where ID = '${ID}'

	Corrupted VALUE records. Both STORAGE_DESC and STORAGE_DESC
fields contain non-null value.

	To detect this issue, you need to execute the following query:

select * from JCR_SVALUE where (STORAGE_DESC is not null and DATA is not null)

	Fix description: Set null for the STORAGE_DESC field by assuming
that the value stored in database is valid.

	To fix this problem, execute next queries by replacing ${ID}
with the corresponding value as below for every row.

update JCR_SVALUE set STORAGE_DESC = null where ID = '${ID}'

Note

For Sybase DB, “DATA is not null” must be replaced with “not DATA like null”.

	Item is its own parent.

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM I where I.ID = I.PARENT_ID and I.NAME <> '__root_parent'

	Fix description: Assign root as parent node to be able to delete
later if node is not needed to use anymore.

	To fix this problem, do the following:

	For all query results rows containing items belonging to
I_CLASS = 1 (nodes):

Execute the next query by replacing ${ID} and
${CONTAINER_NAME} with corresponding values:

	Single DB

update JCR_SITEM set PARENT_ID='${CONTAINER_NAME}00exo0jcr0root0uuid0000000000000' where ID = '${ID}'

	Multiple DB

update JCR_MITEM set PARENT_ID='00exo0jcr0root0uuid0000000000000' where ID = '${ID}'

	For all query results rows containing items belonging to
I_CLASS = 2 (property):

delete from JCR_SREF where PROPERTY_ID = '${ID}'
delete from JCR_SVALUE where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where PARENT_ID = '${ID}' or ID='${ID}'

	Several versions of the same item.

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM I where EXISTS (select * from JCR_SITEM J WHERE I.CONTAINER_NAME = J.CONTAINER_NAME and I.PARENT_ID = J.PARENT_ID AND I.NAME = J.NAME and I.I_INDEX = J.I_INDEX and I.I_CLASS = J.I_CLASS and I.VERSION != J.VERSION)

	Fix description: Keep the newest version and remove the others.

	To fix this problem, do the following:

	Grouping

select max(VERSION) as MAX_VERSION, PARENT_ID, NAME, CONTAINER_NAME, I_CLASS, I_INDEX from JCR_SITEM WHERE I_CLASS=2 GROUP BY PARENT_ID, CONTAINER_NAME, NAME, I_CLASS, I_INDEX HAVING count(VERSION) > 1

	Execute the following query by replacing ${PARENT_ID} and
``${CONTAINER_NAME}, ${NAME}, ${I_CLASS}, ${I_INDEX},

${MAX_VERSION}`` with corresponding values

contained in results of the query mentioned above:

	Single DB:

select * from JCR_SITEM where I.CONTAINER_NAME='${CONTAINER_NAME}' and PARENT_ID='${PARENT_ID}' and NAME='${NAME}' and I_CLASS='${I_CLASS}' and I_INDEX='${I_INDEX}' and VERSION < ${MAX_VERSION}

	Multiple DB:

select * from JCR_SITEM where PARENT_ID='${PARENT_ID}' and NAME='${NAME}' and I_CLASS='${I_CLASS}' and I_INDEX='${I_INDEX}' and VERSION < ${MAX_VERSION}

Execute the following queries by replacing ${ID} with
corresponding values of newly obtained results.

delete from JCR_SREF where PROPERTY_ID = '${ID}'
delete from JCR_SVALUE where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where ID='${ID}'

	Reference properties without reference records.

	To detect this issue, you need to execute the following query:

select * from JCR_SITEM P, JCR_SVALUE V where P.ID = V.PROPERTY_ID and P.P_TYPE=9 and NOT EXISTS (select * from JCR_SREF R where P.ID=R.PROPERTY_ID)

	Fix description: Remove broken reference properties.

	To fix this problem, do the following:

Execute the query replacing ${ID} with a corresponding value.

delete from JCR_SVALUE where PROPERTY_ID = '${ID}'
delete from JCR_SITEM where ID = '${ID}'

	A node which is considered to be locked in the lockmanager data is
not locked according to the JCR data or the opposite situation.

	To detect this issue, you need:

First, get all locked nodes IDs in repository, mentioned in the
JCR_xITEM table, by executing a query:

select distinct PARENT_ID from JCR_SITEM where I_CLASS=2 and
 (NAME='[http://www.jcp.org/jcr/1.0]lockOwner' or NAME='[http://www.jcp.org/jcr/1.0]lockIsDeep')

Then, compare it to nodes IDs from LockManager’s table:

	JBC

Note

	
	During comparing results, be aware that for single DB

	configurations, you need to cut off the ID prefix
representing the workspace name for results obtained
from the JCR_xITEM table.

	Though a single lock table is usually used for the
whole repository, it is possible to configure separate
db lock tables for each workspace. In this case, to
obtain information over the repository, you need to
execute queries for each table.

	Non shareable

select fqn from ${LOCK_TABLE} where parent='/$LOCKS'

	Shareable

Replace ${REPOSITORY_NAME} with its corresponding
value.

select fqn from ${LOCK_TABLE} where parent like '/${REPOSITORY_NAME}%/$LOCKS/'

	ISPN

Note

	For ISPN lock tables which are defined for each workspace

	separately, you must execute queries for all lock tables
to obtain information over repository.

To get all set of locked node IDs in the repository, you must
execute the following query for each workspace.

select id from ${LOCK_TABLE}

	Fix description: Remove inconsistent lock entries and properties.
Remove entries in LOCK_TABLE that have no corresponding
properties in the JCR_xITEM table and remove the
JCR_xITEM properties that have no corresponding entries in
the LOCK_TABLE table.

	To fix this problem, do the following:

First, remove property values, replace ``${ID} `` with a
corresponding node ID:

delete from JCR_SVALUE where PROPERTY_ID in (select ID from JCR_SITEM where PARENT_ID='${ID}' and (NAME = '[http://www.jcp.org/jcr/1.0]lockIsDeep' or NAME = '[http://www.jcp.org/jcr/1.0]lockOwner'))

Then, remove property items themselves, replace ${ID} with a
corresponding node ID:

delete from JCR_SITEM where PARENT_ID='${ID}' and (NAME = '[http://www.jcp.org/jcr/1.0]lockIsDeep' or NAME = '[http://www.jcp.org/jcr/1.0]lockOwner')

Replace ${ID} and ${FQN} with the corresponding node ID
and FQN.

	JBC

delete from ${LOCK_TABLE} where fqn = '${FQN}'

	ISPN

Execute the following query for each workspace:

delete from ${LOCK_TABLE} where id = '${ID}'

	A property’s value is stored in the file system, but its content
is missing.

This cannot be checked via simple SQL queries.

JCR statistics

This section will show you how to get and manage all statistics provided
by eXo JCR. All the statistics are controlled by the statistics manager
which is reponsible for printing data into the CSV files and exposing
the statistics through JMX and/or Rest.

Statistics Manager

The statistics manager will create all the CSV files for each category
of statistics under its management. These files are in the format of
Statistics${category-name}-${creation-timestamp}.csv. Those files
will be created into the user directory if it is possible otherwise it
will create them into the temporary directory. The .csv files (for
example, Comma-Separated Values) includes: one new line which is added
regularly (every 5 seconds by default) and one last line which will be
added at JVM exit. Each line has 5 figures described below for each
method and globally for all methods.

	Min

	The minimum time spent into the method expressed in milliseconds.

	Max

	The maximum time spent into the method expressed in milliseconds.

	Total

	The total amount of time spent into the method expressed in milliseconds.

	Avg

	The average time spent into the method expressed in milliseconds.

	Times

	The total amount of times the method has been called.

By default, the JVM parameter called
JCRStatisticsManager.persistence.enabled is set to “true”. Also, the
JCRStatisticsManager.persistence.timeout JVM parameter that shows
period between each record (for example, line of data into the file) is
set to 5000. You can define another periods by setting its value to your
desired one in milliseconds.

You can also access the statistics thanks to JMX, the available methods
are the following:

	getMin

	Give the minimum time spent into the method corresponding to the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	getMax

	Give the maximum time spent into the method corresponding to the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	getTotal

	Give the total amount of time spent into the method corresponding to the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	getAvg

	Give the average time spent into the method corresponding to the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	getTimes

	Give the total amount of times the method has been called corresponding to the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	reset

	Reset the statistics for the given category name and statistics name. The expected arguments are the name of the category of statistics (for example, JDBCStorageConnection) and the name of the expected method or global for the global value.

	resetAll

	Reset all the statistics for the given category name. The expected argument is the name of the category of statistics (for example, JDBCStorageConnection).

The full name of the related MBean is
exo:service=statistic, view=jcr.

Statistics on database access layer

In order to have a better idea of the time spent into the database
access layer, it can be interesting to get some statistics on that part
of the code, knowing that most of the time spent into eXo JCR is mainly
the database access. This statistics will then allow you to identify
without using any profiler what is normally slow in this layer, which
could help to fix the problem quickly.

In case you use
org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer
or
org.exoplatform.services.jcr.impl.storage.jdbc.JDBCWorkspaceDataContainer
as WorkspaceDataContainer, you can get statistics on the time spent
on the database access layer. The database access layer (in eXo JCR) is
represented by the methods of the
org.exoplatform.services.jcr.storage.WorkspaceStorageConnection
interface, so for all the methods defined in this interface, you can
have the following figures:

	The minimum time spent into the method.

	The maximum time spent into the method.

	The average time spent into the method.

	The total amount of time spent into the method.

	The total amount of time the method has been called.

Those figures are also available globally for all the methods which
gives us the global behavior of this layer.

If you want to enable the statistics, you just need to set the JVM
parameter called JDBCWorkspaceDataContainer.statistics.enabled to
true. The corresponding CSV file is
StatisticsJDBCStorageConnection-${creation-timestamp}.csv for more
details about how the csv files are managed. See Statistics
manager for more details.

The format of each column header is ${method-alias}-${metric-alias}.
The metric alias are described in the statistics manager section.

The name of the category of statistics corresponding to these statistics
is JDBCStorageConnection, this name is mostly needed to access to
the statistics through JMX.

	global

	This is the alias for all the methods.

	getItemDataById

	This is the alias for the getItemData(String identifier) method.

	getItemDataByNodeDataNQPathEntry

	
	This is the alias for the ``getItemData(NodeData parentData, QPathEntry

	name)`` method.

	getChildNodesData

	This is the alias for the getChildNodesData(NodeData parent) method.

	getChildNodesCount

	This is the alias for the `` getChildNodesCount(NodeData parent)`` method.

	getChildPropertiesData

	This is the alias for the getChildPropertiesData(NodeData parent) method.

	listChildPropertiesData

	This is the alias for the listChildPropertiesData(NodeData parent) method.

	getReferencesData

	This is the alias for the getReferencesData(String nodeIdentifier) method.

	commit

	This is the alias for the commit() method.

	addNodeData

	This is the alias for the add(NodeData data) method.

	addPropertyData

	This is the alias for the add(PropertyData data) mehod.

	updateNodeData

	This is the alias for the update(NodeData data) method.

	updatePropertyData

	This is the alias for the update(PropertyData data) method.

	deleteNodeData

	This is the alias for the delete(NodeData data) method.

	deletePropertyData

	This is the alias for the delete(PropertyData data) method.

	renameNodeData

	This is the alias for the rename(NodeData data) method.

	rollback

	This is the alias for the rollback() method.

	isOpened

	This is the alias for the isOpened() method.

	close

	This is the alias for the close() method.

Statistics on JCR API accesses

In order to know exactly how your application uses JCR, it can be
interesting to register all the JCR API accesses in order to easily
create real life test scenario based on pure JCR calls and also to tune
your JCR to better fit your requirements.

In order to allow you to specify the configuration which part of JCR
needs to be monitored without applying any changes in your code and/or
building anything, choose to rely on the Load-time Weaving proposed by
AspectJ.

To enable this feature, you will have to add the following jar files to
your classpath:

	exo.jcr.component.statistics-X.Y.Z.jar corresponding to your eXo
JCR version that you can get from the jboss maven repository
https://repository.jboss.org/nexus/content/groups/public/org/exoplatform/jcr/exo.jcr.component.statistics.

	aspectjrt-1.6.8.jar that you can get from the main maven
repository
http://repo2.maven.org/maven2/org/aspectj/aspectjrt.

You will also need to get ``aspectjweaver-1.6.8.jar `` from the main
maven repository
http://repo2.maven.org/maven2/org/aspectj/aspectjweaver. At this stage,
to enable the statistics on the JCR API accesses, you will need to add
the JVM parameter -javaagent:${pathto}/aspectjweaver-1.6.8.jar to your
command line. For more details, refer to
http://www.eclipse.org/aspectj/doc/released/devguide/ltw-configuration.html.

By default, the configuration will collect statistics on all the methods
of the internal interfaces
org.exoplatform.services.jcr.core.ExtendedSession and
org.exoplatform.services.jcr.core.ExtendedNode, and the JCR API
interface javax.jcr.Property. To add and/or remove some interfaces
to/from monitor, you have two configuration files changed that are
bundled into the exo.jcr.component.statistics-X.Y.Z.jar which
includes conf/configuration.xml and META-INF/aop.xml.

The file content below is the content of conf/configuration.xml that
you will need to modify to add and/or remove the full qualified name of
the interfaces to monitor, into the list of parameter values of the init
param called targetInterfaces.

<configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd http://www.exoplatform.org/xml/ns/kernel_1_2.xsd"
 xmlns="http://www.exoplatform.org/xml/ns/kernel_1_2.xsd">

 <component>
 <type>org.exoplatform.services.jcr.statistics.JCRAPIAspectConfig</type>
 <init-params>
 <values-param>
 <name>targetInterfaces</name>
 <value>org.exoplatform.services.jcr.core.ExtendedSession</value>
 <value>org.exoplatform.services.jcr.core.ExtendedNode</value>
 <value>javax.jcr.Property</value>
 </values-param>
 </init-params>
 </component>
</configuration>

The file content below is the content of META-INF/aop.xml that you
will need to modify to add and/or remove the full qualified name of the
interfaces to monitor, into the expression filter of the pointcut called
JCRAPIPointcut. As you can see below, by default only JCR API calls
from the exoplatform packages are taken into account, do not hesitate to
modify this filter to add your own package names.

<aspectj>
 <aspects>
 <concrete-aspect name="org.exoplatform.services.jcr.statistics.JCRAPIAspectImpl" extends="org.exoplatform.services.jcr.statistics.JCRAPIAspect">
 <pointcut name="JCRAPIPointcut"
 expression="(target(org.exoplatform.services.jcr.core.ExtendedSession) || target(org.exoplatform.services.jcr.core.ExtendedNode) || target(javax.jcr.Property)) && call(public * *(..))" />
 </concrete-aspect>
 </aspects>
 <weaver options="-XnoInline">
 <include within="org.exoplatform..*" />
 </weaver>
</aspectj>

The corresponding CSV files are of the
Statistics${interface-name}-${creation-timestamp}.csv type. See
Statistics manager for more
details about how the csv files are managed.

The format of each column header is ${method-alias}-${metric-alias}.
The method alias will be of the ${method-name} type (a list of
parameter types separated by semicolon (;) to be compatible with the CSV
format).

The name of the category of statistics corresponding to these statistics
is the simple name of the monitored interface (for example,
ExtendedSession for
org.exoplatform.services.jcr.core.ExtendedSession), this name is
mostly needed to access the statistics through JMX.

Note

This feature will affect the eXo JCR performance, so it is recommended you use this feature carefully.

Performance tuning

This section will show you possible ways of improving JCR.

It is intended for eXo Platform administrators and those who want to use
JCR features.

JBoss AS tuning

You can use maxThreads parameter to increase maximum amount of
threads that can be launched in AS instance. This can improve
performance if you need a high level of concurrency. Also, you can use
the -XX:+UseParallelGC java directory to use parallel garbage
collector.

Tip

Beware of setting maxThreads too big, this can cause
OutOfMemoryError. There is maxThreads=1250 on the machine:

	7.5 GB memory

	4 EC2 Compute Units (2 virtual cores with 2 EC2 Compute Units
each)

	850 GB instance storage (2×420 GB plus 10 GB root partition)

	64-bit platform

	I/O Performance: High

	API name: m1.large

	java -Xmx 4g

JCR cache tuning

	Cache size: The JCR-cluster implementation is built using JBoss
Cache as distributed, replicated cache. But there is one
particularity related to remove action in it. Speed of this operation
depends on the actual size of cache. Because there are currently many
nodes in cache, it will take you much time to remove any specific
node (subtree) from the cache.

	Eviction: Manipulations with eviction wakeUpInterval value
does not affect performance. Performance results with values from 500
up to 3000 are approximately equal.

	Transaction Timeout: Using short timeout for long transactions,
such as Export/Import, removing huge subtree defined timeout, may
cause TransactionTimeoutException.

Clustering

For performance, it is better to have loadbalancer, the database
server, and shared NFS on different computers. If one node gets more
load than others, you can decrease this load by using the load value in
the load balancer.

	JGroups configuration: It is recommended that you use the
“multiplexer stack” feature available in JGroups. This feature is set
by default in eXo JCR that offers higher performance in cluster and
reduces the network connections. If there are two or more clusters in
your network, check that they use different ports and different
cluster names.

Also, the thread pool configurations can be tuned to prevent
ReplicationTimeoutException, like below:

thread_pool.min_threads="10"
thread_pool.max_threads="1000"
thread_pool.queue_max_size="1000"
oob_thread_pool.min_threads="5"
oob_thread_pool.max_threads="1000"
oob_thread_pool.queue_max_size="1000"

	Write performance in cluster: The eXo JCR implementation uses
Lucene indexing engine to provide search capabilities. However,
Lucene causes some limitations for write opertation, for example, it
can perform indexing only in one thread. That is why the write
performance in cluster is not higher than that in a singleton
environment. Data is indexed on coordinator node, so increasing
write-load on cluster may lead to ReplicationTimeout exception. It
occurs because writing threads queue in the indexer and under high
load timeout for replication to coordinator will be exceeded.

Note

It is recommended to exceed the replTimeout value in cache
configurations in case of high write-load.

	Replication timeout: Some operations may take too much time. So
if you get ReplicationTimeoutException, try increasing the
replication timeout:

<clustering mode="replication" clusterName="${jbosscache-cluster-name}">
 ...
 <sync replTimeout="60000" />
</clustering>

The value is set in miliseconds.

JVM parameters

	PermGen space size: If you intend to use Infinispan, you will
have to increase the PermGen size to at least 256 Mo due to the
latest versions of JGroups that are needed by Infinispan (please note
that Infinspan is only dedicated to the community for now, no support
will be provided). In case you intend to use JBoss Cache, you can
keep using JGroups 2.6.13.GA which means that you do not need to
increase the PermGen size.

Forse Query Hints

Some databases support hints to increase query performance (like Oracle,
MySQL, and more). eXo JCR have separate Complex Query implementation for
Orcale dialect, that uses query hints to increase performance for few
important queries.

	To enable this option, put next configuration property:

<workspace name="ws" auto-init-root-nodetype="nt:unstructured">
 <container class="org.exoplatform.services.jcr.impl.storage.jdbc.optimisation.CQJDBCWorkspaceDataContainer">
 <properties>
 <property name="dialect" value="oracle"/>
 <property name="force.query.hints" value="true" />

	The Query hints are enabled by default.

	eXo JCR uses query hints only for Complex Query Oracle dialect. For
all other dialects, this parameter is ignored.

Introduction to eXo Platform Applications

In this chapter, you will learn about applications in eXo Platform,
divided into 2 categories:

	Portlets

Introduction to portlets included in eXo Platform, and their
details (packaging, portlet class name, available preferences and
sample configurations).

	Gadgets

Details of all gadgets used in eXo Platform, such as links to
used REST services, preferences, and more.

These applications are packaged as Web application archives (WARs).

Also, you can specify each portlet and gadget package and its
available preferences that allow you to extend the configuration
choices for standard preferences.

Portlets

This section introduces you to a list of portlets used in applications
of eXo Platform, and their details, such as packaging, portlet class
name, available preferences and sample configurations.

The portlets are classified basing on each application:

	Social

	Content

	Wiki

	Calendar

	Forum

	Answers

	Polls

	Search

Social

All Social portlets are packaged in social-portlet.war file.

	Portlet name

	Description

	Members

	Enables users to search for Space members or lists space members in the alphabetical order.

	My Spaces

	Displays the spaces that user is member or manager.

	Space Activity Stream

	Shares spaces activities.

	Invitations

	Lists all people that invite users.

	Requests

	Lists all invitations requested by users.

	Invitation Spaces

	Displays the spaces that user is invited.

	Pending Spaces

	Displays the requests to join spaces page.

	Public Spaces

	Displays the Public Spaces page.

	User Activity Stream

	Updates and shares the user’s activities and/or status.

	People

	Displays the People page.

	Connections

	Displays the Connections page.

	Profile

	Displays the User profile page.

	Connections Navigation

	Displays all connections of a user.

	All Spaces

	Displays the list of all spaces in the system.

	Space Access

	Manages the accessing-space permission of users.

	Network

	Displays the relationship information of the current user.

	Home Space

	Displays the the space homepage.

	Space Menu

	Displays the space menu to applications.

	Space Setting

	Displays the Space Setting page.

	People Directory

	Displays the page to search for people.

	All People

	Displays the page that shows all people in the system.

Content

This section introduces you to a list of portlets included in Content,
and their details (packaging, portlet class name, available preferences
and sample configurations).

The Content portlets are packaged in various Web application archives
(WARs), including:

	Content Detail, Content List, Search: presentation.war

	Sites Explorer: ecmexplorer.war

	ECM Admin: ecmadmin.war

	Fast Content Creator: fastcontentcreator.war

	Authoring Dashboard: authoring-apps.war

	SEO Toolbar: seo.war

Also, you can specify the package of each portlet and its available
preferences that allow you to extend the configuration choices for
standard preferences defined in portlet.xml.

Content Detail

The Content Detail portlet allows users to view the detail of a
specific content.

This is an example of the Content Detail portlet used in Content:

[image: image3]

	Packaging: This portlet is packaged in the presentation.war
file.

	Portlet class name:
org.exoplatform.wcm.webui.scv.UISingleContentViewerPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	workspace

	String

	collaboration

	The workspace where content is stored.

	nodeIdentifier

	String

	N/A

	The UUID or the path of content that you want to show.

	ShowTitle

	Boolean

	true

	Shows the content title on the top of the portlet.

	ShowDate

	Boolean

	false

	Shows the content date on the top of the portlet.

	ShowOptionBar

	Boolean

	false

	Shows the content date on the top of the portlet.

	ContextEnable

	Boolean

	false

	Defines if the portlet will use the parameter on URL as the path to content to display or not.

	ParameterName

	String

	content-id

	Defines which parameter will be used to get the content’s path.

	PrintParameterName

	String

	content-id

	Defines which parameter will be used to get the content’s path to print.

	PrintPage

	String

	printviewer

	The print preview page.

	basePath

	String

	basePath

	Shows the page in which the full content is displayed when the content title is clicked.

	showScvWith

	String

	content-id

	The parameter name which shows the content path in URL when the content title is clicked.

	sharedCache

	Boolean

	true

	Defines if the portlet will use the cache shared between users to display content. If you want the content to be displayed in CLV to be got from one cache, set the value to true. In most cases, you should not set sharedCache to false as it reduces the overall performance. See Content Visibility.

	Sample configuration

<portlet-preferences>
 <preference>
 <name>workspace</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>nodeIdentifier</name>
 <value>/myfolder/mycontent</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>ShowTitle</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>ShowDate</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>ShowOptionBar</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>ContextEnable</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>ParameterName</name>
 <value>content-id</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>PrintParameterName</name>
 <value>content-id</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>PrintPage</name>
 <value>printviewer</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>basePath</name>
 <value>detail</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showScvWith</name>
 <value>content-id</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>sharedCache</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

Content List

The Content List portlet shows a list of contents which already
exist in the system.

This is an example of the Content List portlet used in Content:

[image: image4]

	Packaging: This portlet is packaged in the presentation.war
file.

	Portlet class name:
org.exoplatform.wcm.webui.clv.UICLVPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	mode

	String

	AutoViewerMode

	The mode for displaying content of the portlet: all contents in a specific folder or all specific contents in the portlet.

	folderPath

	String

	N/A

	The path to the folder whose contents are displayed by this portlet.

	orderBy

	String

	publication:liveDate

	The property by which all the contents in the portlet are sorted.

	orderType

	String

	DESC

	The type of the content sort method: ascending or descending.

	header

	String

	N/A

	The header of the portlet which is displayed at the top of the portlet.

	automaticDetection

	Boolean

	true

	This value indicates whether the header of the portlet is selected to be the title of the folder given in the folderPath parameter (true value) or the value given in the header parameter above.

	formViewTemplatePath

	String

	N/A

	The value is set to “empty” by default and can be replaced with the path to the template which is used to display this portlet content.

	paginatorTemplatePath

	String

	/exo:ecm/views/templates/content-list-viewer/paginators/DefaultPaginator.gtmpl

	The path to the paginator used to display the contents in this portlet.

	itemsPerPage

	Integer

	10

	The number of contents displayed in every “page” of the portlet.

	showThumbnailsView

	Boolean

	true

	This value indicates whether the content image in this portlet is shown or not.

	showTitle

	Boolean

	true

	This value indicates whether the content title in this portlet is shown or not.

	showHeader

	Boolean

	true

	This value indicates whether the content header in this portlet is shown or not.

	showRefreshButton

	Boolean

	false

	This value indicates whether the Refresh button is shown in this portlet or not.

	showDateCreated

	Boolean

	true

	This value indicates whether the content created date in this portlet is shown or not.

	showReadmore

	Boolean

	true

	This value indicates whether the Read more button is shown in every content of the portlet or not. After clicking this button, the user can read the whole text of the content.

	showSummary

	Boolean

	true

	This value indicates whether the content summary in this portlet is shown or not.

	showLink

	Boolean

	true

	If this value is true, the header of every content is also the link to view this content fully. If the value is false, the header is considered as a simple text.

	showRssLink

	Boolean

	true

	Shows the RSS link of this portlet.

	basePath

	String

	detail

	Shows the page in which the full content is displayed when the user clicks to the Read more button.

	contextualFolder

	String

	contextualDisable

	Enables/Disables the contextual mode of the portlet. If enabled, the portlet can take the folder path indicated in the URL to display contents.

	showScvWith

	String

	content-id

	The parameter name which shows the folder path in URL when the content title is clicked.

	showClvBy

	String

	folder-id

	The parameter name which shows the folder path in URL.

	application

	String

	ContentList

	The application name.

	sharedCache

	Boolean

	true

	Defines if the portlet will use the cache shared between users to display content. If you want the content displayed in SCV to be got from one cache, set the value to true. In most cases, you should not set sharedCache to false as it reduces the overall performance. See Content Visibility.

	Sample Configuration

<portlet-preferences>
 <preference>
 <name>mode</name>
 <value>AutoViewerMode</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>folderPath</name>
 <value></value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>orderBy</name>
 <value>publication:liveDate</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>orderType</name>
 <value>DESC</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>header</name>
 <value></value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>automaticDetection</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>formViewTemplatePath</name>
 <value></value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>paginatorTemplatePath</name>
 <value>/exo:ecm/views/templates/content-list-viewer/paginators/DefaultPaginator.gtmpl</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>itemsPerPage</name>
 <value>10</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showThumbnailsView</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showTitle</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showHeader</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showRefreshButton</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showDateCreated</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showReadmore</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showSummary</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showLink</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showRssLink</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>basePath</name>
 <value>detail</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>contextualFolder</name>
 <value>contextualDisable</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showScvWith</name>
 <value>content-id</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showClvBy</name>
 <value>folder-id</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>application</name>
 <value>ContentList</value>
 <read-only>true</read-only>
 </preference>
 <preference>
 <name>sharedCache</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 </portlet-preferences>

Search

The Search portlet allows users to do a search with any string. In
Content, there are three types of search: quick search, advanced search,
and search with saved queries.

The users can find this portlet in the front page. This is an example of
the Search portlet used in Content:

	Packaging: This portlet is packaged in the searches.war file.

	Portlet class name:
org.exoplatform.wcm.webui.search.UIWCMSearchPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	repository

	string

	repository

	The place where data are stored and maintained.

	workspace

	string

	collaboration

	The workspace where the content is stored.

	searchFormTemplatePath

	string

	
	``/exo:ecm/views/templates/search/search-form/Form.gtmpl

	``

	The path to the search form template.

	searchResultTemplatePath

	string

	
	``/exo:ecm/views/templates/search/search-result/Results.gtmpl

	``

	The path to the search result template.

	searchPaginatorTemplatePath

	string

	
	``/exo:ecm/views/templates/search/search-paginator/Paginator.gtmpl

	``

	The path to the search paginator template.

	searchPageLayoutTemplatePath

	string

	
	``/exo:ecm/views/templates/search/search-page-layout/PageLayout.gtmpl

	``

	The path to the search page template.

	itemsPerPage

	Integer

	5

	The number of items for each page.

	showQuickEditButton

	boolean

	true

	Shows or hides the quick edit icon.

	pageMode

	String

	more

	The way to list search results.

	basePath

	string

	detail

	The page which is used to display the search result.

	detailParameterName

	String

	content-id

	Defines which parameter will be used to get the content’s path.

	Sample configuration

<portlet-preferences>
 <preference>
 <name>workspace</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>searchFormTemplatePath</name>
 <value>/exo:ecm/views/templates/search/search-form/Form.gtmpl</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>searchResultTemplatePath</name>
 <value>/exo:ecm/views/templates/search/search-result/Results.gtmpl</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>searchPaginatorTemplatePath</name>
 <value>/exo:ecm/views/templates/search/search-paginator/Paginator.gtmpl</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>searchPageLayoutTemplatePath</name>
 <value>/exo:ecm/views/templates/search/search-page-layout/PageLayout.gtmpl</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>itemsPerPage</name>
 <value>5</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showQuickEditButton</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>pageMode</name>
 <value>more</value> <!-- supported modes : pagination, more, none -->
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>basePath</name>
 <value>detail</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>detailParameterName</name>
 <value>content-id</value>
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

Sites Explorer

The Sites Explorer portlet is used to manage all documents in
different drives. With this portlet, users can do many different actions
depending on their roles, such as adding/deleting a category and a
document, showing/hiding a node, managing publication, and more.

This is an example of the Sites Explorer portlet used in Content:

	Packaging: The portlet is packaged in the ecmexplorer.war
file.

	Portlet class name:
org.exoplatform.ecm.webui.component.explorer.UIJCRExplorerPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	categoryMandatoryWhenFileUpload

	boolean

	false

	Forces a user to add a category when uploading or creating a document.

	uploadFileSizeLimitMB

	float

	150

	The maximum size of a file that is uploaded to the system (MB).

	usecase

	string

	selection

	The behavior to access Sites Explorer. By default, the “selection” option is configured. Besides “selection”, there are four other ways to configure the Sites Explorer: Jailed, Personal, Social, Parameterize.

	driveName

	string

	Personal Documents

	The name of drive which the user wants to access.

	trashHomeNodePath

	string

	/Trash

	The location to store the deleted nodes.

	trashWorkspace

	string

	collaboration

	The name of the workspace where stores the deleted nodes.

	editInNewWindow

	boolean

	false

	Allows editing documents with or without a window popup.

	showTopBar

	boolean

	true

	Allows showing the Top bar or not.

	showActionBar

	boolean

	true

	Allows showing the Action bar or not.

	showSideBar

	boolean

	true

	Allows showing the Side bar or not.

	showFilterBar

	boolean

	true

	Allows showing the Filter bar or not.

	Sample Configuration

<portlet-preferences>
 <preference>
 <name>categoryMandatoryWhenFileUpload</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>uploadFileSizeLimitMB</name>
 <value>150</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>usecase</name>
 <value>selection</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>driveName</name>
 <value>Personal Documents</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>trashHomeNodePath</name>
 <value>/Trash</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>trashWorkspace</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>editInNewWindow</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showTopBar</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showActionBar</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showSideBar</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showFilterBar</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

ECM Admin

The ECM Admin portlet is used to manage the main Content functions,
including templates, explorer, repository, and advanced functions.

This is an example of the ECM Admin portlet used in Content:

[image: image5]

	Packaging: This portlet is packaged in the ecmadmin.war file.

	Portlet class name:
org.exoplatform.ecm.webui.component.admin.UIECMAdminPortlet

Fast Content Creator

The Fast Content Creator portlet consists of two modes: Standard
Content Creator and Basic Content Creator. This portlet allows
users to quickly create contents without accessing the Sites Explorer
portlet.

This is an example of the Fast Content Creator portlet used in
Content:

[image: image6]

By default, this portlet is applied for the Contact Us portlet in
Content.

	Packaging: This portlet is packaged in the
fastcontentcreator.war file.

	Portlet class name:
org.exoplatform.wcm.webui.fastcontentcreator.UIFCCPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	mode

	string

	basic

	The default mode of the Fast Content Creator portlet.

	workspace

	string

	collaboration

	The workspace where the content is stored.

	path

	string

	/Groups/platform/users/Documents

	The destination path where the content is stored.

	type

	string

	nt:file

	The node type of document which is shown on the dialog form.

	saveButton

	string

	Save

	The custom button: Save.

	saveMessage

	string

	This node has been saved successfully

	The custom message when the user clicks the Save button.

	isRedirect

	boolean

	false

	Specifies whether redirecting to another page or not.

	redirectPath

	string

	http://www.google.com.vn

	The path to which the page will redirect.

	isActionNeeded

	boolean

	true

	Specifies whether an action is needed to save to the configuration or not.

	Sample Configuration

<portlet-preferences>
<!-- Specify the workspace name will be use in repository -->
 <preference>
 <name>mode</name>
 <value>basic</value>
 <read-only>true</read-only>
 </preference>
 <preference>
 <name>workspace</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
 <!-- Specify the destination path which will be use to store saved documents -->
 <preference>
 <name>path</name>
 <value>/Groups/platform/users/Documents</value>
 <read-only>false</read-only>
 </preference>
 <!-- Specify the node type of document which will be show on the dialog form -->
 <preference>
 <name>type</name>
 <value>nt:file</value>
 <read-only>false</read-only>
 </preference>
 <!-- The custom button Save -->
 <preference>
 <name>saveButton</name>
 <value>Save</value>
 <read-only>false</read-only>
 </preference>
 <!-- The custom message when click Save button -->
 <preference>
 <name>saveMessage</name>
 <value>This node has been saved successfully</value>
 <read-only>false</read-only>
 </preference>
 <!-- Redirect to other page or not -->
 <preference>
 <name>isRedirect</name>
 <value>false</value>
 <read-only>false</read-only>
 </preference>
 <!-- The page will redirect to -->
 <preference>
 <name>redirectPath</name>
 <value>http://www.google.com.vn</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>isActionNeeded</name>
 <value>true</value>
 <read-only>true</read-only>
 </preference>
</portlet-preferences>

Authoring Dashboard

The Authoring Dashboard portlet allows users to manage contents in
draft and ones which need to be approved or published.

This is an example of the Authoring Dashboard portlet used in
Content:

[image: image7]

	Packaging: This portlet is packaged in the authoring-apps.war
file.

	Portlet class name:
org.exoplatform.wcm.webui.authoring.UIWCMDashboardPortlet

	Available preferences: When using this portlet, you can customize
the following preferences:

	Preference

	Type

	Value

	Description

	workspace

	String

	Collaboration

	Name of the workspace.

	drive

	String

	Collaboration

	Name of the drive.

	Sample Configuration

<portlet-preferences>
 <preference>
 <name>workspace</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>drive</name>
 <value>collaboration</value>
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

SEO Toolbar

The SEO Toolbar portlet allows users to manage SEO data of web
content and web pages, so they can maximize their website position on
search engines.

This is an example of the SEO Toolbar portlet used in Content:

[image: image8]

	Packaging: This portlet is packaged in the seo.war file.

	Portlet class name:
org.exoplatform.wcm.webui.seo.UISEOToolbarPortlet

Wiki

The Wiki portlet provides users with the possibility to enhance their
collaboration and share their work across the platform. With Wiki, they
can add, modify, or delete its content by using a simplified markup
language or a rich-text editor.

Package

This portlet is packaged in the wiki.war file.

Portlet.xml

See the portlet.xml file in the project by following this path:
/webapps/wiki/WEB-INF/portlet.xml.

Preferences

When using this portlet, you can customize the following preferences:

	Preference name

	Possible value

	Default value

	Description

	showBreadcrumb

	Boolean

	true

	Enables the Breadcrumb or not. The Breadcrumb is shown by default.

	showNavigationTree

	Boolean

	true

	Enables the left wiki page navigation or not. The navigation tree is shown by default.

	uploadFileSizeLimitMB

	Integer

	10

	Specifies the maximum file size (MB) to upload. Its default value is 10MB.

Sample configuration

<portlet-preferences>
 <preference>
 <name>showBreadcrumb</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>showNavigationTree</name>
 <value>true</value>
 <read-only>false</read-only>
 </preference>
 <preference>
 <name>uploadFileSizeLimitMB</name>
 <value>10</value>
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

Calendar

The Calendar portlet shows the Calendar application with a lot of
features provided to users.

Package

The Calendar portlet is packaged in the calendar.war file.

Portlet.xml

To see the portlet in the project, follow
this link [https://github.com/exoplatform/calendar/blob/master/calendar-webapp/src/main/webapp/WEB-INF/portlet.xml].

Forum

The Forum portlet is the application for users to post and read messages
on different topics.

Package

This portlet is packaged in the forum.war file.

Portlet.xml

	See the portlet.xml file in the project at this path:
forum/WEB-INF/portlet.xml.

Preferences

	Preference name

	Possible value

	Default value

	Description

	useAjax

	true, false

	true

	Defines if links in the Forum will be plain hrefs or javascript ajax (better for SEO) or not.

	showForumActionBar

	true, false

	true

	This is the UIForumActionBar. If the value is set to “true”, the UIForumActionBar will be shown. If false, the UIForumActionBar will be hidden.

	forumNewPost

	day number

	1

	Specifies if a post is new. If the post is created within the set period, it is new in the Forum.

	enableIPLogging

	true, false

	true

	Enables the IP logging function in the Forum. IP addresses of all posts will be collected.

	enableIPFiltering

	true, false

	true

	Enables the IP filter function in Forum, enabling IP addresses to be blocked in the Forum.

	invisibleCategories

	id categories

	empty

	Hides some categories. If the value is set empty, all categories of the Forum will be shown.

	invisibleForums

	id forums

	empty

	Hides some Forums. All Forums will be shown if the value is set empty.

	uploadFileSizeLimitMB

	integer

	20

	Limits the size of uploaded files in MB in the Forum.

	isShowForumJump

	true, false

	true

	Specifies if the Forum jump panel is shown or not.

	isShowIconsLegend

	true, false

	true

	Specifies if the icon legends panel is shown or not.

	isShowModerators

	true, false

	true

	Specifies if the moderators panel is shown or not.

	isShowPoll

	true, false

	true

	Specifies if the poll panel is shown or not.

	isShowQuickReply

	true, false

	true

	Specifies if the quick reply panel is shown or not.

	isShowRules

	true, false

	true

	Specifies if the forum rules panel is shown or not.

	isShowStatistics

	true, false

	true

	Specifies if the statistics panel is shown or not.

Events

	Name

	Description

	ReLoadPortletEvent

	Reloads UIForumPortlet.

	ForumPollEvent

	Sets the render for UIForumPollPortlet.

	ForumModerateEvent

	Sets the render for UIForumModeratorPortlet.

	ForumRuleEvent

	Sets the render for UIForumRulePortlet.

	QuickReplyEvent

	Sets the render for UIForumQuickReplyPortlet.

ReLoadPortletEvent: This event is fired through UIForumPortlet.

To receive ReLoadPortletEvent, you must use the ForumParameter class
with two properties:

	Name

	Type

	Possible value

	Description

	topicId

	string

	Id of topic.

	Returns the Id of topic for UIForumPortlet.

	isRenderPoll

	boolean

	true/false

	If the value is set to true or false, the UITopicPoll component is rendered or not respectively.

For example:

....
ActionResponse actionRes = pcontext.getResponse() ;
ForumParameter param = new ForumParameter() ;
param.setRenderPoll(true);
param.setTopicId(topic.get());
actionRes.setEvent(new QName("ReLoadPortletEvent"), param) ;
....

ForumPollEvent: This event is fired through UIForumPollPortlet.

To receive ForumPollEvent, you must use the ForumParameter class
with four properties:

	Name

	Type

	Possible value

	Description

	isRenderPoll

	boolean

	True/false

	If the value is set to true or false, the UIForumPollPortlet portlet is rendered or not respectively.

	categoryId

	string

	Id of category

	Returns the Id of category for UIForumPollPortlet.

	forumId

	string

	Id of forum

	Returns the Id of forum for UIForumPollPortlet.

	topicId

	string

	Id of topic

	Returns the Id of topic for UIForumPollPortlet.

For example:

....
ActionResponse actionRes = pcontext.getResponse() ;
ForumParameter param = new ForumParameter() ;
param.setCategoryId(categoryId) ;
param.setForumId(forumId);
param.setTopicId(topicId);
param.setRenderPoll(topic.getIsPoll());
actionRes.setEvent(new QName("ForumPollEvent"), param);
....

ForumModerateEvent: This event is fired through
UIForumModeratePortlet.

To receive ForumModerateEvent, you must use the ForumParameter class
with two properties:

	Name

	Type

	Possible value

	Description

	isRenderModerator

	boolean

	True/false

	If the value is set to true or false, the UIForumModeratePortlet portlet is rendered or not respectively.

	moderator

	list of strings

	List of user name

	Sets data for UIForumModeratePortlet.

For example:

....
List<String> moderators = Arays.asList(forum.getModerators());
ActionResponse actionRes = pcontext.getResponse() ;
ForumParameter param = new ForumParameter() ;
param.setModerators(moderators);
param.setRenderModerator(true);
actionRes.setEvent(new QName("ForumPollEvent"), param);
....

ForumRuleEvent: This event is fired through UIForumRulePortlet.

To receive ForumRuleEvent, you must use the ForumParameter class
with two properties:

	Name

	Type

	Possible value

	Description

	isRenderRule

	boolean

	True/false

	If the value is set to true or false, the UIForumRulePortlet portlet is rendered or not respectively.

	infoRules

	list of strings

	The list of states: can create topic, can add post and topic has lock.

	Sets permissions for users in UIForumRulePortlet.

For example:

....
ActionResponse actionRes = pcontext.getResponse() ;
ForumParameter param = new ForumParameter() ;
List<String> list = param.getInfoRules();
if(forum.getIsClosed() || forum.getIsLock()) {
 list.set(0, "true");
} else {
 list.set(0, "false");
}
list.set(1, String.valueOf(canCreateTopic));
list.set(2, String.valueOf(isCanPost));
param.setInfoRules(list);
param.setRenderRule(true);
actionRes.setEvent(new QName("ForumRuleEvent"), param) ;
....

QuickReplyEvent: This event is fired through UIQuickReplyPortlet.

To receive QuickReplyEvent, you must use the ForumParameter class
with five properties:

	Name

	Type

	Possible value

	Description

	isRenderQuickReply

	boolean

	True/false

	If the value is set to true or false, the UIQuickReplyPortlet portlet is rendered or not respectively.

	isModerator

	boolean

	True/false

	Specifies if the user is moderator of forum containing the topic with quick reply or not.

	categoryId

	string

	Id of category

	Returns the Id of category for UIQuickReplyPortlet.

	forumId

	string

	Id of forum

	Returns the Id of forum for UIQuickReplyPortlet.

	topicId

	string

	Id of topic

	Returns the Id of topic for UIQuickReplyPortlet.

For example:

....
ActionResponse actionRes = pcontext.getResponse() ;
ForumParameter param = new ForumParameter() ;
param.setRenderQuickReply(isCanPost);
param.setModerator(isMod);
param.setCategoryId(categoryId) ;
param.setForumId(forumId);
param.setTopicId(topicId);
actionRes.setEvent(new QName("QuickReplyEvent"), param) ;;
....

Answers

The Answers portlet is the application to create answers, reply and
manage questions.

Package

This portlet is packaged in the faq.war file.

Portlet.xml

	See the portlet.xml file in the project following this path:
/webapps/faq/WEB-INF/portlet.xml.

Portlet Preferences

The Answers portlet consists of preferences as follows:

	Preference name

	Possible value

	Default value

	Description

	enableViewAvatar

	true, false

	true

	Enables users to view the avatar of owner posting the question.

	enableAutomaticRSS

	true, false

	true

	Enables users to get RSS automatically.

	enableVotes AndComments

	true, false

	true

	Enables users to give votes and comments for the question.

	enableAnonymous SubmitQuestion

	true, false

	true

	Enables anonymous users to submit questions.

	display

	approved, both

	both

	Enables administrators to view unapproved questions in the questions list in UIQuestions.

	SendMailAdd NewQuestion

	string

	empty

	Displays the content of sent email when a new question is added.

	SendMailEdit ResponseQuestion

	string

	empty

	Displays the email content when a response is edited.

	emailMoveQuestion

	string

	empty

	Displays the email content when a question is moved.

	orderBy

	alphabet, created

	alphabet

	Arranges questions in the alphabet or created date order.

	orderType

	asc, desc

	asc

	Displays questions in the ascending or descending order.

	isDiscussForum

	true, false

	false

	Enables the DiscussQuestions function.

	idNameCategoryForum

	CategoryName, ForumName

	empty

	Selects categories and forums for the DiscussionQuestions function.

	uploadFileSizeLimitMB

	integer

	20

	Sets the maximum size of uploaded files in MB.

Polls

The Poll portlet is the application for users to vote any ideas, or
activities.

Package

This portlet is packaged in the `` poll.war`` file.

Portlet.xml

	See the portlet.xml file in the project following this path:
poll/WEB-INF/portlet.xml.

<portlet-preferences>
 <preference>
 <name>pollIdShow</name>
 <value/> <!-- PollId -->
 <read-only>false</read-only>
 </preference>
</portlet-preferences>

Portlet Preferences

	Preference name

	Possible value

	Default value

	Description

	pollIdShow

	string

	empty

	The Id of poll which is displayed in the Polls portlet.

Search

eXo Platform provides with the Unified Search feature which allows
users to search for any types of content stored in the content
repository.

The Unified Search feature is implemented by using three following
portlets:

	The Quick Search portlet which allows users to quickly search for
content from the top navigation bar.

[image: image0]

	The Unified Search portlet which allows users to search for
content with their desired filters.

[image: image1]

	The Search Administration portlet which allows administrating the
unified search engine.

[image: image2]

Package

These portlets are packaged in the unified-search.war file.

Portlet

See the portlet.xml file in the project by following this path:
webapps/unified-search/WEB-INF/portlet.xml

Search portlets preferences

The Unified Search and Quick Search portlets use some
preferences that change the search scope and show/hide the UI forms:

	Preferences

	Description

	Default
value for
Unified
Search

	Default
value for
Quick
Search

	**resultsPerPage
**

	Number of results per page.

	10

	5

	searchCurrentS
iteOnly

	Searches only in the
current site if true, or
all sites if false.

	false

	true

	searchTypes

	Limits the search scope to
some index types (such as
wiki, document); in case
there is no type which
should be limited, use
all value.

	all

	all

	**hideSearchForm
**

	Shows/hides the text box
(where users enter the
keyword). If true (hide),
users can search by
entering the keyword in
URL, for example
/search?q=home&types=all.

	false

	false

	hideFacetsFilt
er

	Shows/hides the filters.

	false

	false

Note that the two last preferences are not set in the portlet.xml
file, but still have default values as indicated. Besides, all the above
preferences are at global scope. That is, if any administrator changes
any search setting of these portlets, either at runtime or via custom
extension, the new setting will be applied for all users and available
sites.

Here is a sample configuration for the Unified Search portlet:

<portlet-preferences>
 <preference>
 <name>resultsPerPage</name>
 <value>10</value>
 </preference>
 <preference>
 <name>searchTypes</name>
 <!-- remove the value you don't need -->
 <value>file, document, wiki, page, post, people, space, event, task, answer</value>
 </preference>
 <preference>
 <name>searchCurrentSiteOnly</name>
 <value>false</value>
 </preference>
 <preference>
 <name>hideSearchForm</name>
 <value>false</value>
 </preference>
 <preference>
 <name>hideFacetsFilter</name>
 <value>false</value>
 </preference>
</portlet-preferences>

and for the Quick Search portlet:

<portlet-preferences>
 <preference>
 <name>resultsPerPage</name>
 <value>5</value>
 </preference>
 <preference>
 <name>searchTypes</name>
 <!-- remove the value you don't need -->
 <value>file, document, wiki, page, post, people, space, event, task, answer</value>
 </preference>
 <preference>
 <name>searchCurrentSiteOnly</name>
 <value>true</value>
 </preference>
 </portlet-preferences>

Gadgets

This section provides the knowledge, such as links to used REST
services, preferences, and more about gadgets used in eXo Platform.

The gadgets are classified basing on each application, including:

	Social

	Calendar

	Forum

Social

All Social gadgets are packaged in the opensocial.war file.

	Gadgets name

	Used RestService

	Description

	Description of user preferences

	Activity Stream

	ActivitiesRestServices

	Manages activities of users: updating status, liking/unliking activities, commenting activities, deleting activities and deleting comments.

	N/A

	Social RSS Reader

	N/A

	Fetches, parses and displays RSS from a specific URL.

	There are 2 preference fields: URL input box (default value is http://blog.exoplatform.org/feed/) and Number of RSS per page selector (default value is 10).

	My Connections

	N/A

	Gets and displays information of the current viewer and his connections.

	The number of connections displayed per page. It is set to ‘5’ by default.

	My Spaces

	SpacesRestService

	Displays all spaces that a user has the “member” role.

	N/A

	Viewer Friends

	N/A

	Fetches and displays connections of the viewer.

	N/A

Calendar

The Calendar application consists of two gadgets:

	Eventslist

	Tasklist

Eventslist

Eventslist lists the maximum number of upcoming events, that is
configurable by users. For example, they can set the preference list to
5 or 10 events.

Preferences

See preferences of this gadget in the following sample code:

<UserPref datatype="string" display_name="__MSG_baseurl__" name="url" required="true" value="/calendar"/>
<UserPref datatype="string" display_name="__MSG_subscribeurl__" name="subscribeurl" required="true" value="/portal/rest/private/cs/calendar/upcoming"/>
<UserPref datatype="string" default_value="10" display_name="__MSG_limit__" name="limit"/>
<UserPref datatype="enum" default_value="AM/PM" display_name="__MSG_format__" name="timeformat"/>

Details:

	Preferences

	Description

	url

	Link to the Calendar portlet.

	Subscribeurl

	Link to the upcoming events.

	limit

	The maximum number of upcoming events.

	timeformat

	The time format for upcoming events.

For more details on the preferences of gadgets, see
here. [http://code.google.com/apis/gadgets/docs/basic.html#Userprefs]

Links to used REST services

	It uses the upcomingEvent service in the following package: ``

	org.exoplatform.webservice.cs.calendar.CalendarWebservice.java``.

Tasklist

Taskslist lists the maximum number of upcoming tasks that is
configurable by users. For example, they can set the preference list to
5 or 10 tasks.

Preferences

See the preferences of this gadget in the following sample code:

<UserPref datatype="hidden" default_value="/calendar:/portal/rest/private/cs/calendar/upcoming:10:AM/PM:Default" name="setting"/>

Accordingly, setting collects all the configuration of upcoming
tasks and add some more functions to help developers change the
configuration of the default skin.

Links to used REST services

	It uses upcomingEvent service in the following package: ``

	org.exoplatform.webservice.cs.calendar.CalendarWebservice.java``.

Forum

The Forum application consists of two gadgets:

	Last Post

	Poll and Polllist

Last Post

eXo Platform provides the Last Post gadget which enables users to
see a list of the latest posts in Forum. The number of the latest posts
depends on the configuration setup of the gadget.

	Gadget name

	War name

	Description

	lastpost

	forum-gadgets.war

	The list of the latest posts in the Forum application.

Preferences

	Preference name

	Description

	maxcount

	The number of posts which are displayed in the gadget.

Links to used REST services

	/portal/rest/ks/forum/getmessage/{maxcount}

Poll and Polllist

eXo Platform provides a gadget which enables users to see a poll. The
Poll gadget is developed on the combination of Gadget by GateIn and
Polls Service. The Poll gadget allows users to apply functions of Polls,
such as viewing and voting Polls.

	Gadget name

	War name

	Description

	pollslist

	poll.war

	The list of Polls.

Preferences

	Preference name

	Description

	pollId

	The Id of Polls which is displayed in the Polls gadget.

Links to used REST services

	portal/rest/private/ks/poll/viewpoll/pollId

	portal/rest/private/ks/poll/votepoll/pollId/indexVote

Configurations

This chapter describes configurations used in eXo Platform via the
following main sections:

	Components

Information about configurations of eXo Platform’s main
components, including Social, Content, Wiki, Forum, Answer and
Poll.

	External Component Plugins

Information about configurations of eXo Platform’s main external
component plugins, such as what these plugins are for, and how to
configure them.

Components

This section consists of the following main topics:

	Social components

Information about Social services configurations which provide
low-level functionality for UI components.

	Wiki components

Information about Wiki services configurations which provide
low-level functionality for UI components.

	Content components

Information about Content services which provide low-level
functionality for UI components.

	Calendar service

Information about CalendarService which is used to configure
Calendar.

	Forum components

Description of Forum components and their data type.

	Answers components

Description of Answers components and their data types.

	Profile contact provider

How to configure the profile contact provider which is used to
retrieve user profile.

	Poll components

Details of Poll components and their data types.

Social components

This section describes Social services which provide low-level
functionality for UI components. These services are:

	Space Service

This service is used for spaces management, including creating
spaces, and installing applications.

	LifeCycle Completion Service

This component is used to process the callable request out of the
HTTP request.

	Rest Portal Container Name Config

This plugin is used to set the portal container name used for REST
service.

	Link Provider

This service is used to provide the utility to get the URLs of the
activities, profiles, spaces, avatars and more.

	Activity Manager

This component provides Social activity APIs.

	Relationship Manager

This component provides Social relationship APIs.

	Identity Manager

This component provides Social identity APIs.

	l18N Activity Processor

This component is used to process the localization of activity
content.

	Router

This component is used to get a requested URL part.

Space Service

The service is used for spaces management, including creating spaces,
and installing applications. See
Space Application Config
for the list of applications installed in a space.

Sample configuration:

<component>
 <key>org.exoplatform.social.core.space.spi.SpaceService</key>
 <type>org.exoplatform.social.core.space.impl.SpaceServiceImpl</type>
</component>

LifeCycle Completion Service

This component is used to process the callable request out of the HTTP
request.

Sample configuration:

<component>
 <key>org.exoplatform.social.common.lifecycle.LifeCycleCompletionService</key>
 <type>org.exoplatform.social.common.lifecycle.LifeCycleCompletionService</type>
 <init-params>
 <value-param>
 <name>thread-number</name>
 <value>10</value>
 </value-param>
 <value-param>
 <name>async-execution</name>
 <value>false</value>
 </value-param>
 </init-params>
</component>

	Init-params:

	Name

	Type

	Value

	Description

	thread-number

	integer

	10

	The maximum number of threads parallel executed.

	async-execution

	boolean

	false

	Specifies the running mode of service is synchronous or asynchronous.

Rest Portal Container Name Config

This plugin is used to set the portal container name used for REST
service.

Sample configuration:

<component>
 <key>org.exoplatform.social.opensocial.auth.RestPortalContainerNameConfig</key>
 <type>org.exoplatform.social.opensocial.auth.RestPortalContainerNameConfig</type>
 <init-params>
 <value-param>
 <name>rest-container-name</name>
 <value>portal</value>
 </value-param>
 </init-params>
</component>

	Init-params:

	Name

	Type

	Value

	Description

	rest-container-name

	String

	portal

	The portal container name.

Link Provider

This service is used to provide the utility to get the URLs of the
activities, profiles, spaces, avatars and more.

Sample configuration:

<component>
 <key>org.exoplatform.social.core.service.LinkProvider</key>
 <type>org.exoplatform.social.core.service.LinkProvider</type>
 <init-params>
 <value-param>
 <name>predefinedOwner</name>
 <description>this for generate profile link</description>
 <value>intranet</value>
 </value-param>
 </init-params>
</component>

	Init-params:

	Name

	Type

	Value

	Description

	predefinedOwner

	String

	intranet

	The default portal owner name.

Activity Manager

This component provides Social activity APIs.

<component>
 <key>org.exoplatform.social.core.manager.ActivityManager</key>
 <type>org.exoplatform.social.core.manager.ActivityManagerImpl</type>
</component>

Relationship Manager

This component provides Social relationship APIs.

<component>
 <key>org.exoplatform.social.core.manager.RelationshipManager</key>
 <type>org.exoplatform.social.core.manager.RelationshipManagerImpl</type>
</component>

Identity Manager

This component provides Social identity APIs.

<component>
 <key>org.exoplatform.social.core.manager.IdentityManager</key>
 <type>org.exoplatform.social.core.manager.IdentityManagerImpl</type>
 </component>

I18N Activity Processor

This component is used to process the localization of activity content.

<component>
 <key>org.exoplatform.social.core.processor.I18NActivityProcessor</key>
 <type>org.exoplatform.social.core.processor.I18NActivityProcessor</type>
</component>

Router

This component is used to get a requested URL part.

<component>
 <key>org.exoplatform.social.common.router.ExoRouter</key>
 <type>org.exoplatform.social.common.router.ExoRouter</type>
</component>

Wiki components

This section describes services which provide low-level functionality
for the UI components. These services are:

	Diff Service

This service shows the differences between the page versions.

	Page Rendering Cache Service

This service is used to cache the Wiki page content.

	Resize Image Service

This service is used to resize images added to a Wiki page.

	Rendering Service

This service is used to render content from one syntax to another
syntax.

	Wiki Rest Service

This service is used to provide Wiki data like Wiki tree data, list
of Spaces, and more.

	Wiki Service

This service is used to configure the Wiki.

Diff Service

The DiffService service is used to show the differences between the
page versions. The configuration of this service is found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

Sample configuration:

<component>
 <key>org.exoplatform.wiki.service.diff.DiffService</key>
 <type>org.exoplatform.wiki.service.diff.DiffService</type>
</component>

Page Rendering Cache Service

The PageRenderingCacheService service is used to cache the Wiki page
content. The configuration of this component is found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

Sample configuration:

<component>
 <key>org.exoplatform.wiki.rendering.cache.PageRenderingCacheService</key>
 <type>org.exoplatform.wiki.rendering.cache.impl.PageRenderingCacheServiceImpl</type>
</component>

Resize Image Service

The ResizeImageService service is used to resize images added to a
Wiki page. The configuration of this service is found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

Sample configuration:

<component>
 <key>org.exoplatform.wiki.service.image.ResizeImageService</key>
 <type>org.exoplatform.wiki.service.image.impl.ResizeImageServiceImpl</type>
</component>

Rendering Service

The RenderingService service is used to render content from one
syntax to another syntax. The configuration of this service is found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

Sample configuration:

<component>
 <key>org.exoplatform.wiki.rendering.RenderingService</key>
 <type>org.exoplatform.wiki.rendering.impl.RenderingServiceImpl</type>
</component>

Wiki Rest Service

The WikiRestService service is used to provide Wiki data, such as
Wiki tree data, or list of Spaces. The configuration of this service is
found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

<component>
 <key>org.exoplatform.wiki.service.WikiRestService</key>
 <type>org.exoplatform.wiki.service.impl.WikiRestServiceImpl</type>
</component>

Wiki Service

The WikiService service is used to configure the Wiki. When this
configuration file is executed, the component named
org.exoplatform.wiki.service.impl.WikiServiceImpl will process
actions of Wiki. The configuration of this service is found in
wiki-service/src/main/resources/conf/portal/configuration.xml:

Sample configuration:

<component>
 <key>org.exoplatform.wiki.service.WikiService</key>
 <type>org.exoplatform.wiki.service.impl.WikiServiceImpl</type>
 <init-params>
 <values-param>
 <name>xwiki/2.0</name>
 <value>jar:/wikisyntax/help/xWiki2.0_Short.txt</value>
 <value>jar:/wikisyntax/help/xWiki2.0_Full.txt</value>
 </values-param>
 <properties-param>
 <name>preferences</name>
 <property name="defaultSyntax" value="xwiki/2.0"/>
 </properties-param>
 </init-params>
</component>

Init-params

	Name

	Type

	Value

	Description

	xwiki/2.0

	String list

	jar:/wikisyntax/help/xWiki2.0_Short.txt, jar:/wikisyntax/help/xWiki2.0_Full.txt

	The list of Syntax Help files.

Properties-param

	Property name

	Type

	Value

	Description

	defaultSyntax

	String

	xwiki/2.0

	The default syntax which is used in Wiki.

Content components

This section describes Content services which provide low-level
functionality for UI components. These services are classified into the
following groups:

	:ref:Actions <PLFRefGuide.Configurations.Components.Content.Actions>`

This section represents the components related to managing Content
actions and scripts in eXo Platform.

	:ref:Content arrangement <PLFRefGuide.Configurations.Components.Content.ContentArrangement>`

This section describes services related arranging content in eXo
Platform, consisting of Lock Service, Taxonomy Service, Link Manager,
Manage View Service, Manage Drives Service, New Folksonomy Service,
and Relationship Service.

	:ref:Images Processing <PLFRefGuide.Configurations.Components.Content.ImagesProcessing>`

This section describes the components related to processing Content
images in eXo Platform, consisting of Jod Converter Service, PDF
Viewer Service, and Thumbnail Service.

	:ref:Publication <PLFRefGuide.Configurations.Components.Content.Publication>`

This section describes two components which process document
publication in eXo Platform.

	:ref:Searching <PLFRefGuide.Configurations.Components.Content.Searching>`

This section represents components related to the Content searching
feature in eXo Platform, consisting of Site Search Service, SEO
Service, and Query Service.

	:ref:Templates Processing <PLFRefGuide.Configurations.Components.Content.TemplateProcessing>`

This section describes services related to processing Content
templates, including Application Template Manager Service, Fragment
Cache Service, WCM Service, WCM Configuration Service, CMS Service,
Multi-language Service, Template Service, Metadata Service,
XJavaScript Service, XSkin Service, WCM Content Initializer Service,
and Live Link Manager Service.

Actions

This section represents the components related to managing Content
actions and scripts in eXo Platform.

	Action Service Container

The ActionServiceContainer component is used to manage actions
(adding, removing, or executing actions, and more) in the system.

	Script

This service is used to manage scripts in Content. These scripts
can be registered and executed in the system.

Action Service Container

The ActionServiceContainer component is used to manage actions
(adding, removing, or executing actions, and more) in the system. The
configuration of this component is found in ``

/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml``.

<component>
 <key>org.exoplatform.services.cms.actions.ActionServiceContainer</key>
 <type>org.exoplatform.services.cms.actions.impl.ActionServiceContainerImpl</type>
 <init-params>
 <value-param>
 <name>workspace</name>
 <value>system</value>
 </value-param>
 <value-param>
 <name>repository</name>
 <value>repository</value>
 </value-param>
 </init-params>
</component>

Details:

	Value-param:

	Name

	Type

	Value

	Description

	workspace

	string

	system

	The workspace name.

	repository

	string

	repository

	The repository name.

Script

This service is used to manage scripts in Content. These scripts can
be registered and executed in the system.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-scripts-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.scripts.ScriptService</key>
 <type>org.exoplatform.services.cms.scripts.impl.ScriptServiceImpl</type>
</component>

Content arrangement

This section describes services related arranging content in eXo
Platform, consisting of:

	Lock Service

	Taxonomy Service

	Link Manager

	Manage View Service

	Manage Drives Service

	New Folksonomy Service

	Relationship Service

Lock Service

The LockService component is used to manage all locked nodes and
allows unlocking the locked nodes in the system. It is also used to
assign the Lock right to a user or a user group or a membership. The
configuration of this component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

<component>
 <key>org.exoplatform.services.cms.lock.LockService</key>
 <type>org.exoplatform.services.cms.lock.impl.LockServiceImpl</type>
</component>

Taxonomy Service

The TaxonomyService component is used to sort documents to ease
searches when browsing documents online. It provides a multi-dimensional
set of paths to find a document. In many cases, you can get your content
by using different category paths. Therefore, after creating a document
somewhere in the repository, it is possible to categorize it by adding
several taxonomy references. By browsing the taxonomy tree, it will be
possible to find the referencing article and display them as if they
were children of the taxonomy nodes. Taxonomies are stored in the JCR
itself and the JCR Reference functionality is used to provide the
advanced Content feature. The tree of taxonomies can be managed simply,
such as copying/cutting/pasting nodes, or adding and removing taxonomies
from the tree. Once a taxonomy has been added, any user who has access
to the “Manage Categories” icon from his/her view can then browse the
taxonomy tree and refer one of its nodes to the created documents.

<component>
 <key>org.exoplatform.services.cms.taxonomy.TaxonomyService</key>
 <type>org.exoplatform.services.cms.taxonomy.impl.TaxonomyServiceImpl</type>
 <init-params>
 <object-param>
 <name>defaultPermission.configuration</name>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyTreeDefaultUserPermission">
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyTreeDefaultUserPermission$Permission">
 <field name="identity">
 <string>*:/platform/administrators</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyTreeDefaultUserPermission$Permission">
 <field name="identity">
 <string>*:/platform/users</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>false</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component>

Details:

	Object type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyTreeDefaultUserPermission

	Field

	Type

	Value

	Description

	permissions

	ArrayList

	{java.util.ArrayList}

	The list of the default user permissions to access the taxonomy tree.

	Object type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyTreeDefaultUserPermission$Permission

	Field

	Type

	Description

	identity

	string

	The name of user, group or membership.

	read

	boolean

	The permission to read the taxonomy tree.

	addNode

	boolean

	The permission to add a node to the taxonomy tree.

	setProperty

	boolean

	The permission to set properties for a node in the taxonomy tree.

	remove

	boolean

	The permission to remove a node from the taxonomy tree.

Link Manager

This service is used to manage links, and link target. The configuration
of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.link.LinkManager</key>
 <type>org.exoplatform.services.cms.link.impl.LinkManagerImpl</type>
</component>

Manage View

This service is used to manage views and templates, such as
adding/editing/deleting them. The configuration of this component can be
found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.views.ManageViewService</key>
 <type>org.exoplatform.services.cms.views.impl.ManageViewServiceImpl</type>
</component>

Manage Drive

This service is used to manage drives in Content of eXo Platform.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

 <component>
 <key>org.exoplatform.services.cms.drives.ManageDriveService</key>
 <type>org.exoplatform.services.cms.drives.impl.ManageDriveServiceImpl</type>
</component>

New Folksonomy

This service is used to manage tags of documents in Content of eXo
Platform.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

 <component>
 <key>org.exoplatform.services.cms.folksonomy.NewFolksonomyService</key>
 <type>org.exoplatform.services.cms.folksonomy.impl.NewFolksonomyServiceImpl</type>
</component>

Relations

This service is used to manage relationships between nodes in
Content of eXo Platform.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.relations.RelationsService</key>
 <type>org.exoplatform.services.cms.relations.impl.RelationsServiceImpl</type>
</component>

Images Processing

This section describes the components related to processing Content
images in eXo Platform, consisting of:

	Jod Converter Service

	PDF Viewer Service

	Thumbnail Service

Jod Converter Service

The JodConverterServices component is used to convert documents into
different office formats. This component is enabled by default. The
configuration of this component is found in ``

/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml``.

<component>
 <key>org.exoplatform.services.cms.jodconverter.JodConverterService</key>
 <type>org.exoplatform.services.cms.jodconverter.impl.JodConverterServiceImpl</type>
 <init-params>
 <value-param>
 <name>port</name>
 <value>${jodconverter.portNumbers}</value>
 </value-param>
 <value-param>
 <name>officeHome</name>
 <value>${jodconverter.officeHome}</value>
 </value-param>
 <value-param>
 <name>taskQueueTimeout</name>
 <value>${jodconverter.taskQueueTimeout}</value>
 </value-param>
 <value-param>
 <name>taskExecutionTimeout</name>
 <value>${jodconverter.taskExecutionTimeout}</value>
 </value-param>
 <value-param>
 <name>maxTasksPerProcess</name>
 <value>${jodconverter.maxTasksPerProcess}</value>
 </value-param>
 <value-param>
 <name>retryTimeout</name>
 <value>${jodconverter.retryTimeout}</value>
 </value-param>
 </init-params>
</component>

Details:

	Value-param:

PDF Viewer

This service is used to initialize data under the PDF format to view
files in supported types (MS Word, MS Excel, and more) in Sites
Explorer.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <type>org.exoplatform.services.pdfviewer.PDFViewerService</type>
</component>

Thumbnail Service

The ThumbnailService component is used to resize all the images into
different sizes. Besides the default sizes, it also allows users to
customize the images into the desired sizes. The configuration of this
component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

<component>
 <key>org.exoplatform.services.cms.thumbnail.ThumbnailService</key>
 <type>org.exoplatform.services.cms.thumbnail.impl.ThumbnailServiceImpl</type>
 <init-params>
 <value-param>
 <name>smallSize</name>
 <value>32x32</value>
 </value-param>
 <value-param>
 <name>mediumSize</name>
 <value>64x64</value>
 </value-param>
 <value-param>
 <name>largeSize</name>
 <value>300x300</value>
 </value-param>
 <value-param>
 <name>enable</name>
 <value>false</value>
 </value-param>
 <value-param>
 <name>mimetypes</name>
 <value>image/jpeg;image/png;image/gif;image/bmp</value>
 </value-param>
 </init-params>
</component>

Details:

	Value-param:

	Name

	Type

	Value

	Description

	smallSize

	integer x integer

	32x32

	The small thumbnail size.

	mediumSize

	integer x integer

	64x64

	The medium thumbnail size.

	largeSize

	integer x integer

	300x300

	The large thumbnail size.

	enable

	boolean

	false

	Specifies if the thumbnail is displayed or not.

	mimetypes

	Images formats

	image/jpeg;image/png;image/gif;image/bmp

	The image formats that are supported.

Publication

This section describes two components which process document publication
in eXo Platform.

Publication Service

This service is used to manage the status changes of documents in the
publication lifecycles.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-publication-configuration.xml].

<component>
 <key>org.exoplatform.services.ecm.publication.PublicationService</key>
 <type>org.exoplatform.services.ecm.publication.impl.PublicationServiceImpl</type>
</component>

Publication Presentation

This component is used to retrieve the WebUI form corresponding to the
current state of the specified node.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-publication-configuration.xml].

<component>
 <key>org.exoplatform.services.ecm.publication.PublicationPresentationService</key>
 <type>org.exoplatform.services.ecm.publication.impl.PublicationPresentationServiceImpl</type>
</component>

Searching

This section represents components related to the Content searching
feature in eXo Platform, consisting of:

	Site Search Service

	SEO Service

	Query Service

Site Search Service

The SiteSearchService component is used in the Search portlet that
allows users to find all information matching with your given keyword.

It is configured in the
core/core-configuration/src/main/webapp/WEB-INF/conf/configuration.xml
file as follows:

<import>war:/conf/wcm-core/core-search-configuration.xml</import>

The component configuration maps the SiteSearchService component
with its own implementation: SiteSearchServiceImpl.

<component>
 <key>org.exoplatform.services.wcm.search.SiteSearchService</key>
 <type>org.exoplatform.services.wcm.search.SiteSearchServiceImpl</type>
 <component-plugins>
 <component-plugin>
 <name>ExcludeMimeTypes</name>
 <set-method>addExcludeIncludeDataTypePlugin</set-method>
 <type>org.exoplatform.services.wcm.search.ExcludeIncludeDataTypePlugin</type>
 <init-params>
 <properties-param>
 <name>search.exclude.datatypes</name>
 <description>exclude some data type when search</description>
 <property name="mimetypes" value="${wcm.search.excluded-mimetypes:text/css,text/javascript,application/x-javascript,text/ecmascript}" />
 </properties-param>
 </init-params>
 </component-plugin>
 </component-plugins>
 <init-params>
 <value-param>
 <name>isEnabledFuzzySearch</name>
 <value>${wcm.search.enableFuzzySearch:true}</value>
 </value-param>
 <value-param>
 <name>fuzzySearchIndex</name>
 <value>${wcm.search.fuzzySearchIndex:}</value>
 </value-param>
 </init-params>
 </component>

Detail:

	Value-param:

	Name

	Type

	Value

	Description

	search.exclude.datatypes

	string

	${wcm.search.excluded-mimetypes:text/css,text/javascript,application/x-javascript,text/ecmascript}

	Allows administrators to exclude/include some data types when doing a search. See Exclude Include Data Type for more details.

	isEnabledFuzzySearch

	boolean

	${wcm.search.enableFuzzySearch:true}

	Allows administrators to enable/disable the fuzzy search mechanism.

	fuzzySearchIndex

	N/A

	${wcm.search.fuzzySearchIndex:}

	Allows the approximate level between the input keyword and the found key results. In case of the invalid configuration, the default value is set to 0.8.

To have more information about the fuzzy search, please refer to
Fuzzy Search [http://lucene.apache.org/core/old_versioned_docs/versions/3_0_0/queryparsersyntax.html#FuzzySearches].

SEO Service

The SEOService component is used to help users manage SEO data of a
page or a content, so their websites can achieve higher rankings on
search engines. The configuration of this component is found in ``

/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/wcm/seo-configuration.xml``.

<component>
 <key>org.exoplatform.services.seo.SEOService</key>
 <type>org.exoplatform.services.seo.impl.SEOServiceImpl</type>
 <init-params>
 <object-param>
 <name>seo.config</name>
 <object type="org.exoplatform.services.seo.SEOConfig">
 <field name="robotsindex">
 <collection type="java.util.ArrayList">
 <value>
 <string>INDEX</string>
 </value>
 <value>
 <string>NOINDEX</string>
 </value>
 </collection>
 </field>
 <field name="robotsfollow">
 <collection type="java.util.ArrayList">
 <value>
 <string>FOLLOW</string>
 </value>
 <value>
 <string>NOFOLLOW</string>
 </value>
 </collection>
 </field>
 <field name="frequency">
 <collection type="java.util.ArrayList">
 <value>
 <string>Always</string>
 </value>
 <value>
 <string>Hourly</string>
 </value>
 <value>
 <string>Daily</string>
 </value>
 <value>
 <string>Weekly</string>
 </value>
 <value>
 <string>Monthly</string>
 </value>
 <value>
 <string>Yearly</string>
 </value>
 <value>
 <string>Never</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component>

Details:

	Object-param:

	Object type: org.exoplatform.services.seo.SEOConfig

	Field

	Type

	Value

	Description

	robotsindex

	ArrayList

	INDEX

NOINDEX

	Allows search engines to index a particular page or not.

	robotsfollow

	ArrayList

	FOLLOW

NOFOLLOW

	Allows search engines to follow links from a particular page to find other pages or not.

	frequency

	ArrayList

	Always

Hourly

Daily

Weekly

Monthly

Yearly

Never

	Defines how often a particular page is updated.

Query Service

The QueryService component is used to manage many queries, including
adding, removing or executing a query. The configuration of this
component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

<component>
 <key>org.exoplatform.services.cms.queries.QueryService</key>
 <type>org.exoplatform.services.cms.queries.impl.QueryServiceImpl</type>
 <init-params>
 <value-param>
 <name>workspace</name>
 <value>system</value>
 </value-param>
 <value-param>
 <name>relativePath</name>
 <value>Private/Searches</value>
 </value-param>
 <value-param>
 <name>group</name>
 <value>*:/platform/administrators</value>
 </value-param>
 </init-params>
 </component>

Details:

	Value-param:

	Name

	Type

	Value

	Description

	workspace

	string

	system

	The workspace name.

	relativePath

	string

	Private/Searches

	The path to the query location.

	group

	string

	*:/platform/administrators

	The group is allowed to access the query folder.

Templates Processing

This section describes services related to processing Content templates,
including:

	Application Template Manager

	Fragment Cache

	WCM

	WCM Configuration

	CMS

	Multi-language

	Template

	Metadata

	XJavaScript

	XSkin

	WCM Content Initializer

	Live Link Manager

Application Template Manager

The ApplicationTemplateManagerService component is used to manage
dynamic Groovy templates for Content-based products. The configuration
of this component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

<component>
 <key>org.exoplatform.services.cms.views.ApplicationTemplateManagerService</key>
 <type>org.exoplatform.services.cms.views.impl.ApplicationTemplateManagerServiceImpl</type>
 <init-params>
 <properties-param>
 <name>storedLocations</name>
 <property name="repository" value="system"/>
 </properties-param>
 </init-params>
</component>

Details:

	Properties-param:

	Name

	Property name

	Type

	Value

	Description

	storedLocations

	repository

	string

	system

	The repository name.

Fragment Cache

The FragmentCacheService component is used to cache the response
fragments which are sent to end-users.

	The configuration of this component is found in ``

	core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/wcm-configuration.xml``.

<component>
 <key>org.exoplatform.services.portletcache.FragmentCacheService</key>
 <type>org.exoplatform.services.portletcache.FragmentCacheService</type>
 <init-params>
 <value-param>
 <name>cleanup-cache</name>
 <description>The cleanup cache period in seconds</description>
 <value>300</value>
 </value-param>
 </init-params>
</component>

Details

	Value-param:

	Name

	Type

	Value

	Description

	cleanup-cache

	integer

	300

	The time period over which cache items are expired.

WCM

The WCMService component allows setting expiration cache of portlets
and checking given portals if they are shared portals or not. It also
gets reference contents basing on item identifiers. The configuration of
this component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/wcm-configuration.xml.

<component>
 <key>org.exoplatform.services.wcm.core.WCMService</key>
 <type>org.exoplatform.services.wcm.core.impl.WCMServiceImpl</type>
 <init-params>
 <properties-param>
 <name>server.config</name>
 <description>server.config</description>
 <property name="expirationCache" value="${wcm.cache.wcmservice.expirationcache:30}" />
 </properties-param>
 </init-params>
</component>

Details:

	Properties-param

	Property name

	Type

	Value

	Description

	server.config

	expirationCache

	integer

	${wcm.cache.wcmservice.expirationcache:30}

	The period in which the cache is cleared in seconds. By default, the cache is cleared every 30 seconds.

WCM Configuration

This service is used to manage general information of sites and runtime
context parameters.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/wcm/system-configuration.xml].

<component>
 <key>org.exoplatform.services.wcm.core.WCMConfigurationService</key>
 <type>org.exoplatform.services.wcm.core.WCMConfigurationService</type>
 <init-params>
 <properties-param>
 <name>RuntimeContextParams</name>
 <description>some params for runtime</description>

 <property name="parameterizedPageURI" value="${wcm.config.parameterizedPageURI:/detail}" />
 <property name="printPageURI" value="${wcm.config.printPageURI:/printviewer}" />
 <property name="printViewerPage" value="${wcm.config.printViewerPage:printviewer}" />
 <property name="editorPageURI" value="${wcm.config.editorPageURI:editor}" />
 <property name="siteExplorerURI" value="${wcm.config.siteExplorerURI:siteExplorer}" />

 <property name="CLVPortlet" value="/presentation/ContentListViewerPortlet" />
 <property name="SCVPortlet" value="/presentation/SingleContentViewer" />

 <property name="formViewTemplatePath" value="${wcm.config.formViewTemplatePath:}" />
 <property name="paginatorTemplatePath" value="${wcm.config.paginatorTemplatePath:/exo:ecm/views/templates/content-list-viewer/paginators/DefaultPaginator.gtmpl}" />
 </properties-param>
 <properties-param>
 <name>share.portal.config</name>
 <description>share portal name for each repository</description>
 <property name="portalName" value="shared" />
 </properties-param>
 <object-param>
 <name>live.portals.location.config</name>
 <description>configuration for the cms path</description>
 <object type="org.exoplatform.services.wcm.core.NodeLocation">
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="path">
 <string>/sites</string>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>site.drive.config</name>
 <description>drive config for each site drive</description>
 <object type="org.exoplatform.services.cms.drives.DriveData">
 <field name="name">
 <string>{siteName}</string>
 </field>
 <field name="workspace">
 <string>{workspace}</string>
 </field>
 <field name="permissions">
 <string>{accessPermission}</string>
 </field>
 <field name="homePath">
 <string>{sitePath}/categories/{siteName}</string>
 </field>
 <field name="icon">
 <string></string>
 </field>
 <field name="views">
 <string>Categories</string>
 </field>
 <field name="viewPreferences">
 <boolean>false</boolean>
 </field>
 <field name="viewNonDocument">
 <boolean>true</boolean>
 </field>
 <field name="viewSideBar">
 <boolean>true</boolean>
 </field>
 <field name="showHiddenNode">
 <boolean>false</boolean>
 </field>
 <field name="allowCreateFolders">
 <string>nt:folder,nt:unstructured</string>
 </field>
 <field name="allowNodeTypesOnTree">
 <string>*</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component>

Details:

	properties-param: RuntimeContextParams

	Property-name

	Type

	Value

	Description

	parameterizedPageURI

	string

	${wcm.config.parameterizedPageURI:/detail}

	Contains the path to a page which displays the full content of a document provided by a URL on the browser’s address bar.

	printPageURI

	string

	${wcm.config.printPageURI:/printviewer}

	The URL of the document’s print preview page.

	printViewerPage

	string

	${wcm.config.printViewerPage:printviewer}

	The name of the print preview page.

	editorPageURI

	string

	${wcm.config.editorPageURI:editor}

	The name of the page which users can in-line edit its content displayed in the front-end page.

	siteExplorerURI

	String

	${wcm.config.siteExplorerURI:siteExplorer}

	The URL of a page containing the Sites Explorer portlet.

	CLVPortlet

	String

	/presentation/ContentListViewerPortlet

	The portlet which contains a list of content.

	SCVPortlet

	String

	/presentation/SingleContentViewer

	The portlet which contains single content.

	formViewTemplatePath

	String

	${wcm.config.formViewTemplatePath:}

	The path to the template used to display the contents in this portlet.

	paginatorTemplatePath

	String

	${wcm.config.paginatorTemplatePath:/exo:ecm/views/templates/content-list-viewer/paginators/DefaultPaginator.gtmpl}

	The path to the paginator used to display the contents in this portlet.

	properties-param: share.portal.config

	Property name

	Type

	Value

	Description

	portalName

	String

	shared

	The name of the portal.

	object-param: live.portals.location.config

	Field

	Type

	Value

	Description

	workspace

	string

	collaboration

	The workspace name in the Content Repository.

	path

	string

	/sites

	The path to the folders containing the sites of the system.

	object-param: site.drive.config

	Field

	Type

	Value

	Description

	name

	String

	{siteName}

	The name of a site in the portal.

	workspace

	String

	{workspace}

	The workspace name in the Content repository.

	permissions

	String

	{accessPermission}

	Visibility of the drive based on users’ access permission.

	homePath

	String

	{sitePath}/categories/{siteName}

	The root path in the Content Repository. userId can be used at runtime in the path.

	views

	String

	wcm-category-view

	The list of views you want to use, separated by commas. For example: simple-view,admin-view.

	viewPreferences

	Boolean

	false

	The User Preference icon will be visible if true.

	viewNonDocument

	Boolean

	true

	Non-document types will be visible in the user view if true.

	viewSideBar

	Boolean

	true

	Shows/Hides the left bar (with navigation and filters).

	showHiddenNode

	Boolean

	false

	Hidden nodes will be visible if true.

	allowCreateFolders

	String

	nt:folder,nt:unstructured

	A list of node types that you can create as folders. For example: nt:folder,nt:unstructured

	allowNodeTypesOnTree

	String

	*

	Allows you to filter node types in the navigation tree. For example, the default value is “*” to show all content types.

CMS

This service is used to write data to JCR. The configuration of this
component can be found
here [https://github.com/exoplatform/ecms/blob/master/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/cms-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.CmsService</key>
 <type>org.exoplatform.services.cms.impl.CmsServiceImpl</type>
</component>

Multi-language

This service is used to manage and display content in different
languages of a node which contains many language versions.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.i18n.MultiLanguageService</key>
 <type>org.exoplatform.services.cms.i18n.impl.MultiLanguageServiceImpl</type>
</component>

Template

This service is used to manage templates of content in Content of
eXo Platform.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml].

<component>
 <key>org.exoplatform.services.cms.templates.TemplateService</key>
 <type>org.exoplatform.services.cms.templates.impl.TemplateServiceImpl</type>
</component>

Metadata

This service is used to manage metadata of nodes in JCR, such as
adding/editing/deleting/retrieving them.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml]

<component>
 <key>org.exoplatform.services.cms.metadata.MetadataService</key>
 <type>org.exoplatform.services.cms.metadata.impl.MetadataServiceImpl</type>
</component>

XJavascript

This service is used to update and retrieve JavaScript codes to run on
the front-end pages.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/wcm-configuration.xml].

<component>
 <key>org.exoplatform.services.wcm.javascript.XJavascriptService</key>
 <type>org.exoplatform.services.wcm.javascript.XJavascriptService</type>
</component>

XSkin

This service is used to update and retrieve stylesheet codes to apply
for the front-end pages.

The configuration of this component can be found
here [https://github.com/exoplatform/ecms/blob/master/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/wcm-configuration.xml].

<component>
 <key>org.exoplatform.services.wcm.skin.XSkinService</key>
 <type>org.exoplatform.services.wcm.skin.XSkinService</type>
</component>

WCM Content Initializer

This service is used to log, deploy and check the deployment plugin of
sites in Content of eXo Platform.

<component>
 <type>org.exoplatform.services.deployment.WCMContentInitializerService</type>
</component>

Live Link Manager

The LiveLinkManagerService component is used to check broken links,
update links when the links are edited and extract links to return a
list of all links. The configuration of this component is found in
/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/wcm/system-configuration.xml.

<component>
 <key>org.exoplatform.services.wcm.link.LiveLinkManagerService</key>
 <type>org.exoplatform.services.wcm.link.LiveLinkManagerServiceImpl</type>
 <init-params>
 <properties-param>
 <name>server.config</name>
 <description>server.address</description>
 <property name="scheme" value="${wcm.linkmanager.scheme:http}"/>
 <property name="hostName" value="${wcm.linkmanager.hostname:localhost}"/>
 <property name="port" value="${wcm.linkmanager.port:8080}"/>
 </properties-param>
 </init-params>
</component>

Details:

	Properties-param

	Property name

	Type

	Value

	Description

	server.config

	scheme

hostName

port

	http/https

String

The port number

	${wcm.linkmanager.scheme:http}

${wcm.linkmanager.hostname:localhost}

${wcm.linkmanager.port:8080}

	All the property names are used together to configure the server. Here is an example about the server configuration: http//:localhost:8080.

Calendar Service

The CalendarService configuration of the Calendar application can be
found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/calendar/calendar-service-configuration.xml].

Use the CalendarService to configure the Calendar. The following
information will explain details of its configuration. When this
configuration file is executed, the component named
org.exoplatform.calendar.service.impl.CalendarServiceImpl will
process actions of the Calendar application.

<component>
 <key>org.exoplatform.calendar.service.CalendarService</key>
 <type>org.exoplatform.calendar.service.impl.CalendarServiceImpl</type>
 <init-params>
 <properties-param>
 <name>eventNumber.info</name>
 <property name="eventNumber" value="100"/>
 </properties-param>
 </init-params>
</component>

Details:

	Properties-Param

	Property name

	Possible Value

	Default Value

	Description

	eventNumber.info

	eventNumber

	integer

	100

	The number of events in a calendar.

Forum components

	Key

	Data type

	Description

	org.exoplatform.forum.bbcode.core.BBCodeServiceImpl

	org.exoplatform.forum.bbcode.core.BBCodeServiceImpl

	Manages CRUD operations on BBCodes.

	org.exoplatform.forum.bbcode.api.BBCodeService

	org.exoplatform.forum.bbcode.core.cache.CachedBBCodeService

	Caches operations on BBCodes.

	org.exoplatform.forum.service.DataStorage

	org.exoplatform.forum.service.cache.CachedDataStorage

	Stores data of Forums via the JCR system.

	org.exoplatform.forum.service.impl.JCRDataStorage

	org.exoplatform.forum.service.impl.JCRDataStorage

	Implements the DataStorage component.

	org.exoplatform.forum.service.ForumService

	org.exoplatform.forum.service.impl.ForumServiceImpl

	Includes all public APIs to interact with the UI component and database.

	org.exoplatform.forum.service.ForumStatisticsService

	org.exoplatform.forum.service.impl.ForumStatisticsServiceImpl

	Includes all public APIs to interact with the database of Statistics system.

	org.exoplatform.forum.service.ws.ForumWebservice

	N/A

	Provides web services for the Forum application.

	org.exoplatform.forum.common.image.ResizeImageService

	org.exoplatform.forum.common.image.impl.ResizeImageServiceImpl

	Resizes the avatar image in the Forum and Answer applications.

	org.exoplatform.forum.rendering.MarkupRenderingService

	org.exoplatform.forum.rendering.MarkupRenderingService

	Renders BBCodes or HTML.

	org.exoplatform.forum.common.jcr.KSDataLocation

	org.exoplatform.forum.common.jcr.KSDataLocation

	Defines the default node path of JCR storage for the data of Forum, Answer and Poll applications. Its workspace value-param which is used to define the workspace where stores the Forum, Answer and Poll data.

	org.exoplatform.forum.common.user.ContactProvider

	org.exoplatform.forum.ext.common.SocialContactProvider

	Auto-synchronizes users’ profile in Social Intranet with the users’ information in the Forum application.

	org.exoplatform.forum.common.webui.cssfile.CssClassManager

	org.exoplatform.forum.common.webui.cssfile.CssClassManager

	Manages CSS class of file icons.

Answers components

	Key

	Data type

	Description

	org.exoplatform.faq.service.FAQService

	org.exoplatform.faq.service.impl.FAQServiceImpl

	Includes all public APIs to interact with the UI component and database.

	org.exoplatform.faq.service.DataStorage

	org.exoplatform.faq.service.impl.JCRDataStorage

	Stores data of FAQ via the JCR system.

Profile contact provider

Forum and FAQ applications are to show some information about posters.
The way to retrieve that information is pluggable through the
ContactProvider component.

For public internet websites, users can provide personal information,
such as personal email address and location. To enable, simply override
the ContactProvider component in your configuration.

Configuration

Configure the profile-configuration.xml file as shown below:

<component>
 <key>org.exoplatform.forum.common.user.ContactProvider</key>
 <!-- <type>org.exoplatform.forum.common.user.DefaultContactProvider</type> -->
 <type>org.exoplatform.forum.ext.common.SocialContactProvider</type>
</component>

Use ContactProvider

You can get the ContactProvider as follows:

public static CommonContact getPersonalContact(String userId) {
 try {
 if(userId.indexOf(Utils.DELETED) > 0) return new CommonContact();
 ContactProvider provider = (ContactProvider) PortalContainer.getComponent(ContactProvider.class) ;
 return provider.getCommonContact(userId);
 } catch (Exception e) {
 return new CommonContact();
 }
}

SocialContactProvider

In eXo Platform, when using ContactProvider, you can use the
SocialContactProvider classes which gets users’ profiles by userId
via the IdentityManager class.

public CommonContact getCommonContact(String userId) {
 CommonContact contact = new CommonContact();
 try {
 IdentityManager identityM = (IdentityManager) PortalContainer.getInstance().getComponentInstanceOfType(IdentityManager.class);
 Identity userIdentity = identityM.getIdentity(OrganizationIdentityProvider.NAME, userId, true);
 Profile profile = userIdentity.getProfile();
 if (profile.contains(Profile.EMAIL)) {
 contact.setEmailAddress(profile.getProperty(Profile.EMAIL).toString());
 }
 if (profile.contains(Profile.FIRST_NAME)) {
 contact.setFirstName(profile.getProperty(Profile.FIRST_NAME).toString());
 }
 if (profile.contains(Profile.LAST_NAME)) {
 contact.setLastName(profile.getProperty(Profile.LAST_NAME).toString());
 }
 contact.setAvatarUrl(profile.getAvatarImageSource());
 if (profile.contains(Profile.GENDER)) {
 contact.setGender(profile.getProperty(Profile.GENDER).toString());
 }

 if (profile.contains(Profile.CONTACT_PHONES)) {
 contact.setPhone(profile.getProperty(Profile.CONTACT_PHONES).toString());
 }
 if (profile.contains(Profile.URL)) {
 contact.setWebSite(profile.getProperty(Profile.URL).toString());
 }
 } catch (Exception e) {
 if (LOG.isErrorEnabled()) LOG.error(String.format("can not load contact from eXo Social Profile with user [%s]", userId), e);
 }
 return contact;
}

	The information which is get by the user includes:

	Name

	Type

	Description

	email

	String

	Email of user.

	firstName

	String

	First name of user.

	lastName

	String

	Last name of user.

	The information which is get via UserProfile includes:

	Attribute

	Type

	Description

	user.other-info.avatar.url

	String

	The path containing the user’s avatar.

	user.bdate

	String

	The user’s birthday.

	user.home-info.postal.city

	String

	The home city of user.

	user.home-info.postal.country

	String

	The home country of user.

	user.gender

	String

	The user’s gender.

	user.jobtitle

	String

	The user’s job.

	user.home-info.telecom.telephone.number

	String

	The home phone number of user.

	user.business-info.telecom. telephone.number

	String

	The mobile number of user.

	user.home-info.online.uri

	String

	The individual websites of user.

Poll components

	Key

	Data type

	Description

	org.exoplatform.poll. service.DataStorage

	org.exoplatform.poll.service. impl.JCRDataStorage

	Includes all public APIs to interact with the UI component and database.

	org.exoplatform.poll. service.PollService

	org.exoplatform.poll.service. impl.PollServiceImpl

	Stores data of Polls via the JCR system.

External component plugins

This section consists of the following main topics:

	Common plugins

Description of the main component plugins used in Commons, sample
configurations, init-params and how to use these plugins.

	Social plugins

Description of the main component plugins used in Social, sample
configurations, init-params and how to use these plugins.

	Wiki plugins

Information about main component plugins used in Wiki, consisting of
Wiki Template Page plugin and Page Resolver.

	Contentplugins

Description of the main component plugins used in Content, sample
configurations, init-params and how to use these plugins.

	Calendar plugins

Description of the main component plugins used in Calendar, sample
configurations, init-params and how to use these plugins.

	Init data plugin

Configuration for initializing default data for Forum, Answers and
Poll.

	Roles plugin

How to configure the Roles plugin in Forum.

	Forum plugins

Description of the main component plugins used in Forum, sample
configurations, init-params and how to use these plugins.

	FAQ plugins

Description of the main component plugins used to configure the FAQ
application of eXo Platform.

Common plugins

This section describes the main component plugins in Commons (used by
any eXo Platform modules), sample configurations with explanation about
init-params and how to use these plugins.

Currently, only CSS Class Manager plugin is included in this section:

	CSS Class Manager

CSS Class Manager

This plugin is used to manage CSS class of file icons.

You can find the configuration file of this component at:
commons-extension.war!/WEB-INF/conf/commons-extension/css-class-configuration.xml.

To use the plugin in the component configuration, you must configure the
following target-component:

<target-component>org.exoplatform.webui.cssfile.CssClassManager</target-component>

Sample Configuration

<external-component-plugins>
 <target-component>org.exoplatform.webui.cssfile.CssClassManager</target-component>
 <component-plugin>
 <name>forum.default.cssclass</name>
 <set-method>registerCssClassPlugin</set-method>
 <type>org.exoplatform.webui.cssfile.CssClassPlugin</type>
 <description>default supported CSS class icon file</description>
 <init-params>
 <object-param>
 <name>default</name>
 <description></description>
 <object type="org.exoplatform.webui.cssfile.CssClassIconFile">
 <field name="type">
 <string>default</string>
 </field>
 <field name="cssClass">
 <string>FileDefault</string>
 </field>
 <field name="groupFileTypes">
 <string><![CDATA[applicationoctet-stream]]></string>
 </field>
 </object>
 </object-param>
 ...
 <object-param>
 <name>zip</name>
 <description></description>
 <object type="org.exoplatform.webui.cssfile.CssClassIconFile">
 <field name="type">
 <string>zip</string>
 </field>
 <field name="cssClass">
 <string>FileArchiveZip</string>
 </field>
 <field name="groupFileTypes">
 <string><![CDATA[FileZip,applicationzip]]></string>
 </field>
 </object>
 </object-param>
 ...
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: forum.default.cssclass

	Type: org.exoplatform.webui.cssfile.CssClassPlugin

	Object type: org.exoplatform.webui.cssfile.CssClassIconFile

	Field

	Type

	Description

	type

	string

	The file extension.

	cssClass

	string

	The CSS class which is corresponding to the file extension.

	groupFileTypes

	string

	The list of file types which have the same CSS class as the file extension.

Social plugins

This section describes the main component plugins used in Social, sample
configurations with explanation about init-params and how to use these
plugins.

	Activity Resource Bundle

	Identity Provider

	Mentions Processor

	OSHtml Sanitizer Processor

	Portlet Preference Required

	Profile Updates Publisher

	Relationship Publisher

	Social Chromattic LifeCycle

	Space Activity Publisher

	Space Application Config

	Template Params Processor

	URL Converter Filter

	OpenSocial 2-legged OAuth

Activity Resource Bundle

This plugin is used to register the external resource bundle for the
internationalized activity type.

Sample configuration:

<component-plugin>
 <name>exosocial:spaces</name>
 <!-- activity type -->
 <set-method>addActivityResourceBundlePlugin</set-method>
 <type>org.exoplatform.social.core.processor.ActivityResourceBundlePlugin</type>
 <init-params>
 <object-param>
 <name>locale.social.Core</name>
 <!-- resource bundle key file -->
 <description>activity key type resource bundle mapping for exosocial:spaces</description>
 <object type="org.exoplatform.social.core.processor.ActivityResourceBundlePlugin">
 <field name="activityKeyTypeMapping">
 <map type="java.util.HashMap">
 <entry>
 <key>
 <string>space_created</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.space_created</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>manager_role_granted</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.manager_role_granted</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>manager_role_revoked</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.manager_role_revoked</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>has_joined</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.has_joined</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>has_left</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.has_left</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>user_joined</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.user_joined</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>member_left</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.member_left</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>space_renamed</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.space_renamed</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>space_description_edited</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.space_description_edited</string>
 </value>
 </entry>
 <entry>
 <key>
 <string>space_avatar_edited</string>
 </key>
 <value>
 <string>SpaceActivityPublisher.space_avatar_edited</string>
 </value>
 </entry>
 </map>
 </field>
 </object>
 </object-param>
 </init-params>
</component-plugin>

In which:

	Name: exosocial:spaces

	Set-method: addActivityResourceBundlePlugin

	Type:
org.exoplatform.social.core.processor.ActivityResourceBundlePlugin

	Init-params:

	Object-param

	Description

	locale.social.Core

	The resource bundle key file.

Identity Provider

The plugin provides the identity for a space.

Sample configuration:

<component-plugins>
 <component-plugin>
 <name>SpaceIdentityProvider plugin</name>
 <set-method>registerIdentityProviders</set-method>
 <type>org.exoplatform.social.core.identity.IdentityProviderPlugin</type>
 <init-params>
 <values-param>
 <name>providers</name>
 <description>Identity Providers</description>
 <value>org.exoplatform.social.core.identity.provider.SpaceIdentityProvider</value>
 </values-param>
 </init-params>
 </component-plugin>
</component-plugins>

In which:

	Name: SpaceIdentityProvider plugin

	Set-method: registerIdentityProviders

	Type:
org.exoplatform.social.core.identity.IdentityProviderPlugin

	Init-params:

	Name

	Possible value

	Default value

	Description

	providers

	Every other identity providers

	org.exoplatform.social.core.identity.provider.SpaceIdentityProvider

	Identity Provider instances for managing identities.

Mentions Processor

This plugin allows creating a link to a user profile when the user is
mentioned in the activity content.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.social.core.manager.ActivityManager</target-component>

Sample Configuration:

<component-plugin>
 <name>MentionsProcessor</name>
 <set-method>addProcessorPlugin</set-method>
 <type>org.exoplatform.social.core.processor.MentionsProcessor</type>
 <init-params>
 <value-param>
 <name>priority</name>
 <description>priority of this processor (lower are executed first)</description>
 <value>2</value>
 </value-param>
 </init-params>
</component-plugin>

In which:

	Name: MentionsProcessor

	Set-method: addProcessorPlugin

	Type: org.exoplatform.social.core.processor.MentionsProcessor

	Init-params:

	Name

	Possible value

	Default value

	Description

	priority

	integer

	2

	The priority of this processor. The lower priority level is executed first.

OSHtml Sanitizer Processor

The plugin renders valid HTML tags appearing in the Activity body
(content).

Sample configuration:

<component>
 <key>org.exoplatform.social.core.manager.ActivityManager</key>
 <type>org.exoplatform.social.core.manager.ActivityManagerImpl</type>
 <component-plugins>
 <component-plugin>
 <name>OSHtmlSanitizer</name>
 <set-method>addProcessorPlugin</set-method>
 <type>org.exoplatform.social.core.processor.OSHtmlSanitizerProcessor</type>
 </component-plugin>
 </component-plugins>
</component>

In which:

	Name: OSHtmlSanitizer

	Set-method: addProcessorPluginn

	Type:
org.exoplatform.social.core.processor.OSHtmlSanitizerProcessor

Portlet Preference Required

This plugin is used to configure the list of portlet names which will
have portlet preference of space context.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.social.core.space.spi.SpaceService</target-component>

Sample configuration:

<component-plugin>
 <name>portlets.prefs.required</name>
 <set-method>setPortletsPrefsRequired</set-method>
 <type>org.exoplatform.social.core.application.PortletPreferenceRequiredPlugin</type>
 <init-params>
 <values-param>
 <name>portletsPrefsRequired</name>
 <value>SpaceActivityStreamPortlet</value>
 <value>SpaceSettingPortlet</value>
 <value>MembersPortlet</value>
 </values-param>
 </init-params>
</component-plugin>

In which:

	Name: portlets.prefs.required

	Set-method: setPortletsPrefsRequired

	Type:
org.exoplatform.social.core.application.PortletPreferenceRequiredPlugin

	Init-params:

	Name

	Possible value

	Default value

	Description

	portletsPrefsRequired

	Portlet names

	SpaceActivityStreamPortlet; SpaceSettingPortlet; MembersPortlet

	The list of portlets which need to be saved and get the space context name.

Profile Updates Publisher

This plugin is used to process activities and comments related to
changes on the users’ profiles.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.social.core.manager.IdentityManager</target-component>
 <component-plugin>
 <name>ProfileUpdatesPublisher</name>
 <set-method>addProfileListener</set-method>
 <type>org.exoplatform.social.core.application.ProfileUpdatesPublisher</type>
 </component-plugin>
</external-component-plugins>

Relationship Publisher

This plugin is used to process activities and comments related to
changes on the relationship between two users.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.social.core.manager.RelationshipManager</target-component>
 <component-plugin>
 <name>RelationshipPublisher</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.social.core.application.RelationshipPublisher</type>
 </component-plugin>
</external-component-plugins>

Social Chromattic LifeCycle

This plugin is used to manage ChromatticSession in the Social
project.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.commons.chromattic.ChromatticManager</target-component>

Sample configuration:

<component-plugin>
 <name>chromattic</name>
 <set-method>addLifeCycle</set-method>
 <type>org.exoplatform.social.common.lifecycle.SocialChromatticLifeCycle</type>
 <init-params>
 <value-param>
 <name>domain-name</name>
 <value>soc</value>
 </value-param>
 <value-param>
 <name>workspace-name</name>
 <value>social</value>
 </value-param>
 <value-param profiles="all,default,minimal">
 <name>workspace-name</name>
 <value>social</value>
 </value-param>
 <values-param>
 <name>entities</name>
 <value>org.exoplatform.social.core.chromattic.entity.ProviderRootEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ProviderEntity</value>

 <value>org.exoplatform.social.core.chromattic.entity.IdentityEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ProfileEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityProfileEntity</value>

 <value>org.exoplatform.social.core.chromattic.entity.RelationshipEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.RelationshipListEntity</value>

 <value>org.exoplatform.social.core.chromattic.entity.HidableEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.LockableEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityListEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityDayEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityMonthEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityYearEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.ActivityParameters</value>

 <value>org.exoplatform.social.core.chromattic.entity.SpaceRootEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.SpaceEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.SpaceListEntity</value>
 <value>org.exoplatform.social.core.chromattic.entity.SpaceRef</value>
 </values-param>
 <properties-param>
 <name>options</name>
 <property name="org.chromattic.api.Option.root_node.path" value="/production"/>
 <property name="org.chromattic.api.Option.root_node.create" value="true"/>
 </properties-param>
 </init-params>
</component-plugin>

In which:

	Name: chromattic

	Set-method: addLifeCycle

	Type:
org.exoplatform.social.common.lifecycle.SocialChromatticLifeCycle

	Init-params:

	Value-param

	Possible value

	Description

	domain-name

	String

	The lifecycle domain name.

	workspace-name

	String

	The repository workspace name that is associated with this lifecycle.

	entities

	List<String>

	The list of chromattic entities that will be registered against the chromattic builder.

Properties-param: option

	Property name

	Possible value

	Default value

	Description

	org.chromattic.api.Option.root_node.path

	String

	/production

	The path of the root node.

	org.chromattic.api.Option.root_node.create

	Boolean

	true

	Specifies whether or not the root node is created by the ROOT_NODE_PATH option when it does not exist.

Space Activity Publisher

This plugin is used to process activities and comments related to
spaces, such as creating spaces, editing space information, users
joining/leaving spaces, or granting/removing the “manager” role of the
spaces.

Sample configuration:

<component-plugin>
 <name>SpaceActivityPublisher</name>
 <set-method>addSpaceListener</set-method>
 <type>org.exoplatform.social.core.application.SpaceActivityPublisher</type>
</component-plugin>

Space Application Config

This plugin is used to configure the default applications when creating
a new space.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.social.core.space.spi.SpaceService</target-component>
 <component-plugin>
 <name>Space Application Configuration</name>
 <set-method>setSpaceApplicationConfigPlugin</set-method>
 <type>org.exoplatform.social.core.space.SpaceApplicationConfigPlugin</type>
 <init-params>
 <object-param>
 <name>spaceHomeApplication</name>
 <description>Space Home Application</description>
 <object type="org.exoplatform.social.core.space.SpaceApplicationConfigPlugin$SpaceApplication">
 <field name="portletApp">
 <string>social-portlet</string>
 </field>
 <field name="portletName">
 <string>SpaceActivityStreamPortlet</string>
 </field>
 <field name="appTitle">
 <string>Home</string>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>spaceApplicationListConfig</name>
 <description>space application list configuration</description>
 <object type="org.exoplatform.social.core.space.SpaceApplicationConfigPlugin">
 <field name="spaceApplicationList">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.social.core.space.SpaceApplicationConfigPlugin$SpaceApplication">
 <field name="portletApp">
 <string/>
 </field>
 <field name="portletName">
 <string>ForumPortlet</string>
 </field>
 <field name="appTitle">
 <string>Forums</string>
 </field>
 <field name="removable">
 <boolean>true</boolean>
 </field>
 <field name="order">
 <int>2</int>
 </field>
 <field name="uri">
 <string>forum</string>
 </field>
 <field name="preferences">
 <map type="java.util.HashMap">
 <entry>
 <key>
 <string>useAjax</string>
 </key>
 <value>
 <string>false</string>
 </value>
 </entry>
 </map>
 </field>
 </object>
 </value>
 <!-- // Maybe put more the same configuration for your customization apps.
 value>
 ...
 </value
 -->
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: Space Application Configuration

	Set-method: setSpaceApplicationConfigPlugin

	Type:
org.exoplatform.social.core.space.SpaceApplicationConfigPlugin

	Init-params:

	Object-param

	Description

	spaceHomeApplication

	Sets the Application portlet to be the home page of a space.

	spaceApplicationListConfig

	The list of the applications that are installed by default to a new space.

	Field name

	Possible value

	Description

	portletAp

	string

	The .war name file which has the portlet.

	portletName

	string

	The name of portlet which is registered in the system.

	appTitle

	string

	The display name of the application.

	removable

	boolean

	Specifies if the application is removed from the space or not.

	order

	integer

	The order of the application in the space navigation.

	uri

	string

	The URI of the application in the page node.

	preferences

	
	Configures the default values or the init-parameters for the portlet.

Template Params Processor

This plugin uses the value in the template parameter of the activity
and replaces the title and body of the activity with the template
parameter of this activity.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.social.core.manager.ActivityManager</target-component>

Sample configuration:

<component-plugin>
 <name>TemplateParamsProcessor</name>
 <set-method>addProcessorPlugin</set-method>
 <type>org.exoplatform.social.core.processor.TemplateParamsProcessor</type>
 <init-params>
 <value-param>
 <name>priority</name>
 <value>1</value>
 </value-param>
 </init-params>
</component-plugin>

In which:

	Name: TemplateParamsProcessor

	Set-method: addProcessorPlugin

	Type:
org.exoplatform.social.core.processor.TemplateParamsProcessor

	Init-params:

	Name

	Possible value

	Default value

	Description

	priority

	integer

	1

	The priority of this processor. The lower priority level is executed first.

URL Converter Filter

This plugin converts all the URLs in the activity into the hyperlinks.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.social.common.xmlprocessor.XMLProcessor</target-component>

Sample configuration:

<component-plugin>
 <name>URLConverterFilterPlugin</name>
 <set-method>addFilterPlugin</set-method>
 <type>org.exoplatform.social.common.xmlprocessor.filters.URLConverterFilterPlugin</type>
 <init-params>
 <value-param>
 <name>urlMaxLength</name>
 <description>the max length of URL</description>
 <value>-1</value>
 </value-param>
 </init-params>
</component-plugin>

In which:

	Name: URLConverterFilterPlugin

	Set-method: addFilterPlugin

	Type:
org.exoplatform.social.common.xmlprocessor.filters.URLConverterFilterPlugin

	Init-params:

	Value-param

	Possible value

	Default value

	Description

	urlMaxLength

	integer

	-1

	The maximum length of the URL. If the URL exceeds the maximum length, the URL will be shortened. If the value is -1, it means the URL is not be shortened.

OpenSocial 2-legged OAuth

This section is about configuring the 2-legged OAuth scenario in
OpenSocial. (Reference:
OpenSocial.org [http://docs.opensocial.org/display/OS/Home])

For more information, visit 2-legged OAuth for the OpenSocial REST
API. [http://sites.google.com/site/oauthgoog/2leggedoauth/2opensocialrestapi]

Generate the key

$ openssl req -newkey rsa:1024 -days 365 -nodes -x509 -keyout testkey.pem \
 -out testkey.pem -subj '/CN=mytestkey'
$ openssl pkcs8 -in testkey.pem -out oauthkey.pem -topk8 -nocrypt -outform PEM

Configure the property file

Edit container.js and change the following parameter to point to
your private key and key name.

"gadgets.signingKeyFile" : "oauth.pem",
"gadgets.signingKeyName" : "oauthKey",

Wiki plugins

This section describes the main component plugins used in Wiki, sample
configurations with explanation about init-params and how to use these
plugins.

	Wiki Template Page plugin

	Page Resolver

	Data Injector

	New User Listener

	Session Created Listener

	Session Destroyed Listener

	WikiChromatticLifecycle

	Uncached Macros

Wiki Template Page

This plugin is used to inject default Wiki templates. The configuration
can be found in
wiki-webapp/src/main/webapp/WEB-INF/conf/configuration.xml.

Sample configuration:

<component-plugin><name>Template page initializer</name>
 <set-method>addWikiTemplatePagePlugin</set-method>
 <type>org.exoplatform.wiki.template.plugin.WikiTemplatePagePlugin</type>
 <description>XML Deployment Plugin</description>
 <init-params>
 <values-param>
 <name>sourcePaths</name>
 <description>path of file imported. </description>
 <value>war:/conf/data/template.xml</value>
 <!--value>war:/conf/data/file-name.xml</value -->
 </values-param>
 </init-params>
</component-plugin>

In which:

	Name: sourcePaths

	Set-method: addWikiTemplatePagePlugin

	Type:
org.exoplatform.wiki.template.plugin.WikiTemplatePagePlugin

Init-params

	Name

	Type

	Default value

	Description

	sourcePaths

	String

	war:/conf/data/template.xml

	The path to import the template file.

Page Resolver

This plugin is used to analyze the URLs to output the page information
that users want to access. The configuration can be found in
wiki-injector/src/main/resources/conf/portal/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.wiki.resolver.PageResolver</target-component>
 <component-plugin>
 <name>urlresolver</name>
 <set-method>setResolverPlugin</set-method>
 <type>org.exoplatform.wiki.resolver.URLResolver</type>
 </component-plugin>
</external-component-plugins>

In which:

	Name: urlresolver

	Set-method: setResolverPlugin

	Type: org.exoplatform.wiki.resolver.URLResolver

Data Injector

This plugin is used to initialize data for Wiki. The configuration can
be found in
wiki-injector/src/main/resources/conf/portal/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.bench.DataInjectorService</target-component>
 <component-plugin>
 <name>WikiDataInjector</name>
 <set-method>addInjector</set-method>
 <type>org.exoplatform.wiki.bench.WikiDataInjector</type>
 <description>inject data for Wiki</description>
 </component-plugin>
</external-component-plugins>

In which:

	Name: WikiDataInjector

	Set-method: addInjector

	Type: org.exoplatform.wiki.bench.WikiDataInjector

New User Listener

This plugin is used to listen to events when new users are added to the
system. As each user can have a default personal Wiki space created. The
configuration can be found in
wiki-webapp/src/main/webapp/WEB-INF/conf/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.organization.OrganizationService</target-component>
 <component-plugin>
 <name>ecm.new.user.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.services.jcr.ext.hierarchy.impl.NewUserListener</type>
 <description>description</description>
 <init-params>
 <object-param>
 <name>configuration</name>
 <description>description</description>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig">
 <field name="jcrPaths">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig$JcrPath">
 <field name="alias"><string>userApplicationData</string></field>
 <field name="path"><string>ApplicationData</string></field>
 <field name="nodeType"><string>nt:unstructured</string></field>
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig$Permission">
 <field name="identity"><string>*:/platform/administrators</string></field>
 <field name="read"><string>true</string></field>
 <field name="addNode"><string>true</string></field>
 <field name="setProperty"><string>true</string></field>
 <field name="remove"><string>true</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: urlresolver

	Set-method: setResolverPlugin

	Type:
org.exoplatform.services.jcr.ext.hierarchy.impl.NewUserListener

Session Created Listener

This plugin is used to listen to events when users log in (start a
session). The configuration can be found in
wiki-service/src/main/resources/conf/portal/configuration.xml.

Sample configuration:

 <external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>org.exoplatform.web.GenericHttpListener.sessionCreated</name>
 <set-method>addListener</set-method>
 <type>org.exoplatform.wiki.service.impl.SessionCreatedListener</type>
 <description>description</description>
 </component-plugin>
</external-component-plugins>

In which:

	Name: urlresolver

	Set-method: addListener

	Type:
org.exoplatform.wiki.service.impl.SessionCreatedListener

Session Destroyed Listener

This plugin is used to listen to events when users logout (finish a
session or session timeout). The configuration can be found in
wiki-service/src/main/resources/conf/portal/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>org.exoplatform.web.GenericHttpListener.sessionDestroyed</name>
 <set-method>addListener</set-method>
 <type>org.exoplatform.wiki.service.impl.SessionDestroyedListener</type>
 <description>description</description>
 </component-plugin>
</external-component-plugins>

In which:

	Name: sessionDestroyed

	Set-method: addListener

	Type:
org.exoplatform.wiki.service.impl.SessionDestroyedListener

Wiki Chromattic Lifecycle

This plugin is used configure workspace and node name with Chromattic.
The configuration can be found in
wiki-service/src/main/resources/conf/portal/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.commons.chromattic.ChromatticManager</target-component>
 <component-plugin>
 <name>chromattic</name>
 <set-method>addLifeCycle</set-method>
 <type>org.exoplatform.wiki.service.impl.WikiChromatticLifeCycle</type>
 <init-params>
 <value-param>
 <name>domain-name</name>
 <value>wiki</value>
 </value-param>
 <value-param>
 <name>workspace-name</name>
 <value>collaboration</value>
 </value-param>
 <values-param>
 <name>entities</name>
 <value>org.exoplatform.wiki.mow.core.api.WikiStoreImpl</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.PortalWiki</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.PortalWikiContainer</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.GroupWiki</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.GroupWikiContainer</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.UserWiki</value>
 <value>org.exoplatform.wiki.mow.core.api.wiki.UserWikiContainer</value>
 <value>org.exoplatform.wiki.mow.core.api.content.ParagraphImpl</value>
 <value>org.exoplatform.wiki.mow.core.api.content.MarkupImpl</value>
 <value>org.exoplatform.wiki.mow.core.api.content.WikiLink</value>
 <value>org.chromattic.ext.ntdef.NTFile</value>
 <value>org.chromattic.ext.ntdef.NTResource</value>
 <value>org.exoplatform.wiki.chromattic.ext.ntdef.NTVersionHistory</value>
 <value>org.exoplatform.wiki.chromattic.ext.ntdef.NTVersion</value>
 <value>org.exoplatform.wiki.chromattic.ext.ntdef.NTVersionLabels</value>
 <value>org.exoplatform.wiki.chromattic.ext.ntdef.NTFrozenNode</value>
 <value>org.exoplatform.wiki.chromattic.ext.ntdef.VersionableMixin</value>
 <value>org.exoplatform.wiki.mow.core.api.content.AnnotationImpl</value>
 </values-param>
 </component-plugin>
</external-component-plugins>

In which:

	Name: chromattic

	Set-method: addLifeCycle

	Type:
org.exoplatform.wiki.service.impl.WikiChromatticLifeCycle

Init-params

	Name

	Type

	Default value

	Description

	domain-name

	String

	wiki

	The domain name where JCR stores Wiki data.

	workspace-name

	String

	collaboration

	The workspace name where JCR stores Wiki data.

	entities

	String

	
	List of Wiki classes that contain the Chromattic configuration of node types.

Uncached Macros

This plugin is used to list the macros which must not be cached. This is
required for macros generating dynamic content (meaning the content
generated by the macro can change even if the wiki page source is not
updated). Generated HTML version of Wiki pages are cached to avoid
generating it again at each display. If a page contains macros producing
dynamic content, its HTML version must not be cached to be sure it is
always up to date. For example the rss macro provides new content as
soon as new articles are published on the remote website, so it must be
listed as an uncached macro. The default configuration of this plugin
can be found in
wiki-service/src/main/resources/conf/portal/cache-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.wiki.service.WikiService</target-component>
 <component-plugin>
 <name>addUnCachedMacro</name>
 <set-method>addUnCachedMacro</set-method>
 <type>org.exoplatform.wiki.rendering.cache.UnCachedMacroPlugin</type>
 <description>Add the uncached macro list</description>
 <init-params>
 <values-param>
 <name>uncachedMacroes</name>
 <value>rss</value>
 <value>jira</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: addUnCachedMacro

	Set-method: addUnCachedMacro

	Type:
org.exoplatform.wiki.rendering.cache.UnCachedMacroPlugin

Init-params

	Name

	Type

	Default value

	Description

	uncachedMacroes

	String

	rss, jira

	The list of uncached macros.

Content plugins

This section describes the main component plugins used in Content,
sample configurations with explanation about init-params and how to use
these plugins.

	Authoring Publication

	Content Type Filter

	Context

	Exclude Include Data Type

	Friendly

	Image Thumnail

	Ignore Portal

	Initial Webcontent

	Link Deployment

	Lock Groups Or Users

	Manage Drive

	Manage View

	PDF Thumnail

	Portlet Template

	Query

	WatchDocumentService

	Remove Taxonomy

	Script Action

	Script

	States Lifecycle

	Tag Permission

	Tag Style

	Taxonomy

	Template

	Publication Deployment

	WCM Publication Deployment

	XML Deployment

	Abstract plugins

Authoring Publication

This plugin is used to manage the publication lifecycle of web contents
and DMS document on a portal page with more states and versions. The
configuration is applied mainly in ``

packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/content-extended/authoring/configuration.xml``.

Sample configuration:

<component-plugin>
 <name>Authoring publication</name>
 <set-method>addPublicationPlugin</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.lifecycle.authoring.AuthoringPublicationPlugin
 </type>
 <description>This publication lifecycle publish a web content or DMS document to a portal page with more
 states and version.
 </description>
</component-plugin>

In which:

	Name: Authoring publication

	Set-method: addPublicationPlugin

	Type:
org.exoplatform.services.wcm.extensions.publication.lifecycle.authoring.AuthoringPublicationPlugin

Content Type Filter

This plugin is used to filter Content node types.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>

The configuration is applied mainly in
/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-templates-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>
 <component-plugin>
 <name>FilterContentTypeForWCMSpecificFolder</name>
 <set-method>addContentTypeFilterPlugin</set-method>
 <type>org.exoplatform.services.cms.templates.ContentTypeFilterPlugin</type>
 <description>this plugin is used to filter wcm nodetype</description>
 <init-params>
 <object-param>
 <name>cssFolderFilter</name>
 <description>only exo:cssFile can be created in exo:cssFolder</description>
 <object type="org.exoplatform.services.cms.templates.ContentTypeFilterPlugin$FolderFilterConfig">
 <field name="folderType">
 <string>exo:cssFolder</string>
 </field>
 <field name="contentTypes">
 <collection type="java.util.ArrayList">
 <value>
 <string>exo:cssFile</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 <object-param>
 ...
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: FilterContentTypeForWCMSpecificFolder

	Set-method: addContentTypeFilterPlugin

	Type:
org.exoplatform.services.cms.templates.ContentTypeFilterPlugin

	Object type:
org.exoplatform.services.cms.templates.ContentTypeFilterPlugin$FolderFilterConfig

	Field

	Type

	Value

	Description

	folderType

	string

	exo:cssFolder

	The folder type.

	contentTypes

	Collection

	{java.util.ArrayList}

	The content type.

Context

This plugin is used to store the context configuration of a publication
lifecycle. To use the plugin in the component configuration, you must
use the following target-component:

<target-component>org.exoplatform.services.wcm.extensions.publication.PublicationManager</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/content-extended/authoring/configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.extensions.publication.PublicationManager</target-component>
 <component-plugin>
 <name>AddContext</name>
 <set-method>addContext</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.context.ContextPlugin</type>
 <init-params>
 <object-param>
 <name>contexts</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig">
 <field name="contexts">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>context2</string>
 </field>
 <field name="priority">
 <string>100</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle2</string>
 </field>
 <field name="site">
 <string>acme</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: AddContext

	Set-method: addContext

	Type:
org.exoplatform.services.wcm.extensions.publication.context.ContextPlugin

	Object type:
org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig

	Field

	Type

	Value

	Description

	name

	string

	context2

	The name of the context.

	priority

	string

	100

	The context priority, the higher number indicates higher priority. Because a site may have several lifecycles, the lifecycle with higher priority will be executed sooner.

	lifecycle

	string

	lifecycle2

	The name of the lifecycle.

	site

	string

	acme

	The site that will apply the context configuration.

Exclude Include Data Type

This plugin is used in the
SiteSearchService
component to filter the search results before these results are
presented on the search page.

	The configuration is applied mainly in ``

	core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-search-configuration.xml``.

Sample configuration:

<component-plugins>
 <component-plugin>
 <name>ExcludeMimeTypes</name>
 <set-method>addExcludeIncludeDataTypePlugin</set-method>
 <type>org.exoplatform.services.wcm.search.ExcludeIncludeDataTypePlugin</type>
 <init-params>
 <properties-param>
 <name>search.exclude.datatypes</name>
 <description>exclude some data type when search</description>
 <property name="mimetypes" value="${wcm.search.excluded-mimetypes:text/css,text/javascript,application/x-javascript,text/ecmascript}"/>
 </properties-param>
 </init-params>
 </component-plugin>
</component-plugins>

In which:

	Name: ExcludeMimeTypes

	Set-method: addExcludeIncludeDataTypePlugin

	Type:
org.exoplatform.services.wcm.search.ExcludeIncludeDataTypePlugin

	The plugin has the following parameter:

	Properties-param

	Description

	search.exclude.datatype

	Excludes some data types when doing search.

	The search.exclude.datatype property includes two attributes:

	Attribute

	Value

	Description

	name

	mimetypes

	The name of the property param.

	value

	${wcm.search.excluded-mimetypes:text/css,text/javascript,application/x-javascript,text/ecmascript}

	The list of mimetypes which will be excluded from the search results.

Friendly

This plugin is used to refine URLs in Content.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.wcm.friendly.FriendlyService</target-component>

Do as follows:

Set the profile Friendly for eXo Platform by adding the following
configuration to the setenv-customize.(sh|bat) file:

SET EXO_PROFILES=all,friendly

Use the following sample configuration in the
/WEB-INF/conf/content-extended/friendly/configuration.xml file of
the deployed war package.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.friendly.FriendlyService</target-component>
 <component-plugin>
 <name>FriendlyService.addConfiguration</name>
 <set-method>addConfiguration</set-method>
 <type>org.exoplatform.services.wcm.friendly.impl.FriendlyPlugin</type>
 <description>Configures</description>
 <priority>100</priority>
 <init-params>
 <value-param>
 <name>enabled</name>
 <value>${wcm.friendly.enabled:true}</value>
 </value-param>
 <!--
 <value-param>
 <name>servletName</name>
 <value>${wcm.friendly.servletName:content}</value>
 </value-param>
 -->
 <object-param>
 <name>friendlies.configuration</name>
 <object type="org.exoplatform.services.wcm.friendly.impl.FriendlyConfig">
 <field name="friendlies">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.friendly.impl.FriendlyConfig$Friendly">
 <field name="friendlyUri"><string>${wcm.friendly.documents.friendlyUri:documents}</string></field>
 <field name="unfriendlyUri"><string> ${wcm.friendly.documents.unfriendlyUri:/acme/detail?content-id=/repository/collaboration}</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.friendly.impl.FriendlyConfig$Friendly">
 <field name="friendlyUri"><string>${wcm.friendly.files.friendlyUri:files}</string></field>
 <field name="unfriendlyUri"><string>${wcm.friendly.files.unfriendlyUri:/rest/jcr/repository/collaboration}</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

In which:

	Name: FriendlyService.addConfiguration

	Set-method: addConfiguration

	Type:
org.exoplatform.services.wcm.friendly.impl.FriendlyPlugin

	Object type:
org.exoplatform.services.wcm.friendly.impl.FriendlyConfig

	Field

	Type

	Value

	Description

	friendlyUri

	string

	documents

	The object into which the friendly URI is applied.

	unfriendlyUri

	string

	/acme/detail?content-id=/repository/collaboration

	The path to the location where the friendly URI is applied.

Image Thumbnail

This plugin is used to configure the file types and get thumbnail for
images.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.thumbnail.ThumbnailService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-thumbnail-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.thumbnail.ThumbnailService</target-component>
 <component-plugin>
 <name>ImageThumbnailPlugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.thumbnail.impl.ImageThumbnailPlugin</type>
 <init-params>
 <object-param>
 <name>thumbnailType</name>
 <description>Thumbnail types</description>
 <object type="org.exoplatform.services.cms.thumbnail.impl.ThumbnailType">
 <field name="mimeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <string>image/jpeg</string>
 </value>
 <value>
 <string>image/png</string>
 </value>
 <value>
 <string>image/gif</string>
 </value>
 <value>
 <string>image/bmp</string>
 </value>
 <value>
 <string>image/tiff</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: ImageThumbnailPlugin

	Set-method: addPlugin

	Type:
org.exoplatform.services.cms.thumbnail.impl.ImageThumbnailPlugin

	Object type:
org.exoplatform.services.cms.thumbnail.impl.ThumbnailType

	Field

	Type

	Value

	Description

	mimeTypes

	String

	image/jpeg

image/png

image/gif

image/bmp

image/tiff

	The list of thumbnail image types.

Ignore Portal

When a new portal is created, the configuration of
IgnorePortalPlugin is used to avoid deploying data to the existing
ones which are listed in the init-parameters.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.wcm.portal.artifacts.CreatePortalArtifactsService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/wcm/deployment/template-deployment-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.portal.artifacts.CreatePortalArtifactsService</target-component>
 <component-plugin>
 <name>Add ignored portals</name>
 <set-method>addIgnorePortalPlugin</set-method>
 <type>org.exoplatform.services.wcm.portal.artifacts.IgnorePortalPlugin</type>
 <description>ignored portals. the service will not deploy data to the ignored portals</description>
 <init-params>
 <values-param>
 <name>ignored.portals</name>
 <description>ignored portal list</description>
 <value>classic</value>
 <value>acme</value>
 <value>WAIPortal</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: Add ignored portals

	Set-method: addIgnorePortalPlugin

	Type:
org.exoplatform.services.wcm.portal.artifacts.IgnorePortalPlugin

Init-params

	Name

	Type

	Value

	Description

	ignored.portals

	string

	classic, acme, WAIPortal

	The list of ignored existing portals.

Initial Webcontent

When a portal is created, this plugin will deploy initial web-contents
as the site artifact into the Site Artifact folder of that portal.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.wcm.portal.artifacts.CreatePortalArtifactsService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/wcm/newsletter-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.portal.artifacts.CreatePortalArtifactsService</target-component>
 <component-plugin>
 <name>Initial webcontent artifact for each site</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.wcm.webcontent.InitialWebContentPlugin</type>
 <description>This plugin deploy some initial webcontent as site artifact to site artifact folder of portal when
 a portal is
 created
 </description>
 <init-params>
 <object-param>
 <name>Portal logo data</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor">
 <field name="target">
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor$Target">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="nodePath">
 <string>/sites/{portalName}/web contents/site artifacts</string>
 </field>
 </object>
 </field>
 <field name="sourcePath">
 <string>war:/conf/sample-portal/wcm/artifacts/site-resources/acme-templates/Logo.xml</string>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>Portal signin data</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor">
 <field name="target">
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor$Target">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="nodePath">
 <string>/sites/{portalName}/web contents/site artifacts</string>
 </field>
 </object>
 </field>
 <field name="sourcePath">
 <string>war:/conf/sample-portal/wcm/artifacts/site-resources/acme-templates/Signin.xml</string>
 </field>
 </object>
 </object-param>
 <object-param>
 ...
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: AddLifecycle

	Set-method: addPlugin

	Type:
org.exoplatform.services.wcm.webcontent.InitialWebContentPlugin

	Object type:
org.exoplatform.services.deployment.DeploymentDescriptor$Target

	Name

	Type

	Value

	Description

	repository

	string

	repository

	The repository into which the initial web contents will be deployed.

	workspace

	string

	collaboration

	The workspace into which the initial web contents will be deployed.

	nodePath

	string

	/sites/{portalName}/web contents/site artifacts

	The target node where the initial web-contents will be deployed into.

	sourcePath

	string

	war:/conf/sample-portal/wcm/artifacts/site-resources/acme-templates/Logo.xml

	The path to the source that this plugin will get data.

Link Deployment

This plugin is used to create predefined Symlinks into the system.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>

The configuration is applied mainly in
samples/acme-website/webapp/src/main/webapp/WEB-INF/conf/acme-portal/wcm/deployment/acme-deployment-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>
 <component-plugin>
 <name>Content Initializer Service</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.deployment.plugins.LinkDeploymentPlugin</type>
 <description>Link Deployment Plugin</description>
 <init-params>
 <object-param>
 <name>link01</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.plugins.LinkDeploymentDescriptor">
 <field name="sourcePath">
 <string>repository:collaboration:/sites/acme/web contents/News/News1</string>
 </field>
 <field name="targetPath">
 <string>repository:collaboration:/sites/acme/categories/powers</string>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>link02</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.plugins.LinkDeploymentDescriptor">
 <field name="sourcePath">
 <string>repository:collaboration:/sites/acme/web contents/News/News2</string>
 </field>
 <field name="targetPath">
 <string>repository:collaboration:/sites/acme/categories/powers</string>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>link03</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.plugins.LinkDeploymentDescriptor">
 <field name="sourcePath">
 <string>repository:collaboration:/sites/acme/web contents/News/News3</string>
 </field>
 <field name="targetPath">
 <string>repository:collaboration:/sites/acme/categories/powers</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: Content Initializer Service

	Set-method: addPlugin

	Type:
org.exoplatform.services.wcm.webcontent.InitialWebContentPlugin

	Object type:
org.exoplatform.services.deployment.plugins.LinkDeploymentDescriptor

	Field

	Type

	Value

	Description

	sourcePath

	string

	repository:collaboration:/sites/acme/web contents/News/News1

	The path to the source where this plugin will get data.

	targetPath

	string

	repository:collaboration:/sites/acme/categories/powers

	The path to the target where this plugin will deploy.

Lock Groups Or Users

This plugin is used to configure predefined groups or users for lock
administration. To use the plugin in the component configuration, you
must use the following target-component:

<target-component>org.exoplatform.services.cms.lock.LockService</target-component>

The configuration is applied mainly in
core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.lock.LockService</target-component>
 <component-plugin>
 <name>predefinedLockGroupsOrUsersPlugin</name>
 <set-method>addLockGroupsOrUsersPlugin</set-method>
 <type>org.exoplatform.services.cms.lock.impl.LockGroupsOrUsersPlugin</type>
 <init-params>
 <object-param>
 <name>LockGroupsOrUsers.configuration</name>
 <description>configuration predefined groups or users for lock administrator</description>
 <object type="org.exoplatform.services.cms.lock.impl.LockGroupsOrUsersConfig">
 <field name="settingLockList">
 <collection type="java.util.ArrayList">
 <value>
 <string>*:/platform/administrators</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: predefinedLockGroupsOrUsersPlugin

	Set-method: addLockGroupsOrUsersPlugin

	Type:
org.exoplatform.services.cms.lock.impl.LockGroupsOrUsersPlugin

	Object type:
org.exoplatform.services.cms.lock.impl.LockGroupsOrUsersConfig

	Field

	Type

	Value

	Description

	settingLockList

	ArrayList

	{java.util.ArrayList}

	The list of the groups or user to be locked.

Manage Drive

This plugin is used to create a predefined drive into a repository. A
drive can be considered as a shortcut in the content repository, a quick
access to some places for users. You can restrict the visibility of this
drive to a group/user and apply a specific view depending on the content
you have in this area.

A drive is the combination of:

	Path: the root folder of the drive.

	View: how we can see contents, such as by list, thumbnails.

	Role: the visibility to every users, a group or a single user.

	Options: allow you to specify whether to see hidden nodes or not and
to create folders in this drive or not.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.drives.ManageDriveService</target-component>

	The configuration is applied mainly in ``

	packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-drives-configuration.xml``.

The following structure is used for drives configuration.

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.drives.ManageDriveService</target-component>
 <component-plugin>
 <name>manage.drive.plugin</name>
 <set-method>setManageDrivePlugin</set-method>
 <type>org.exoplatform.services.cms.drives.impl.ManageDrivePlugin</type>
 <description>Nothing</description>
 <init-params>
 <object-param>
 There are initializing attributes of org.exoplatform.services.cms.drives.DriveData object
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The file that contains the structure above will be configured in the
configuration.xml file as the following:

<import>war:/conf/wcm-extension/dms/drives-configuration.xml</import>

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.drives.ManageDriveService</target-component>
 <component-plugin>
 <name>manage.drive.plugin</name>
 <set-method>setManageDrivePlugin</set-method>
 <type>org.exoplatform.services.cms.drives.impl.ManageDrivePlugin</type>
 <description>Nothing</description>
 <init-params>
 <object-param>
 <name>Managed Sites</name>
 <description>Managed Sites</description>
 <object type="org.exoplatform.services.cms.drives.DriveData">
 <field name="name">
 <string>Managed Sites</string>
 </field>
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="permissions">
 <string>*:/platform/administrators</string>
 </field>
 <field name="homePath">
 <string>/sites</string>
 </field>
 <field name="icon">
 <string/>
 </field>
 <field name="views">
 <string>wcm-view</string>
 </field>
 <field name="viewPreferences">
 <boolean>false</boolean>
 </field>
 <field name="viewNonDocument">
 <boolean>true</boolean>
 </field>
 <field name="viewSideBar">
 <boolean>true</boolean>
 </field>
 <field name="showHiddenNode">
 <boolean>false</boolean>
 </field>
 <field name="allowCreateFolders">
 <string>nt:folder,nt:unstructured</string>
 </field>
 <field name="allowNodeTypesOnTree">
 <string>*</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: manage.drive.plugin

	Set-method: setManageDrivePlugin

	Type:
org.exoplatform.services.cms.drives.impl.ManageDrivePlugin

	Object type: org.exoplatform.services.cms.drives.DriveData

	Field

	Type

	Value

	Description

	name

	String

	Managed Sites

	The name of drive which must be unique.

	repository

	String

	repository

	Content Repository where to find the root path.

	workspace

	String

	collaboration

	Workspace in the Content Repository.

	homePath

	String

	/sites

	
	Root path in the Content Repository. ``

	
userId

`` can be used to use the userId at runtime in the path.

	permissions

	String

	*:/platform/administrators

	Visibility of the drive based on eXo rights. For example: *:/platform/users

	icon

	String

	N/A

	URL to the icon.

	views

	String

	wcm-view

	The list of views you want to use, separated by commas. For example: simple-view,admin-view

	viewPreferences

	Boolean

	false

	The User Preference icon will be visible if true.

	viewNonDocument

	Boolean

	true

	Non-document types will be visible in the user view if true.

	viewSideBar

	Boolean

	true

	Shows/Hides the left bar (with navigation and filters).

	showHiddenNode

	Boolean

	false

	Hidden nodes will be visible if true.

	allowCreateFolders

	String

	nt:folder,nt:unstructured

	List of node types that you can create as folders. For example: nt:folder,nt:unstructured.

	allowNodeTypesOnTree

	String

	*

	Allows you to filter node types in the navigation tree. For example, the default value is “*” to show all content types.

Manage View

This plugin is used to create a predefined View into a repository. A
View can include many object parameters. Parameters are used to create
default Views, Templates and Actions of Manage View service. View
enables administrators to customize View classification that can impact
on users in exploring workspace. Each object-param has a type that is a
class representing all properties of a View.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.views.ManageViewService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-views-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.views.ManageViewService</target-component>
 <component-plugin>
 <name>manage.view.plugin</name>
 <set-method>setManageViewPlugin</set-method>
 <type>org.exoplatform.services.cms.views.impl.ManageViewPlugin</type>
 <description>this plugin manage user view</description>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>predefinedViewsLocation</name>
 <value>war:/conf/dms-extension/dms/artifacts</value>
 </value-param>
 <value-param>
 <name>repository</name>
 <value>repository</value>
 </value-param>
 <object-param>
 <name>Web</name>
 <description>View configuration of WCM administrator</description>
 <object type="org.exoplatform.services.cms.views.ViewConfig">
 <field name="name"><string>Web</string></field>
 <field name="permissions"><string>*:/platform/web-contributors</string></field>
 <field name="template"><string>/exo:ecm/views/templates/ecm-explorer/Content</string></field>
 <field name="tabList">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.views.ViewConfig$Tab">
 <field name="tabName"><string>Authoring</string></field>
 <field name="buttons">
 <string>
 addCategory; addFolder; addDocument; editDocument; upload; viewPermissions; managePublications; manageCategories; taggingDocument; vote; watchDocument; publicationRequestApproval; publicationApproveContent; publicationPublish; addLocalizationLink
 </string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 <object-param>
 <name>Content Template</name>
 <description>Template to display contents in list style</description>
 <object type="org.exoplatform.services.cms.views.TemplateConfig">
 <field name="type"><string>ecmExplorerTemplate</string></field>
 <field name="name"><string>Content</string></field>
 <field name="warPath"><string>/ecm-explorer/ContentView.gtmpl</string></field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: manage.view.plugin

	Set-method: setManageViewPlugin

	Type:
org.exoplatform.services.cms.views.impl.ManageViewPlugin

	Init-param:

	value-param

	Type

	Value

	Description

	autoCreateInNewRepository

	boolean

	true

	Allows creating a predefined View in this repository if the value is “true”.

	predefinedViewsLocation

	string

	war:/conf/dms-extension/dms/artifacts

	The location of the View node in the repository.

	repository

	string

	repository

	The repository name.

	Object type: org.exoplatform.services.cms.views.ViewConfig

	Field

	Type

	Value

	Description

	name

	string

	Web

	The name of view which must be unique inside Content.

	permissions

	string

	*:/platform/web-contributors

	Visibility of the view based on eXo rights.

	template

	string

	/exo:ecm/views/templates/ecm-explorer/Content

	Specifies path to the template location.

	tabList

	ArrayList

	{java.util.ArrayList}

	Includes a set of view names.

	Object type:
org.exoplatform.services.cms.views.ViewConfig$Tab

	Field

	Type

	Value

	Description

	tabName

	string

	Authoring

	The name of tab which must be unique.

	button

	string

	addCategory; addFolder; addDocument; editDocument; upload; viewPermissions; managePublications; manageCategories; taggingDocument; vote; watchDocument; publicationRequestApproval; publicationApproveContent; publicationPublish; addLocalizationLink

	Specifies a set of view component names.

	Object type:
org.exoplatform.services.cms.views.TemplateConfig

	Field

	Type

	Value

	Description

	type

	string

	ecmExplorerTemplate

	Specifies if a name is truly a class representing all properties of a view.

	name

	string

	Content

	Specifies a view component name.

	warPath

	string

	/ecm-explorer/ContentView.gtmpl

	Specifies a template location to view.

PDF Thumbnail

This plugin is to set the supported file types of PDF thumbnail. See
also
ImageThumbnailPlugin.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.thumbnail.ThumbnailService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-thumbnail-configuration.xml.

Sample configuration:

<component-plugin>
 <name>PDFThumbnailPlugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.thumbnail.impl.PDFThumbnailPlugin</type>
 <init-params>
 <object-param>
 <name>thumbnailType</name>
 <description>Thumbnail types</description>
 <object type="org.exoplatform.services.cms.thumbnail.impl.ThumbnailType">
 <field name="mimeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <string>application/pdf</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component-plugin>

In which:

	Name: PDFThumbnailPlugin

	Set-method: addPlugin

	Type:
org.exoplatform.services.cms.thumbnail.impl.PDFThumbnailPlugin

	Object type:
org.exoplatform.services.cms.thumbnail.impl.ThumbnailType

	Field

	Type

	Value

	Description

	mimeTypes

	String

	application/pdf

	The MIME type of the PDF thumbnail.

Portlet Template

This plugin is used to import the view templates into Content List
Viewer.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.views.ApplicationTemplateManagerService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/wcm-extension/dms/application-templates-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.views.ApplicationTemplateManagerService</target-component>
 <component-plugin>
 <name>clv.templates.plugin</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.views.PortletTemplatePlugin</type>
 <description>This plugin is used to import views templates for Content List Viewer</description>
 <init-params>
 <value-param>
 <name>portletName</name>
 <value>content-list-viewer</value>
 </value-param>
 <value-param>
 <name>portlet.template.path</name>
 <value>war:/conf/wcm-artifacts/application-templates/content-list-viewer</value>
 </value-param>
 <object-param>
 <name>Two columns CLV template</name>
 <description>Two columns CLV template</description>
 <object type="org.exoplatform.services.cms.views.PortletTemplatePlugin$PortletTemplateConfig">
 <field name="title">
 <string>Two Columns</string>
 </field>
 <field name="templateName">
 <string>TwoColumns.gtmpl</string>
 </field>
 <field name="category">
 <string>list</string>
 </field>
 </object>
 </object-param>
 <object-param>

 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: clv.templates.plugin

	Set-method: addPlugin

	Type:
org.exoplatform.services.cms.views.PortletTemplatePlugin

	Init-param:

	Value-param

	Type

	Value

	Description

	portletName

	string

	content-list-viewer

	The name of the portlet.

	portlet.template.path

	string

	war:/conf/wcm-artifacts/application-templates/content-list-viewer

	The path to the configuration of the portlet.

	Object type:
org.exoplatform.services.cms.views.PortletTemplatePlugin$PortletTemplateConfig

	Field

	Type

	Description

	templateName

	string

	The name of the GROOVY template.

	category

	string

	The category name.

Query

This plugin is used to store predefined queries into the repositories of
the system.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.queries.QueryService</target-component>

The configuration is applied mainly in
/packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-queries-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.queries.QueryService</target-component>
 <component-plugin>
 <name>query.plugin</name>
 <set-method>setQueryPlugin</set-method>
 <type>org.exoplatform.services.cms.queries.impl.QueryPlugin</type>
 <description>Nothing</description>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>repository</name>
 <value>repository</value>
 </value-param>
 <object-param>
 <name>CreatedDocuments</name>
 <description>documents created by the current user</description>
 <object type="org.exoplatform.services.cms.queries.impl.QueryData">
 <field name="name">
 <string>Created Documents</string>
 </field>
 <field name="language">
 <string>xpath</string>
 </field>
 <field name="statement">
 <string>//*[(@jcr:primaryType = 'exo:article' or @jcr:primaryType = 'nt:file') and
 @exo:owner='${UserId}$'] order by @exo:dateCreated descending
 </string>
 </field>
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <string>*:/platform/users</string>
 </value>
 </collection>
 </field>
 <field name="cachedResult">
 <boolean>false</boolean>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: predefinedTaxonomyPlugin

	Set-method: setQueryPlugin

	Type: org.exoplatform.services.cms.queries.impl.QueryPlugin

	Init-param:

	Value-param

	Type

	Value

	Description

	autoCreateInNewRepository

	boolean

	true

	Stores queries in a new repository if the value is “true”.

	repository

	string

	repository

	The repository to the target node.

	Object type:
org.exoplatform.services.cms.queries.impl.QueryData

	Field

	Type

	Description

	name

	string

	The name of the query.

	language

	string

	The language of the query (Xpath, SQL).

	statement

	string

	The query statement.

	permissions

	ArrayList

	The permission which users must have to use this query.

	cachedResult

	boolean

	Specifies if the query is cached or not.

Watch Document

The WatchDocumentService component allows users to watch/unwatch a
document. If they are watching the document, they will receive a
notification mail when there are any changes on the document. The
configuration of this component is found in
/core/core-configuration/src/main/webapp/WEB-INF/conf/wcm-core/core-services-configuration.xml.

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.watch.WatchDocumentService</target-component>
 <component-plugin>
 <name>watching document notification email contents setting</name>
 <set-method>initializeMessageConfig</set-method>
 <type>org.exoplatform.services.cms.watch.impl.MessageConfigPlugin</type>
 <description>Initialize the settings for watching document notification email contents</description>
 <init-params>
 <object-param>
 <name>messageConfig</name>
 <description>Message Configuration</description>
 <object type="org.exoplatform.services.cms.watch.impl.MessageConfig">
 <field name="sender"><string>${gatein.ecms.watchdocument.sender:support@exoplatform.com}</string></field>
 <field name="subject"><string>${gatein.ecms.watchdocument.subject:Your watching document is changed}</string></field>
 <field name="mimeType"><string>${gatein.ecms.watchdocument.mimetype:text/html}</string></field>
 <field name="content">
 <string>${gatein.ecms.watchdocument.content: Dear $user_name,

The document $doc_name ($doc_title) has changed.

Please go to $doc_title to see this change.

</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

Details:

	object-param:

	Object type:
org.exoplatform.services.cms.watch.impl.MessageConfig

	Field

	Type

	Value

	Description

	sender

	string

	${gatein.ecms.watchdocument.sender:support@exoplatform.com}

	The sender who sends the notification mail.

	subject

	string

	${gatein.ecms.watchdocument.subject:Your watching document is changed}.

	The subject of the notification mail.

	mimeType

	string

	${gatein.ecms.watchdocument.mimetype:text/html}.

	The format of the notification mail.

	content

	string

	${gatein.ecms.watchdocument.content: Dear $user_name,

The document $doc_name ($doc_title) has changed.

Please go to $doc_title to see this change.

.

	The content of the notification mail.

Remove Taxonomy

This plugin is used to invalidate taxonomy trees in categories
folder of a portal when the portal is removed.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.wcm.portal.artifacts.RemovePortalArtifactsService</target-component>

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.portal.artifacts.RemovePortalArtifactsService</target-component>
 <component-plugin>
 <name>Remove taxonomy tree</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.wcm.category.RemoveTaxonomyPlugin</type>
 <description>This plugin invalidate taxonomy tree to categories folder of portal when a portal is removed
 </description>
 </component-plugin>
</external-component-plugins>

In which:

	Name: Remove taxonomy tree

	Set-method: addPlugin

	Type:
org.exoplatform.services.wcm.category.RemoveTaxonomyPlugin

Script Action

This plugin is used to import the predefined script actions into the
system.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.actions.ActionServiceContainer</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-actions-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.actions.ActionServiceContainer</target-component>
 <component-plugin>
 <name>exo:scriptAction</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.cms.actions.impl.ScriptActionPlugin</type>
 <init-params>
 <object-param>
 <name>predefined.actions</name>
 <description>description</description>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="actions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.actions.impl.ActionConfig$Action">
 <field name="type">
 <string>exo:trashFolderAction</string>
 </field>
 <field name="name">
 <string>trashFolder</string>
 </field>
 <field name="description">
 <string>trigger actions for items in trash</string>
 </field>
 <field name="srcWorkspace">
 <string>collaboration</string>
 </field>
 <field name="srcPath">
 <string>/Trash</string>
 </field>
 <field name="isDeep">
 <boolean>false</boolean>
 </field>
 <field name="lifecyclePhase">
 <collection type="java.util.ArrayList">
 <value>
 <string>node_added</string>
 </value>
 <value>
 <string>node_removed</string>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	name: exo:scriptAction

	set-method: addPlugin

	type:
org.exoplatform.services.cms.actions.impl.ScriptActionPlugin

	Object type:
org.exoplatform.services.cms.actions.impl.ActionConfig

	Name

	Type

	Default Value

	Description

	repository

	string

	repository

	The name of the repository.

	workspace

	string

	collaboration

	The name of the workspace.

	actions

	ArrayList

	{java.util.ArrayList}

	The list of actions.

	Object type:
org.exoplatform.services.cms.actions.impl.ActionConfig$Action

	Name

	Type

	Default Value

	Description

	type

	string

	exo:trashFolderAction

	The type of the action.

	name

	string

	trashFolder

	The name of the action.

	description

	string

	trigger actions for items in trash

	The description of the action.

	srcWorkspace

	string

	collaboration

	The source workspace of the action.

	srcPath

	string

	/Trash

	The path to the source.

	isDeep

	boolean

	false

	Specifies the depth of node that the action script will affect.

	lifecyclePhase

	ArrayList

	node_added, node_removed

	Specifies the lifecycle phase that the action will take place.

Script

This plugin is used to add groovy scripts into the system.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.scripts.ScriptService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-scripts-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.scripts.ScriptService</target-component>
 <component-plugin>
 <name>manage.script.plugin</name>
 <set-method>addScriptPlugin</set-method>
 <type>org.exoplatform.services.cms.scripts.impl.ScriptPlugin</type>
 <description>Nothing</description>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>predefinedScriptsLocation</name>
 <value>war:/conf/dms-extension/dms/artifacts</value>
 </value-param>
 <object-param>
 <name>predefined.scripts</name>
 <description>description</description>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig">
 <field name="resources">
 <collection type="java.util.ArrayList">
 <!-- ecm-explorer/action -->
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Trash Document</string></field>
 <field name="name"><string>ecm-explorer/action/TrashFolder.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Enable Versioning</string></field>
 <field name="name"><string>ecm-explorer/action/EnableVersioning.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Auto Versioning</string></field>
 <field name="name"><string>ecm-explorer/action/AutoVersioning.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Add Metadata</string></field>
 <field name="name"><string>ecm-explorer/action/AddMetadata.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Add to Category</string></field>
 <field name="name"><string>ecm-explorer/action/AddToCategory.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Add to Favorites</string></field>
 <field name="name"><string>ecm-explorer/action/AddToFavorites.groovy</string></field>
 </object>
 </value>
 <!-- ecm-explorer/widget -->
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Fill SelectBox With Metadatas</string></field>
 <field name="name"><string>ecm-explorer/widget/FillSelectBoxWithMetadatas.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Fill SelectBox With Workspaces</string></field>
 <field name="name"><string>ecm-explorer/widget/FillSelectBoxWithWorkspaces.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Fill SelectBox With Language</string></field>
 <field name="name"><string>ecm-explorer/widget/FillSelectBoxWithLanguage.groovy</string></field>
 </object>
 </value>
 <!-- ecm-explorer/interceptor -->
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Pre Node Save Interceptor</string></field>
 <field name="name"><string>ecm-explorer/interceptor/PreNodeSaveInterceptor.groovy</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.impl.ResourceConfig$Resource">
 <field name="description"><string>Post Node Save Interceptor</string></field>
 <field name="name"><string>ecm-explorer/interceptor/PostNodeSaveInterceptor.groovy</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

In which:

	Name: manage.script.plugin

	Set-method: addScriptPlugin

	Type: org.exoplatform.services.cms.scripts.impl.ScriptPlugin

	Init-param:

	Value-param

	Type

	Value

	Description

	autoCreateInNewRepository

	Boolean

	true

	Enables/Disables the creation of the scripts in the newly created repository.

	repository

	String

	repository

	The repository name.

	predefinedScriptsLocation

	String

	war:/conf/dms-extension/dms/artifacts

	The location where the scripts are created.

	Object type: org.exoplatform.services.cms.impl.ResourceConfig

	Field

	Type

	Value

	Description

	resource

	ArrayList

	{java.util.ArrayList}

	The resource name.

States Lifecycle

This plugin is used to control the state life cycle of a content.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.wcm.extensions.publication.PublicationManager</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/content-extended/authoring/configuration.xml.

Sample configuration:

<component-plugin>
 <name>AddLifecycle</name>
 <set-method>addLifecycle</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.lifecycle.StatesLifecyclePlugin</type>
 <description>Configures</description>
 <priority>1</priority>
 <init-params>
 <object-param>
 <name>lifecycles</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig">
 <field name="lifecycles">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$Lifecycle">
 <field name="name">
 <string>lifecycle1</string>
 </field>
 <field name="publicationPlugin">
 <string>Authoring publication</string>
 </field>
 <field name="states">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>draft</string>
 </field>
 <field name="membership">
 <string>author:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>pending</string>
 </field>
 <field name="membership">
 <string>author:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>approved</string>
 </field>
 <field name="membership">
 <string>manager:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>staged</string>
 </field>
 <field name="membership">
 <string>publisher:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state">
 <string>published</string>
 </field>
 <field name="membership">
 <string>publisher:/platform/web-contributors</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component-plugin>

In which:

	Name: AddLifecycle

	Set-method: addLifecycle

	Type:
org.exoplatform.services.wcm.extensions.publication.lifecycle.StatesLifecyclePlugin

	Object type:
org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$Lifecycle

	Field

	Type

	Value

	Description

	name

	string

	lifecycle1

	The name of the lifecycle.

	publicationPlugin

	string

	Authoring publication

	The publication plugin name.

	states

	ArrayList

	{java.util.ArrayList}

	The list of the publication states.

	Object type:
org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State

	Field

	Type

	Description

	state

	string

	The publication states: draft, pending, staged, approved or published.

	membership

	string

	The user or group.

Tag Permission

This plugin is used to configure the predefined permission for tag to
inject in JCR.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.folksonomy.NewFolksonomyService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-folksonomy-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.folksonomy.NewFolksonomyService</target-component>
 <component-plugin>
 <name>predefinedTagPermissionPlugin</name>
 <set-method>addTagPermissionPlugin</set-method>
 <type>org.exoplatform.services.cms.folksonomy.impl.TagPermissionPlugin</type>
 <init-params>
 <object-param>
 <name>TagPermission.configuration</name>
 <description>configuration predefined permission for tag to inject in jcr</description>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagPermissionConfig">
 <field name="tagPermissionList">
 <collection type="java.util.ArrayList">
 <value>
 <string>*:/platform/administrators</string>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: predefinedTagPermissionPlugin

	Set-method: addTagPermissionPlugin

	Type:
org.exoplatform.services.cms.folksonomy.impl.TagPermissionPlugin

	Object type:
org.exoplatform.services.cms.folksonomy.impl.TagPermissionConfig

	Name

	Type

	Value

	Description

	tagPermissionList

	ArrayList

	{java.util.ArrayList}

	The users/groups that have the permission.

Tag Style

This plugin is used to configure the predefined styles for tag to inject
in JCR.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.folksonomy.NewFolksonomyService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-folksonomy-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.folksonomy.NewFolksonomyService</target-component>
 <component-plugin>
 <name>predefinedTagStylePlugin</name>
 <set-method>addTagStylePlugin</set-method>
 <type>org.exoplatform.services.cms.folksonomy.impl.TagStylePlugin</type>
 <init-params>
 <object-param>
 <name>htmStyleForTag.configuration</name>
 <description>configuration predefined html style for tag to inject in jcr</description>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig">
 <field name="autoCreatedInNewRepository">
 <boolean>true</boolean>
 </field>
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="tagStyleList">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle">
 <field name="name">
 <string>normal</string>
 </field>
 <field name="tagRate">
 <string>0..2</string>
 </field>
 <field name="htmlStyle">
 <string>font-size: 12px; font-weight: bold; color: #6b6b6b; font-family:
 verdana; text-decoration:none;
 </string>
 </field>
 <field name="description">
 <string>Normal style for tag</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle">
 <field name="name">
 <string>interesting</string>
 </field>
 <field name="tagRate">
 <string>2..5</string>
 </field>
 <field name="htmlStyle">
 <string>font-size: 13px; font-weight: bold; color: #5a66ce; font-family:
 verdana; text-decoration:none;
 </string>
 </field>
 <field name="description">
 <string>Interesting style for tag</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle">
 <field name="name">
 <string>attractive</string>
 </field>
 <field name="tagRate">
 <string>5..7</string>
 </field>
 <field name="htmlStyle">
 <string>font-size: 15px; font-weight: bold; color: blue; font-family: Arial;
 text-decoration:none;
 </string>
 </field>
 <field name="description">
 <string>attractive style for tag</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle">
 <field name="name">
 <string>hot</string>
 </field>
 <field name="tagRate">
 <string>7..10</string>
 </field>
 <field name="htmlStyle">
 <string>font-size: 18px; font-weight: bold; color: #ff9000; font-family: Arial;
 text-decoration:none;
 </string>
 </field>
 <field name="description">
 <string>hot style for tag</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle">
 <field name="name">
 <string>hottest</string>
 </field>
 <field name="tagRate">
 <string>10..*</string>
 </field>
 <field name="htmlStyle">
 <string>font-size: 20px; font-weight: bold; color: red; font-family:Arial;
 text-decoration:none;
 </string>
 </field>
 <field name="description">
 <string>hottest style for tag</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

	Name: predefinedTagStylePlugin

	Set-method: addTagStylePlugin

	Type:
org.exoplatform.services.cms.folksonomy.impl.TagStylePlugin

	Object type:
org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig

	Name

	Type

	Value

	Description

	autoCreatedInNewRepository

	boolean

	true

	Specifies whether the tag style is added automatically in a new repository or not.

	repository

	string

	repository

	Name of the repository where the tag style is added.

	tagStyleList

	ArrayList

	{java.util.ArrayList}

	The list of tag styles.

	Object type:
org.exoplatform.services.cms.folksonomy.impl.TagStyleConfig$HtmlTagStyle

	Name

	Type

	Description

	name

	string

	The name of the tag.

	tagRate

	string

	The number of times that a tag is used which will decide the respective tag style.

	htmlStyle

	string

	The HTML code that defines the style.

Taxonomy

This plugin is used to configure the predefined taxonomies to inject
into JCR.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.taxonomy.TaxonomyService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-categories-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.taxonomy.TaxonomyService</target-component>
 <component-plugin>
 <name>predefinedTaxonomyPlugin</name>
 <set-method>addTaxonomyPlugin</set-method>
 <type>org.exoplatform.services.cms.taxonomy.impl.TaxonomyPlugin</type>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>repository</name>
 <value>repository</value>
 </value-param>
 <value-param>
 <name>workspace</name>
 <value>dms-system</value>
 </value-param>
 <value-param>
 <name>treeName</name>
 <value>System</value>
 </value-param>
 <object-param>
 <name>permission.configuration</name>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig">
 <field name="taxonomies">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Taxonomy">
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission">
 <field name="identity">
 <string>*:/platform/users</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>false</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 <object-param>
 ...
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: predefinedTaxonomyPlugin

	Set-method: addTaxonomyPlugin

	Type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyPlugin

	Init-param:

	Value-param

	Type

	Value

	Description

	autoCreateInNewRepository

	boolean

	true

	Enables/Disables the creation of the taxonomies in the newly created repository.

	repository

	string

	repository

	The name of the repository where taxonomies are created.

	workspace

	string

	dms-system

	The name of the workspace where taxonomies are created.

	treeName

	string

	system

	The name of the taxonomy tree created.

	Object type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig

	Name

	Type

	Value

	Description

	taxonomies

	ArrayList

	{java.util.ArrayList}

	The list of taxonomies to be configured with permission.

	Object type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Taxonomy

	Name

	Type

	Value

	Description

	permissions

	ArrayList

	{java.util.ArrayList}

	The list of permissions for users or groups to access the taxonomy.

	Object type:
org.exoplatform.services.cms.taxonomy.impl.TaxonomyConfig$Permission

	Name

	Type

	Value

	Description

	identity

	string

	*:/platform/users

	The name of the user, group or membership.

	read

	boolean

	true

	The permission to read the taxonomy tree.

	addNode

	boolean

	true

	The permission to add a node to the taxonomy tree.

	setProperty

	boolean

	true

	The permission to set properties for a node in the taxonomy tree.

	remove

	boolean

	false

	The permission to remove a node from the taxonomy tree.

Template

This plugin is used to create templates into the system. A template is a
presentation to display the saved information.

The node type template is used to edit and display the node content.
Each node type has one dialog1.gtmpl file (dialog template) for
editing/creating a node and one view1.gtmpl file (view template) for
viewing the node content. Using the dialog template, you can specify a
dialog whose fields correspond to the properties of the node you want to
edit their values. When this template is rendered, each specified field
will appear with a data input box for you to edit. Note that you do not
have to design a dialog in which all data of the node are listed to be
edited. You can just list the subset of node data you want to edit. Like
the dialog template, the view template renders information of the node.
You just need to create the template and specify which data fields to be
displayed. With this kind of template, node information is only
displayed but cannot be edited. See details at
ContentType.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>

The configuration is applied mainly in
packaging/wcm/webapp/src/main/webapp/WEB-INF/conf/dms-extension/dms/dms-templates-configuration.xml.

Sample configuration:

This below example is configuration for the nt:file template, any
other template will be put in the same level with this template starting
from the line <object
type=”org.exoplatform.services.cms.templates.impl.TemplateConfig$NodeType>
as the another node type.

<external-component-plugins>
 <target-component>org.exoplatform.services.cms.templates.TemplateService</target-component>
 <component-plugin>
 <name>addTemplates</name>
 <set-method>addTemplates</set-method>
 <type>org.exoplatform.services.cms.templates.impl.TemplatePlugin</type>
 <init-params>
 <value-param>
 <name>autoCreateInNewRepository</name>
 <value>true</value>
 </value-param>
 <value-param>
 <name>storedLocation</name>
 <value>war:/conf/dms-extension/dms/artifacts/templates</value>
 </value-param>
 <value-param>
 <name>repository</name>
 <value>repository</value>
 </value-param>
 <object-param>
 <name>template.configuration</name>
 <description>configuration for the localtion of templates to inject in jcr</description>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig">
 <field name="nodeTypes">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$NodeType">
 <field name="nodetypeName">
 <string>nt:file</string>
 </field>
 <field name="documentTemplate">
 <boolean>true</boolean>
 </field>
 <field name="label">
 <string>File</string>
 </field>
 <field name="referencedView">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/views/view1.gtmpl</string>
 </field>
 <field name="roles">
 <string>*</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/views/admin_view.gtmpl</string>
 </field>
 <field name="roles">
 <string>*:/platform/administrators</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 <field name="referencedDialog">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/dialogs/dialog1.gtmpl</string>
 </field>
 <field name="roles">
 <string>*</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/dialogs/admin_dialog.gtmpl</string>
 </field>
 <field name="roles">
 <string>*:/platform/administrators</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 <field name="referencedSkin">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/skins/Stylesheet-lt.css</string>
 </field>
 <field name="roles">
 <string>*</string>
 </field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.cms.templates.impl.TemplateConfig$Template">
 <field name="templateFile">
 <string>/file/skins/Stylesheet-rt.css</string>
 </field>
 <field name="roles">
 <string>*</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	name: addTemplates

	set-method: addTemplates

	type:
org.exoplatform.services.cms.templates.impl.TemplatePlugin

	Init-params:

	Value-param

	Type

	Value

	Description

	autoCreateInNewRepository

	boolean

	true

	Enables the application to import predefined templates at the start-up of template service automatically.

	storedLocation

	string

	war:/conf/dms-extension/dms/artifacts/templates

	The location of stored templates.

	repository

	string

	repository

	Location of stored templates.

	Object-type:
org.exoplatform.services.cms.templates.impl.TemplateConfig that
defines all available template files, using the “collection type”
configuration.

	type: It is the name of each object type. It means the type of
template, the further configurations for this type are defined by
some specified fields.

	Field

	Type

	Value

	Description

	nodeTypes

	ArrayList

	{java.util.ArrayList}

	The node type of the template.

	Object-type:
org.exoplatform.services.cms.templates.impl.TemplateConfig$NodeType

	Field

	Type

	Value

	Description

	nodetypeName

	string

	nt:file

	The name of template that is saved as a node in system.

	documentTemplate

	boolean

	true

	Determines if the node type is a document type.

	label

	string

	file

	Visual display of the title for this node.

	referencedView

	ArrayList

	{java.util.ArrayList}

	Determines how to display a view.

	referencedDialog

	ArrayList

	{java.util.ArrayList}

	Determines how to display a dialog to input information.

	referencedSkin

	ArrayList

	{java.util.ArrayList}

	Determines the stylesheet for display.

	Object type:
org.exoplatform.services.cms.templates.impl.TemplateConfig$Template

	Field

	Type

	Description

	templateFile

	string

	The location of the file store for the template’s presentation.

	roles

	string

	Determines who can access this object (View/Dialog/CSS).

Publication Deployment

This plugin is used to publish content. This plugin checks if content is
enrolled to a publication lifecycle or not. If content has been
enrolled, this plugin will unsubscribe content from the publication
lifecycle. The configuration is applied mainly in
webapps/acme-website/WEB-INF/conf/acme-portal/wcm/deployment/acme-deployment-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>
 <component-plugin>
 <name>Content Initializer Service</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.wcm.extensions.deployment.PublicationDeploymentPlugin</type>
 <description>Publication Deployment Plugin</description>
 <init-params>
 <object-param>
 <name>plfpub01</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.wcm.extensions.deployment.PublicationDeploymentDescriptor">
 <field name="contents">
 <collection type="java.util.ArrayList">
 <value><string>collaboration:/sites/acme/web contents/site artifacts/Introduce</string></value>
 <value><string>collaboration:/sites/acme/web contents/site artifacts/contact_form_confirmation</string></value>
 <value><string>collaboration:/sites/acme/web contents/site artifacts/contact-us-countries</string></value>
 ...
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	Name: Content Initializer Service

	Set-method: addPlugin

	Type:
org.exoplatform.services.wcm.extensions.deployment.PublicationDeploymentPlugin

	Object type:
org.exoplatform.services.wcm.extensions.deployment.PublicationDeploymentDescriptor

	Field

	Type

	Value

	Description

	contents

	Collection

	{java.util.ArrayList}

	The content paths.

WCM Publication Deployment

This plugin is used to inject content at the server startup. Being
considered as a substitute for the deprecated XMLDeploymentPlugin,
it is better because it allows both injection and publication to be done
at once.

In configuration, plug it to the following target component:

<target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>
 <component-plugin>
 <name>Content Initializer Service</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.wcm.extensions.deployment.WCMPublicationDeploymentPlugin</type>
 <description>WCM Plublication Deployment Plugin</description>
 <init-params>
 <value-param>
 <name>override</name>
 <description>The flag parameter to decide if portal metadata is overriden on restarting server</description>
 <value>${acme.portalConfig.metadata.override:false}</value>
 </value-param>
 <object-param>
 <name>ACME French translations directory</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.wcm.extensions.deployment.WCMPublicationDeploymentDescriptor">
 <field name="target">
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor$Target">
 <field name="workspace"><string>collaboration</string></field>
 <field name="nodePath"><string>/sites/acme/web contents/site artifacts</string></field>
 </object>
 </field>
 <field name="sourcePath">
 <string>war:/conf/acme-portal/wcm/artifacts/site-resources/acme/FrenchTranslations.xml</string>
 </field>
 <field name="cleanupPublicationType">
 <string>publish-first-publication</string>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	set-method: addPlugin

	type:
org.exoplatform.services.wcm.extensions.deployment.WCMPublicationDeploymentPlugin

	Param name

	Type

	Value

	Description

	override

	boolean

	true or
false

	
	true: Always
re-import the data from
the configuration when
the server restarts.

	false: Do not
re-import, so if the
data has been modified
after being imported
for the first time, the
modification is not
overridden when the
server restarts.

	Object type:
org.exoplatform.services.wcm.extensions.deployment.WCMPublicationDeploymentDescriptor

	Field

	**Type
**

	Value

	Descriptio
n

	target

	Obje
ct

	org.exoplatform.services.deployment.
DeploymentDescriptor$Target

	The target
node to
import.

	sourcePath

	Stri
ng

	war:/conf/acme-portal/wcm/artifacts/
site-resources/acme/FrenchTranslations
.xml

	The xml
descriptor
file of the
imported
data.

	cleanupPubli
cationType

	Stri
ng

	publish-first-publication (see all
the options in Description column)

	
	*clean-pu

	blication*:

	import,
then
clean all
the
publicati

	on

	state and
version
history
(if any).

	*keep-pub

	lication*:

	import
and keep
the
publicati

	on

	state and
version
history.

	*publish-

first-public
ation*:

import,
clean all
the
publicati

	on

	state and
version
history,
then
publish
the data
as the
first
version.

	Object type:
org.exoplatform.services.deployment.DeploymentDescriptor$Target

	Field

	**Type*
*

	Value

	Description

	workspac
e

	Strin
g

	collaboration

	The target workspace
to import.

	**nodePath
**

	Strin
g

	
	``/sites/acme/web contents/site

	artifacts``

	The target node to
import.

XML Deployment

Warning

XMLDeploymentPlugin is deprecated. Use
WCMPublicationDeploymentPlugin instead.

When a site is created, most of end-users want to see something in the
page instead of a blank page, so you need this plugin to deploy some
“default” contents, such as Banner, Footer, Navigation, Breadcrumb.

There are two main cases to use:

	The site is created only one time when the database is cleaned.

	The site is created at runtime, when a user uses the core features of
the GateIn portal.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>

The configuration is applied mainly in
samples/acme-website/webapp/src/main/webapp/WEB-INF/conf/acme-portal/wcm/deployment/acme-deployment-configuration.xml.

Sample configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.deployment.WCMContentInitializerService</target-component>
 <component-plugin>
 <name>Content Initializer Service</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.deployment.plugins.XMLDeploymentPlugin</type>
 <description>XML Deployment Plugin</description>
 <init-params>
 <value-param>
 <name>override</name>
 <description>The flag parameter to decide if portal metadata is overriden on restarting server</description>
 <value>${acme.portalConfig.metadata.override:false}</value>
 </value-param>
 <object-param>
 <name>ACME Logo data</name>
 <description>Deployment Descriptor</description>
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor">
 <field name="target">
 <object type="org.exoplatform.services.deployment.DeploymentDescriptor$Target">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspace">
 <string>collaboration</string>
 </field>
 <field name="nodePath">
 <string>/sites/acme/web contents/site artifacts</string>
 </field>
 </object>
 </field>
 <field name="sourcePath">
 <string>war:/conf/sample-portal/wcm/artifacts/site-resources/acme/Logo.xml</string>
 </field>
 <field name="versionHistoryPath">
 <string>war:/conf/sample-portal/wcm/artifacts/site-resources/acme/Logo_versionHistory.zip
 </string>
 </field>
 <field name="cleanupPublication">
 <boolean>true</boolean>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which:

	name: Content Initializer Service

	set-method: addPlugin

	type:
org.exoplatform.services.deployment.plugins.XMLDeploymentPlugin

	Name

	Type

	Value

	Description

	override

	boolean

	${acme.portalConfig.metadata.override:false}

	Decides if portal metadata is overriden on restarting server.

	true: Before importing, check if the node exists in JCR, override it with the newer node from configuration.

	false: Not override.

	Object type:
org.exoplatform.services.deployment.DeploymentDescriptor

	Name

	Type

	Value

	Description

	target

	Object

	org.exoplatform.services.deployment.DeploymentDescriptor$Target (*)

	The target node which will contain the imported node.

	sourcePath

	string

	war:/conf/sample-portal/wcm/artifacts/site-resources/acme/Logo.xml

	The absolute path of the XML file.

	cleanupPublication

	boolean

	false

	Decides when the publication lifecycle is cleaned up in the target folder after importing the data.

	true: Allow.

	false: Not allow.

	versionHistoryPath

	string

	war:/conf/sample-portal/wcm/artifacts/site-resources/acme/Logo_versionHistory.zip

	The absolute path of the version history file.

	Object type:
org.exoplatform.services.deployment.DeploymentDescriptor$Target

	Field

	Type

	Value

	Description

	repository

	string

	repository

	The repository name of the target node.

	workspace

	string

	collaboration

	The collaboration name of the target node.

	nodePath

	string

	/sites/acme/web contents/site artifacts

	The path of the target node.

Abstract plugins

BaseActionPlugin

This plugin provides all base and abstract methods which are used for
action types, such as Add New, Schedule Activation.

CreatePortalPlugin

This plugin provides an abstract method which creates all data when a
new portal is added.

PublicationPlugin

This plugin implements a publication lifecycle. When a lifecycle is
defined, a new plugin will be extended from the PublicationPlugin
and registered with the Publication Service.

RemovePortalPlugin

This plugin provides an abstract method which invalidates all data when
a portal is removed.

Calendar plugins

This section describes the main component plugins used in Calendar,
sample configurations with explanation about init-params and how to use
these plugins.

	New User Listener

	New Group Listener

	New Membership Listener

	Reminder Period Job

	Popup Reminder Period Job

	Social Integration Configuration

	CalendarDataInitialize - Creates a calendar for a group in a
specific space.

	CalendarSpaceActivityPublisher - Customizes the activity
status of a specific space when an event happens on a calendar.

	PortletPreferenceRequiredPlugin - Declares the application
that will automatically create database.

New User Listener

Each user can have a default personal calendar created. Use the
NewUserListener to configure that. To use the plugin in the component
configuration, you must use the target-component:

<target-component>org.exoplatform.services.organization.OrganizationService</target-component>

The configuration can be found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/calendar/calendar-service-configuration.xml].

<component-plugin>
 <name>calendar.new.user.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.calendar.service.impl.NewUserListener</type>
 <description>description</description>
 <init-params>
 <value-param>
 <name>defaultEventCategories</name>
 <value>defaultEventCategoryIdMeeting,defaultEventCategoryIdCalls,defaultEventCategoryIdClients,defaultEventCategoryIdHoliday,defaultEventCategoryIdAnniversary</value><!-- Multi value, use coma (,) to split values-->
 <!-- The event category's name will be get from resource bundle by key "UICalendars.label." + defaultEventCategory's value.
 If the key does not exist, the defaultEventCategory's value will be used to display.
 Sample:
 If the value is "defaultEventCategoryIdMeeting" then the resource bundle key is "UICalendars.label.defaultEventCategoryIdMeeting".
 The value of this key is "Meeting", so "Meeting" will be display as default event category.
 If the value is "Not exist key", because this key doesn't exist in resource bundle then
 "Not exist key" will be display as default event category.
 -->
 </value-param>
 <value-param>
 <name>defaultCalendarCategory</name>
 <value>defaultCalendarCategoryId</value><!-- Single value, default calendar category's name is "My group"-->
 <!-- The calendar category's name will be get from resource bundle by key "UICalendars.label." + defaultCalendarCategory's value.
 If the key does not exist, the defaultCalendarCategory's value will be used to display.
 Sample:
 If the value is "defaultCalendarCategoryId" then the resource bundle key is "UICalendars.label.defaultCalendarCategoryId".
 The value of this key is "My group", so "My group" will be display as default calendar category.
 If the value is "My calendar category", because this key doesn't exist in resource bundle then
 "My calendar category" will be display as default calendar category.
 -->
 </value-param>
 <value-param>
 <name>defaultCalendar</name>
 <value>defaultCalendarId</value> <!-- Single value, default calendar's name is "Default"-->
 <!-- The calendar's name will be get from resource bundle by key "UICalendars.label." + defaultCalendar's value.
 If the key does not exist, the defaultCalendar's value will be used to display.
 Sample:
 If the value is "defaultCalendarId" then the resource bundle key is "UICalendars.label.defaultCalendarId".
 The value of this key is "Default", so "Default" will be display as default calendar.
 If the value is "My calendar", because this key doesn't exist in resource bundle then
 "My calendar" will be display as default calendar.
 -->
 </value-param>
 <!--Params for default calendar setting-->
 <value-param>
 <name>viewType</name>
 <value>1</value><!-- DAY_VIEW = "0" ; WEEK_VIEW = "1" ; MONTH_VIEW = "2" ; YEAR_VIEW = "3" ; LIST_VIEW = "4" ; SCHEDULE_VIEW = "5" ; WORKING_VIEW = "6" ;-->
 </value-param>

 <value-param>
 <name>weekStartOn</name>
 <value>2</value><!--SUNDAY = "1" ; MONDAY = "2" ; TUESDAY = "3" ; WEDNESDAY = "4" ; THURSDAY = "5" ; FRIDAY = "6" ;SATURDAY = "7" ;-->
 </value-param>

 <value-param>
 <name>dateFormat</name>
 <value>MM/dd/yyyy</value>
 </value-param>

 <value-param>
 <name>timeFormat</name>
 <value>HH:mm</value> <!-- HH:mm/hh:mm a -->
 </value-param>

 <value-param>
 <name>localeId</name>
 <value>BEL</value><!-- see more locale ids http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html -->
 </value-param>

 <value-param>
 <name>timezoneId</name>
 <value>Europe/Brussels</value><!-- see more for timeZone ids http://www.unicode.org/cldr/data/docs/design/formatting/zone_log.html#windows_ids -->
 </value-param>

 <value-param>
 <name>baseUrlForRss</name>
 <value></value>
 </value-param>

 <value-param>
 <name>isShowWorkingTime</name>
 <value>false</value><!-- boolean true/false -->
 </value-param>

 <value-param>
 <name>workingTimeBegin</name>
 <value>08:00</value><!-- -->
 </value-param>

 <value-param>
 <name>workingTimeEnd</name>
 <value>18:00</value><!-- -->
 </value-param>

 <values-param>
 <name>ignoredUsers</name>
 <description>Definition users to ignore create default calendar</description>
 <!--
 <value>demo</value>
 <value>marry</value>
 -->
 </values-param>

 </init-params>
</component-plugin>

Details:

	Name: calendar.new.user.event.listener - The unique key to
avoid duplicate names. Users can change it.

	Type: org.exoplatform.calendar.service.impl.NewUserListener -
The class is set up to execute the creation of database.

	Description: It is a plugin used to create default personal
calendars.

See the details about the init-params of the component in the following
table:

	Value-params

	Possible values

	Default value

	Description

	defaultEventCategories

	String (Comma separated list of resource bundle keys for category names)

	
	``

	
defaultEventCategoryIdMeeting,defaultEventCategoryIdCalls,defaultEventCategoryIdClients,defaultEventCategoryIdHoliday,defaultEventCategoryIdAnniversary

``

	The default event categories for users.

	defaultCalendarCategory

	String

	defaultCalendarCategoryId

	The name of the default calendar categories.

	defaultCalendar

	String

	defaultCalendarId

	The name of the default calendar.

	viewType

	0-6 (see below)

	1

	Default view after user logs in and goes to the Calendar portlet.

	weekStartOn

	1-7 (see below)

	2

	Day to use as the beginning of the week. It only affects the Week view.

	dateFormat

	valid Java Date format

	MM/dd/yyyy

	The display format for dates.

	timeFormat

	valid Java Date format

	HH:mm

	The display format for time.

	localeId

	valid locale ID

	BEL

	Id of the geographic locale.

	timezoneId

	valid TimeZone id

	Europe

	User time zone.

	baseUrlForRss

	none

	none

	The URL to publish the RSS content.

	isShowWorkingTime

	true/false

	false

	Indicates if the working time should be highlighted in the Day view.

	workingTimeBegin

	time in timeFormat

	08:00

	The start time in working time.

	workingTimeEnd

	time in timeFormat

	18:00

	The end time in working time.

	ignoredUsers

	user id, use multiple by each line

	N/A

	Definition users to ignore creating the default calendar.

The viewType parameter is encoded by a number as follows:

	0: Day view

	1: Week view

	2: Month view

	3: Year view

	4: List view

	5: Schedule view

	6: Working days view

The weekStartOn parameter is encoded as follow:

	1: Sunday

	2: Monday

	3: Tuesday

	4: Wednesday

	5: Thursday

	6: Friday

	7: Saturday

New Group Listener

To use the plugin in the component configuration, you must use the
target-component:

<target-component>org.exoplatform.services.organization.OrganizationService</target-component>

The configuration can be found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/calendar/calendar-service-configuration.xml].

<component-plugin>
 <name>calendar.new.group.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.calendar.service.impl.NewGroupListener</type>
 <description>description</description>
 <init-params>
 <value-param>
 <name>defaultEditPermission</name>
 <value>*.*</value><!-- Multi value membership, use coma (,) to split values-->
 </value-param>
 <value-param>
 <name>defaultViewPermission</name>
 <value>*.*</value><!-- Multi value membership, use coma (,) to split values-->
 </value-param>

 <value-param>
 <name>defaultLocale</name>
 <value>BEL</value><!-- see more locale ids http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html -->
 </value-param>

 <value-param>
 <name>defaultTimeZone</name>
 <value>Europe/Brussels</value><!-- see more for timeZone ids http://www.unicode.org/cldr/data/docs/design/formatting/zone_log.html#windows_ids -->
 </value-param>

 <values-param>
 <name>ignoredGroups</name>
 <description>Definition group to ignore create default calendar</description>
 <!--
 <value>/platform/guests</value>
 -->
 <value>/spaces/*</value> <!-- single value, use more <value> tags to add more group -->
 </values-param>

 </init-params>
 </component-plugin>

Details:

	Name: calendar.new.group.event.listener - The unique key to
avoid duplicate names. Users can change it.

	Type: org.exoplatform.calendar.service.impl.NewGroupListener
- The class which is set up to execute the creation of database.

	Description - It is the plugin used to create default group
calendars.

See the details about the init-params of the component in the following
table:

	Value-params

	Possible values

	Default value

	Description

	defaultEditPermission

	User id (Multi value membership, use coma (,) to split values)

	
	``

	
.
means that all members in that group can modify and add, remove a calendar, events/tasks of the calendar

``

	The default permission assigned to membership in a specific group to edit calendars and events/tasks of the calendar.

	defaultViewPermission

	User Id (Multi value membership, use coma (,) to split values)

	
	``

	
.
means that all members in that group can view this calendar and all the events/tasks of this calendar.

``

	The default permission assigned to membership in a specific group to view a calendar and events /tasks of the calendar.

	defaultLocale

	Valid locale Id

	BEL (see more locale ids http://userpage.chemie.fu-berlin.de/diverse/doc/ISO_3166.html)

	The default locale of the calendar.

	defaultTimeZone

	Valid timezone Id

	
	``Europe/Brussels (see more for timeZone Ids

	
http://www.unicode.org/cldr/data/docs/design/formatting/zone_log.html#windows_ids)

``

	The default time zone of the calendar.

	ignoredGroups

	Group Id (use line to define multiple value)

	/spaces/*

	Definition group to ignore create the default calendar.

New Membership Listener

To use the plugin in the component configuration, you must use the
target-component:

<target-component>org.exoplatform.services.organization.OrganizationService</target-component>

The configuration can be found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/calendar/calendar-service-configuration.xml].

<component-plugin>
 <name>calendar.new.membership.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.calendar.service.impl.NewMembershipListener</type>
 <description>description</description>
</component-plugin>

Details:

	Name: calendar.new.membership.event.listener - The unique key
to avoid duplicate names. Users can change it.

	Type:
org.exoplatform.calendar.service.impl.NewMembershipListener - The
class which is set up to execute the creation of database.

	Description: It is a plugin used to execute sending reminder
emails to users.

Reminder Period Job

The Calendar application of eXo Platform sends event reminders by using
the email reminder plugin configuration. You will probably need to
adjust this configuration to meet your own needs. The feature is based
on a periodic poll of the stored reminders.

You must use the following target component to use the plugin in this
configuration:

<target-component>org.exoplatform.services.scheduler.JobSchedulerService</target-component>

The configuration can be found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/cs-configuration.xml].

<component-plugin>
 <name>RecordsJob</name>
 <set-method>addPeriodJob</set-method>
 <type>org.exoplatform.calendar.service.ReminderPeriodJob</type>
 <description>add e-mail reminder job to the JobSchedulerService</description>
 <init-params>
 <properties-param>
 <name>job.info</name>
 <description>save the monitor data periodically</description>
 <property name="jobName" value="ReminderJob"/>
 <property name="groupName" value="CollaborationSuite"/>
 <property name="job" value="org.exoplatform.calendar.service.ReminderJob"/>
 <property name="repeatCount" value="0"/>
 <property name="period" value="180000"/>
 <property name="startTime" value="+60000"/>
 <property name="endTime" value=""/>
 </properties-param>
 </init-params>
 </component-plugin>

Details:

	Name: RecordsJob - The name of a schedule job.

	Type: org.exoplatform.calendar.service.ReminderPeriodJob - A
class that executes to transfer data into database of Job Scheduler.

	Description: Add email reminder job to the JobSchedulerService.

See details about the init-params of the component in the following
table:

	Property names

	Possible values

	Default value

	Description

	jobName

	String

	ReminderJob

	The name of job

	groupName

	String

	CollaborationSuite

	The name of group job.

	job

	Class path

	org.exoplatform.calendar.service.ReminderJob

	The name of actual job class.

	repeatCount

	Long

	0, (use '0' which means 'run forever'.)

	How many times to run this job.

	period

	Long

	180000

	The time interval between job executions.

	startTime

	Integer

	+60000

	The time when the job starts running.

	endTime

	Integer

	none

	The time when the job ends running.

Popup Reminder Period Job

You must use the following target component to use the plugin in this
configuration:

<target-component>org.exoplatform.services.scheduler.JobSchedulerService</target-component>

The configuration can be found
here [https://github.com/exoplatform/calendar/blob/master/calendar-extension/calendar-extension-webapp/src/main/webapp/WEB-INF/cs-extension/cs/cs-configuration.xml].

<component-plugin>
 <name>PopupRecordsJob</name>
 <set-method>addPeriodJob</set-method>
 <type>org.exoplatform.calendar.service.PopupReminderPeriodJob</type>
 <description>add popup reminder job to the JobSchedulerService</description>
 <init-params>
 <properties-param>
 <name>job.info</name>
 <description>save the monitor data periodically</description>
 <property name="jobName" value="PopupReminderJob"/>
 <property name="groupName" value="CollaborationSuite"/>
 <property name="job" value="org.exoplatform.calendar.service.PopupReminderJob"/>
 <property name="repeatCount" value="0"/>
 <property name="period" value="15000"/>
 <property name="startTime" value="+60000"/>
 <property name="endTime" value=""/>
 </properties-param>
 <properties-param>
 <name>popupreminder.info</name>
 <description>save the monitor data periodically</description>
 <property name="portalName" value="portal"/>
 </properties-param>
 </init-params>
</component-plugin>

Details:

	Name: PopupRecordsJob - The name of the job.

	Type: org.exoplatform.calendar.service.PopupReminderPeriodJob
- The class which executes to transfer the data into database of Job
Scheduler.

	Description: Adds popup reminder job to the JobSchedulerService.

	Properties-param: job.info. This param saves the monitor data
periodically and includes the following sub-params:

	Property names

	Possible values

	Default value

	Description

	jobName

	String

	PopupReminderJob

	The name of job.

	groupName

	String

	CollaborationSuite

	The name of group job.

	job

	Class path

	org.exoplatform.calendar.service.PopupReminderJob

	The name of actual job class.

	repeatCount

	Long

	0, (use '0' which means 'run forever'.)

	How many times to run this job.

	period

	Long

	15000

	The time interval (millisecond) between job executions.

	startTime

	Long

	+60000

	The time when the job starts running.

	endTime

	Integer

	None

	The time when the job ends running.

	portalName

	String

	portal

	The name of the portal in which displays the pop-ups.

Social Integration Configuration

The Social Integration Configuration can be found
here [https://github.com/exoplatform/integration/blob/master/integ-calendar/integ-calendar-social/src/main/resources/conf/portal/configuration.xml].

CalendarDataInitialize

<external-component-plugins>
 <target-component>org.exoplatform.social.core.space.spi.SpaceService</target-component>
 <component-plugin>
 <name>CalendarDataInitialize</name>
 <set-method>addSpaceListener</set-method>
 <type>org.exoplatform.cs.ext.impl.CalendarDataInitialize</type>
 <init-params>
 <value-param>
 <name>portletName</name>
 <value>CalendarPortlet</value>
 </value-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Details:

	Name: CalendarDataInitialize - The name of plugin.

	Type: org.exoplatform.cs.ext.impl.CalendarDataInitialize - A
class that executes all requirements of the plugin.

	Description: It is used to initialize a calendar for a group in a
specific space.

See the details about the init-params of the component in the following
table:

	Value-param

	Possible value

	Default value

	Description

	portletName

	String

	CalendarPortlet

	The name of the portlet.

CalendarSpaceActivityPublisher

<external-component-plugins>
 <target-component>org.exoplatform.calendar.service.CalendarService</target-component>
 <component-plugin>
 <name>CalendarEventListener</name>
 <set-method>addEventListenerPlugin</set-method>
 <type>org.exoplatform.cs.ext.impl.CalendarSpaceActivityPublisher</type>
 </component-plugin>
</external-component-plugins>

Details:

	Name: CalendarEventListener - The name of the plugin.

	Type:
org.exoplatform.cs.ext.impl.CalendarSpaceActivityPublisher - A
class that executes all the requirements of the plugin.

	Description: It is a plugin used to customize the activity status
of a specific space when an event happens on a calendar.

PortletPreferenceRequiredPlugin

<external-component-plugins>
 <target-component>org.exoplatform.social.core.space.spi.SpaceService</target-component>
 <component-plugin>
 <name>portlets.prefs.required</name>
 <set-method>setPortletsPrefsRequired</set-method>
 <type>org.exoplatform.social.core.application.PortletPreferenceRequiredPlugin</type>
 <init-params>
 <values-param>
 <name>portletsPrefsRequired</name>
 <value>CalendarPortlet</value>
 </values-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

Details:

	Name: ortlets.prefs.required - The name of the plugin.

	Type:
org.exoplatform.social.core.application.PortletPreferenceRequiredPlugin
- A class that executes all the requires of the plugin.

	Description: It is a plugin used to declare the application that
will automatically create database.

See the details about the init-params of the component in the following
table:

	Value-param

	Possible value

	Default value

	Description

	portletsPrefsRequired

	String

	CalendarPortlet

	The name of plugin added to SpaceService.

Init data plugin

The Init data plug-in is used to define the default data in the .xml
file. It includes nodes (node of jcr). When the
org.exoplatform.services.jcr.config.RepositoryServiceConfiguration
component is initialized, the
org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationPlugin
component will be get and the addConfig function is called. Then,
the /ks-extension/jcr/storage-configuration.xml file is loaded and
the component org.exoplatform.forum.common.jcr.KSDataLocation will
be initialized. Next, the setLocation function is called, setting up
the workspace for the Forum, Answers and Polls applications. After that,
the addPlugin function will be run, generating the DataLocation
(some parent nodes) for the Forum, Answers and Polls applications.

The following is the list of applications and the corresponding
components used to initialize the default data.

	Application

	Component

	Description

	Forum

	KSDataLocation, ForumServiceImpl

	Initializes default data of the Forum portlet.

	Answers

	KSDataLocation, FAQServiceImpl

	Initializes default data of the Answers portlet.

	Polls

	KSDataLocation, PollServiceImpl

	Initializes default data of the Polls portlet.

In this section, you will understand how to initialize data via the
sample configurations later.

Initializing the conf-part for loading repository-configuration.xml

When the server starts, the jcr-configuration.xml file is
initialized. The addConfig function will be referred to the
org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationPlugin
component-plugin to load the
war:/ks-extension/jcr/repository-configuration.xml file.

<component-plugin>
 <!-- The name of the plugin -->
 <name>Sample RepositoryServiceConfiguration Plugin</name>
 <!-- The name of the method to call on the RepositoryServiceConfiguration
 in order to add the RepositoryServiceConfigurations -->
 <set-method>addConfig</set-method>
 <!-- The full qualified name of the RepositoryServiceConfigurationPlugin -->
 <type>org.exoplatform.services.jcr.impl.config.RepositoryServiceConfigurationPlugin</type>
 <init-params>
 <value-param>
 <name>conf-path</name>
 <description>JCR configuration file</description>
 <value>war:/ks-extension/jcr/repository-configuration.xml</value>
 </value-param>
 </init-params>
</component-plugin>

	In which:

	Name

	Set-method

	Type

	Description

	RepositoryService ConfigurationPlugin

	addConfig

	org.exoplatform.services. jcr.impl.config.Repository ServiceConfigurationPlugin

	Reads the configuration of JCR data to initialize data.

	Init-params

	Name

	Possible value

	Default value

	Description

	conf-path

	string

	war:/ks-extension/jcr/repository-configuration.xml

	The path to the repository-configuration.xml file.

Initializing workspace name and repository name in storage-configuration.xml

In details:

Once the war:/ks-extension/jcr/repository-configuration.xml file has
been initialized, the server will load the storage-configuration.xml
file, and the setLocation function in the
org.exoplatform.forum.common.conf.DataLocationPlugin component will
run.

<external-component-plugins>
 <target-component>org.exoplatform.forum.common.jcr.KSDataLocation</target-component>
 <component-plugin>
 <name>ks.data.location</name>
 <set-method>setLocation</set-method>
 <type>org.exoplatform.forum.common.conf.DataLocationPlugin</type>
 <init-params>
 <value-param>
 <name>repository</name>
 <description>JCR repository for KS data</description>
 <value>repository</value>
 </value-param>
 <value-param>
 <name>workspace</name>
 <description>workspace for KS data</description>
 <value>knowledge</value>
 </value-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which,

	Value-param

	Possible value

	Default value

	Description

	repository

	string

	repository

	The JCR repository for KS data.

	workspace

	string

	knowledge

	The workspace for KS data.

Initializing JCR structure

Once the workspace name and repository name are registered, the server
will load
org.exoplatform.services.jcr.ext.hierarchy.NodeHierarchyCreator and
the addPaths function in
org.exoplatform.services.jcr.ext.hierarchy.impl.AddPathPlugin is
called. Then, the data location will be built.

<component-plugin>
 <name>addPaths</name>
 <set-method>addPlugin</set-method>
 <type>org.exoplatform.services.jcr.ext.hierarchy.impl.AddPathPlugin</type>
 <init-params>
 <object-param>
 <name>ks.storage</name>
 <description>ks data storage tree</description>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig">
 <field name="repository">
 <string>repository</string>
 </field>
 <field name="workspaces">
 <collection type="java.util.ArrayList">
 <value>
 <string>knowledge</string>
 </value>
 </collection>
 </field>
 <field name="jcrPaths">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig$JcrPath">
 <field name="alias">
 <string>eXoApplications</string>
 </field>
 <field name="path">
 <string>/exo:applications</string>
 </field>
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.jcr.ext.hierarchy.impl.HierarchyConfig$Permission">
 <field name="identity">
 <string>*:/platform/administrators</string>
 </field>
 <field name="read">
 <string>true</string>
 </field>
 <field name="addNode">
 <string>true</string>
 </field>
 <field name="setProperty">
 <string>true</string>
 </field>
 <field name="remove">
 <string>true</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 <value>
 ...
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
</component-plugin>

Roles plugin

The roles plug-in component defines roles in Forum of eXo Platform. This
convenient application defines access to a set of functions within the
application. Currently, it only defines the person who has the
administrator role. Administrators can get access to administration
functions. At runtime, the application gets data from the roles plug-in
to decide whether the logged user has the administrative role or not.

Configuration

The plug-in is configured in the roles-configuration.xml file.

When the user signs in, his or her username, group and membership will
be compared with the user roles defined in the .xml file that is
provided by the roles plug-in component.

In particular, at runtime of ForumService, the roles plug-in component
is called. The role plug-in is configured in the
roles-configuration.xml file. The plug-in component named
add.role.rules.plugin will be referred to
org.exoplatform.ks.common.conf.RoleRulesPlugin to create users for
Forum corresponding to users who exist in the organization database. In
addition, the list of users who have the administration role are
also defined.

<component-plugin>
 <name>add.role.rules.plugin</name>
 <set-method>addRolePlugin</set-method>
 <type>org.exoplatform.forum.common.conf.RoleRulesPlugin</type>
 <description>add role rules</description>
 <init-params>
 <value-param>
 <name>role</name>
 <description>name of the role</description>
 <value>ADMIN</value>
 </value-param>
 <values-param>
 <name>rules</name>
 <description>rules of the role</description>
 <value>root</value>
 <!-- value>admin</value-->
 <!--value>member:/demo</value-->
 <!--value>/platform/administrators</value-->
 <!--value>manager:/platform/users</value-->
 <!--value>*:/somegroup/somesubgroup</value-->
 <!--value>manager:/somegroup/someothergroup</value-->
 </values-param>
 </init-params>
</component-plugin>

In which:

	Name

	Set-method

	Type

	Description

	add.role.rules.plugin

	addRolePlugin

	org.exoplatform.ks.common.conf.RoleRulesPlugin

	Adds role rules.

	Init-params:

	Name

	Possible value

	Default value

	Description

	role

	string

	ADMIN

	The name of role.

	rules

	string

	root

	The rules of role.

	When the role-configuration.xml file is executed, the
administration role (with ADMIN value) will be checked and
assigned to a matrix of users/groups/memberships defined inside
the “value” tags as below:

<value>...</value>

For example:

...
<value>root</value>
<value>john</value>
<value>/platform/administrators</value>
<value>member:/VIP</value>
<value>validator:/VIP</value>
...

In the example above, the default administrators of Forum include
root, john, users in /platform/administrators group and users who
have member/validator memberships in the VIP group.

When being root, the users who belong to the
/platform/administrators group or who have the member/validator
memberships in the VIP group and sign in the Forum, they will be
identified as the default administrator of Forum.

To add or remove the default administrator of the Forum, simply edit the
roles-configuration.xml file, add or remove the relevant “value”
tags.

...
<values-param>
 ...
 <value>...</value>
 ...
</values-param>
...

The default administrators of the Forum can only change their roles by
editing in the roles-configuration.xml file.

At runtime, modifications in the roles-configuration.xml file will
be read and database will be updated. Normal users of the Forum and
default administration will be created correspondingly.

Forum plugins

This section describes the main component plugins used in Forum, sample
configurations with explanation about init-params and how to use these
plugins.

	BBCode

	Auto-prune

	Forum Group Listener

	Forum User Listener

	User Statistics

	Update Statistic Data

	Default User Profile

BBCode

The BBCode plug-in component defines default BBCode data in the .xml
file, including BBCode tags, for example, I, B, U, SIZE, COLOR.

When the BBCode Service runs, it will get values returned from the
BBCode plug-in component to initialize default BBCode data.

Configuration of default BBCode data

The default BBCode data is configured in the
bbcodes-configuration.xml file.

In particular, at runtime of BBCode Service, the BBCode plug-in
component is called. Then, the bbcodes-configuration.xml file will
be executed, and the component-plugin named registerBBCodePlugin
will be referred to org.exoplatform.ks.bbcode.spi.BBCodePlugin to
execute some objects that will generate default data.

<component-plugin>
 <name>forum.default.bbcodes</name>
 <set-method>registerBBCodePlugin</set-method>
 <type>org.exoplatform.forum.bbcode.spi.BBCodePlugin</type>
 <description>default supported BBCodes</description>
 <init-params>
 <object-param>
 <name>I</name>
 <description>set text in italic</description>
 <object type="org.exoplatform.forum.bbcode.spi.BBCodeData">
 <field name="tagName">
 <string>I</string>
 </field>
 <field name="replacement">
 <string><i>{param}</i></string>
 </field>
 <field name="description">
 <string>Set text in italic</string>
 </field>
 <field name="example">
 <string>[I]This text is italic[/I]</string>
 </field>
 <field name="isOption">
 <string>false</string>
 </field>
 <field name="isActive">
 <string>true</string>
 </field>
 </object>
 </object-param>

 <object-param>
 <name>B</name>
 <description></description>
 <object type="org.exoplatform.forum.bbcode.spi.BBCodeData">
 <field name="tagName">
 <string>B</string>
 </field>
 <field name="replacement">
 <string>{param}</string>
 </field>
 <field name="description">
 <string>Set text in bold</string>
 </field>
 <field name="example">
 <string>[B]This text is bold[/B]</string>
 </field>
 <field name="isOption">
 <string>false</string>
 </field>
 <field name="isActive">
 <string>true</string>
 </field>
 </object>
 </object-param>

 <object-param>
 ...

 </object-param>
 </init-params>
</component-plugin>

	In which,

	Name

	Set method

	Type

	Description

	forum.default.bbcodes

	registerBBCodePlugin

	org.exoplatform.ks.bbcode.spi.BBCodePlugin

	Defines formats for data displayed on UI.

	The BBCode array is defined by the
org.exoplatform.forum.bbcode.spi.BBCodeData object as below:

<object type="org.exoplatform.forum.bbcode.spi.BBCodeData">
 <field name="tagName">
 <string>I</string>
 </field>
 <field name="replacement">
 <string><i>{param}</i></string>
 </field>
 <field name="description">
 <string>Set text in italic</string>
 </field>
 <field name="example">
 <string>[I]This text is italic[/I]</string>
 </field>
 <field name="isOption">
 <string>false</string>
 </field>
 <field name="isActive">
 <string>true</string>
 </field>
</object>

	The BBCode includes basic data which are defined in the field tag
with a specific name as below:

<field name="tagName">
 <string>I</string>
</field>
<field name="replacement">
 <string><i>{param}</i></string>
</field>
<field name="description">
 <string>Set text in italic</string>
</field>
<field name="example">
 <string>[I]This text is italic[/I]</string>
</field>
<field name="isOption">
 <string>false</string>
</field>
<field name="isActive">
 <string>true</string>
</field>

In which:

	Field name

	Value

	Description

	tagName

	string

	The text for the BBCode, which is put between two square brackets ([]). For example, for the bold tag, if you type [b], the BBCode tag will be b without any square brackets ([]).

	replacement

	string

	The HTML code that replaces the BBCode entered by the user. Make sure that you include {param} to insert the text between opening and closing BBCode tags, and {option} for the parameter within the BBCode tag. You can only use option if ‘Use Option’ is selected.

	description

	string

	The piece of text to describe the BBCode tag, including HTML tags if you want.

	example

	string

	The sample piece of BBCode to use as an example for the particular BBCode. For example, to demonstrate the usage of the [b] tag, enter [b]text[/b].

	isOption

	true, false

	Selects the [tag=option] [/tag] style tag, rather than just a [tag][/tag] style tag. This function will be created if you select this option.

	isActive

	true, false

	Activates the BBCode tag.

Auto-prune

The Auto-prune component is to prune inactive topics which have not been
viewed, edited or received for a given period. The “prune” operation
does not denote to the physical removal of topics, but sets them to
invisible. The function helps you not clutter busy forums from outdated
information.

When the Job Scheduler runs, it will get values returned from the
Auto-prune plug-in component to identify topics which have to be
inactivated in the Forum application. These topics will be invisible to
users.

Configuration

The properties of Auto-prune plug-in are configured in the
war:/ks-extension/ks/forum/prune-configuration.xml file.

In particular, at runtime of Job Scheduler, the Auto-prune plugin
component is called. Then, the prune-configuration.xml file will be
executed. The component-plugin named ForumDeactiveJob will refer to
org.exoplatform.forum.service.conf.DeactivePeriodJob to inactivate
topics in Forum which meets predefined inactivation properties.

<component-plugin>
 <name>ForumDeactiveJob</name>
 <set-method>addPeriodJob</set-method>
 <type>org.exoplatform.forum.service.conf.DeactivePeriodJob</type>
 <description>add a Deactive job to the JobSchedulerService</description>
 <init-params>
 <properties-param>
 <name>job.info</name>
 <description>save the monitor data periodically</description>
 <property name="jobName" value="DeactiveJob"/>
 <property name="groupName" value="KnowlegedSuite"/>
 <property name="job" value="org.exoplatform.forum.service.conf.DeactiveJob"/>
 <property name="repeatCount" value="0"/>
 <property name="period" value="7200000"/> <!-- 2 hours-->
 <property name="startTime" value="+1296000000"/>
 <property name="endTime" value=""/>
 </properties-param>
 <properties-param>
 <name>deactive.info</name>
 <description></description>
 <property name="inactiveDays" value="15"/>
 <property name="forumName" value="Live demo"/>
 </properties-param>
 </init-params>
</component-plugin>

	In which,

	Name

	Set-method

	Type

	Description

	ForumDeactiveJob

	addPeriodJob

	org.exoplatform.forum. service.conf.DeactivePeriodJob

	Adds a DeactiveJob to the JobSchedulerService.

	The properties for the Auto-prune plug-in are defined in the
property tag with the format as below:

...
<property name="jobName" value="DeactiveJob"/>
<property name="groupName" value="KnowlegedSuite"/>
<property name="job" value="org.exoplatform.forum.service.conf.DeactiveJob"/>
<property name="repeatCount" value="0"/>
<property name="period" value="7200000"/> <!-- 2 hours-->
<property name="startTime" value="+1296000000"/>
<property name="endTime" value=""/>
...
<property name="inactiveDays" value="15"/>
<property name="forumName" value="Live demo"/>
...

In details:

	Property name

	Possible value

	Default value

	Description

	jobname

	String

	DeactiveJob

	The name of job which will be executed.

	groupname

	String

	KnowlegedSuite

	The name of application which will be executed.

	job

	Class path

	org.exoplatform.forum.service.conf.DeactiveJob

	The reference function of the job which will be executed.

	repeatCount

	Long

	0

	The repeating time for the job, meaning that how many times the job will be executed. The 0 value means that DecactiveJob is called at runtime only without repeating. If the value is set to 2 or 3, DecactiveJob will be called two or three times correspondingly.

	period

	Long

	72000000

	The interval between job executions.

	starttime

	Integer

	+1296000000

	The start time when the function executes.

	endtime

	Integer

	null

	
	The end time when the function stops executing. The endtime is blank, meaning that there is no limitation for the end time for ``

	DecactiveJob``.

With start and end time, you can give a specific date in the format:
yyyy-mm-dd HH:mm:ss.sss to define the start and end time for
DecactiveJob. Besides, inactive information is also defined:

	Property name

	Possible value

	Default value

	Description

	inactiveDays

	Integer

	15

	The number of days the topic has not been activated. The inactivateDays is set to 1, meaning that all the topics, which have one inactivated day, will be set as inactivated status. They will be invisible.

	forumname

	String

	Live Demo

	The name of Forum which will be checked for Auto-prune. In case the value of forumname is blank, all forums will be checked for the Auto-prune. If the forumname is Live demo, only the Forum named ‘Live demo’ is checked for the Auto-prune.

By default, the default properties can only be changed by editing its
value in the prune-configuration.xml file.

At runtime, the new changes in the prune-configuration.xml file are
executed and updated. After that, the Auto-prune plug-in will be
executed, depending on its properties.

Forum Group Listener

This plugin is used to remove space forums and user groups stored in
categories/forums/topics.

	You can find the configuration file of this component at: ``

	extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/ks-configuration.xml``.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.organization.OrganizationService</target-component>

Sample Configuration

<component-plugin>
 <name>forum.group.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.forum.service.conf.ForumGroupListener</type>
 <description>Remove the forums in spaces and remove user groups stored in categories/forums/topics.</description>
</component-plugin>

	Name: forum.group.event.listener

	Type: org.exoplatform.forum.service.conf.ForumGroupListener

User Statistics

The Auto-count Active Users component is to calculate the number of
active users automatically. A user is considered as the active user only
when he/she adds a topic/post in the Forum and his/her last post date
matches the predefined interval time.

For example, if one user does not have any new posts after 15 days,
he/she is not considered as an active user.

When the Job Scheduler runs, it will get values returned from the
Auto-count Active Users plug-in component to identify the number of
active users. This value is updated to Active Members information when
the user views Forum statistics.

Configuration

The properties of Auto-count Active Users plug-in is configured in the
war:/ks-extension/ks/forum/statistics-configuration.xml file.

In details, at runtime of Job Scheduler, the Auto-count Active Users
plug-in component is called. Then, the statistics-configuration.xml
file is executed. The component-plugin named RecountActiveUserJob
will refer to
org.exoplatform.forum.service.conf.RecountActiveUserPeriodJob to
calculate the number of active users.

<component-plugin>
 <name>RecountActiveUserJob</name>
 <set-method>addPeriodJob</set-method>
 <type>org.exoplatform.forum.service.conf.RecountActiveUserPeriodJob</type>
 <description>add a RecountActiveUser job to the JobSchedulerService</description>
 <init-params>
 <properties-param>
 <name>job.info</name>
 <description>save the monitor data periodically</description>
 <property name="jobName" value="RecountActiveUserJob"/>
 <property name="groupName" value="KnowlegedSuite"/>
 <property name="job" value="org.exoplatform.forum.service.conf.RecountActiveUserJob"/>
 <property name="repeatCount" value="0"/>
 <property name="period" value="7200000"/> <!-- 2 hours-->
 <property name="startTime" value="+0"/>
 <property name="endTime" value=""/>
 </properties-param>
 <properties-param>
 <name>RecountActiveUser.info</name>
 <description/>
 <property name="lastPost" value="15"/> <!-- users are active if have last posts in 15 day -->
 </properties-param>
 </init-params>
</component-plugin>

	In which,

	Name

	Method

	Type

	Description

	RecountActiveUserJob

	addPeriodJob

	org.exoplatform.forum. service.conf. RecountActiveUserPeriodJob

	Adds a RecountActiveUser job to the JobSchedulerService.

	The properties for Auto-count Active Members plug-in are defined in
the property tag as below:

...
<property name="jobName" value="RecountActiveUserJob"/>
<property name="groupName" value="KnowlegedSuite"/>
<property name="job" value="org.exoplatform.forum.service.conf.RecountActiveUserJob"/>
<property name="repeatCount" value="0"/>
<property name="period" value="7200000"/>
<property name="startTime" value="+0"/>
<property name="endTime" value=""/>
...
<property name="lastPost" value="15"/>
...

In which:

	Property name

	Possible value

	Default value

	Description

	jobname

	String

	RecountActiveUserJob

	The name of job which will be executed.

	groupname

	String

	KnowlegedSuite

	The name of application which will be executed.

	job

	Class path

	org.exoplatform.forum.service.conf.RecountActiveUserJob

	The reference function of job which will be executed.

	repeatCount

	Long

	0

	The number of times the job is repeated. If repeatCount is set to 0, RecountActiveUserJob is called at runtime only without repeating. If the number is set to 2 or 3, RecountActiveUserJob will be called two or three times.

	period

	Long

	7200000 (millisecond) (equal to two hours)

	The interval time to execute the job.

	starttime

	Integer

	0

	The start time when the function executes. The starttime is 0, meaning that the time to start executing RecountActiveUserJob is the runtime.

	endtime

	Integer

	null

	
	The end time when the function stops executing. The endtime is blank, meaning that there is no limitation for the end time for ``

	RecountActiveUserJob``.

With start and end time, you can give a specific date in the format:
yyyy-mm-dd HH:mm:ss.sss to define the start and end time for
RecountActiveUserJob. The information of active time is also
defined:

	Property name

	Possible value

	Default value

	Description

	lastPost

	Integer

	15

	The number of days that the user has added the last post. lastPost is 15, meaning that all users, who have any new posts within 15 days as from their last post date, are active members.

By default, the default properties can only be changed by editing its
values in the statistics-configuration.xml file.

At runtime, the new changes in the statistics-configuration.xml file
will be executed and updated. The Auto-count Active Users plug-in will
be executed, depending on its properties.

Update Statistic Data

The UpdateDataJob is used when there are abnormal changes in Forum
data (such as migration). By default, UpdateDataJob is disabled at
the server start up. When UpdateDataJob is running, it will
calculate the statistic data in Forum to make sure that the statistic
data are correct.

Configuration

The properties of Forum’s UpdateDataJob is configured in
/WEB-INF/ks-extension/ks/forum/statistics-configuration.xml which is
located in the ks-extension webapp.

<component-plugin>
 <name>UpdateDataJob</name>
 <set-method>addPeriodJob</set-method>
 <type>org.exoplatform.services.scheduler.PeriodJob</type>
 <description>update topic count and post count to forum service</description>
 <init-params>
 <properties-param>
 <name>job.info</name>
 <description>save the monitor data periodically</description>
 <property name="jobName" value="UpdateDataJob"/>
 <property name="groupName" value="KnowledgeSuite-forum"/>
 <property name="job" value="org.exoplatform.forum.service.conf.UpdateDataJob"/>
 <property name="repeatCount" value="1"/>
 <property name="period" value="30000"/>
 <property name="startTime" value="+0"/>
 <property name="endTime" value=""/>
 </properties-param>
 </init-params>
</component-plugin>

In which:

	Name

	Method

	Type

	Description

	UpdateDataJob

	addPeriodJob

	org.exoplatform.services.scheduler.PeriodJob

	Adds an UpdateDataJob to the JobSchedulerService.

	The properties for Auto-count Active Members plugin are defined in
the property tag as below:

<property name="jobName" value="UpdateDataJob"/>
<property name="groupName" value="KnowledgeSuite-forum"/>
<property name="job" value="org.exoplatform.forum.service.conf.UpdateDataJob"/>
<property name="repeatCount" value="1"/>
<property name="period" value="30000"/>
<property name="startTime" value="+0"/>
<property name="endTime" value=""/>

	Property name

	Possible value

	Default value

	Description

	jobname

	String

	UpdateDataJob

	The name of job which will be executed.

	groupname

	String

	KnowledgeSuite-forum

	The name of application which will be executed.

	job

	Class path

	org.exoplatform.forum.service.conf.UpdateDataJob

	The reference function of job which will be executed.

	repeatCount

	Long

	1

	The number of times the job is repeated. If repeatCount is set to 1, RecountActiveUserJob is called at runtime only without repeating. If the number is set to 2 or 3, RecountActiveUserJob will be called two or three times.

	period

	Long

	30000 (millisecond) (equal to two hours)

	The interval time to execute the job.

	starttime

	Integer

	0

	The start time when the function executes. The starttime is 0, meaning that the time to start executing RecountActiveUserJob is the runtime.

	endtime

	Integer

	null

	
	The end time when the function stops executing. The endtime is blank, meaning that there is no limitation for the end time for ``

	UpdateDataJob``.

With start and end time, you can give a specific date in the
yyyy-mm-dd HH:mm:ss.sss format to define the start and end time for
UpdateDataJob.

Default User Profile

The default Forum settings are a set of settings for a new account. It
contains declarations of time zone, short date format, long date format,
time format, maximum topics per page, maximum posts per page and flag
for showing forum jump or not. The settings are simple, and users can
change such settings to UI-based functions later.

Configuration

This configuration is declared in the file named
ks-configuration.xml. Its path is
``[tomcat source]/webapps/ks-extension/WEB-INF/ks-extension/ks/ks-configuration.xml

`` if you are running the tomcat and

[project source]/extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/ks-configuration.xml
if you are in the development phrase.

...
<external-component-plugins>
 <target-component>org.exoplatform.services.organization.OrganizationService</target-component>
 <component-plugin>
 ...
 <init-params>
 <properties-param>
 <name>user.profile.setting</name>
 <description>set default user profile</description>
 <property name="timeZone" value="GMT"/>
 <property name="shortDateFormat" value="MM/dd/yyyy"/>
 <property name="longDateFormat" value="DDD,MMM dd,yyyy"/>
 <property name="timeFormat" value="hh:mm a"/>
 <property name="maxTopic" value="10"/>
 <property name="maxPost" value="10"/>
 </properties-param>
 </init-params>

 </component-plugin>
</external-component-plugins>
...

In which:

	Parameter

	Possible value

	Default value

	Description

	timeZone

	Time zone id

	GMT

	The time zone set by user. For example: GMT, GMT-05:00, GMT+07:00, GMT+08:30 … Visit the website: http://java.sun.com/j2se/1.4.2/docs/api/java/util/TimeZone.html for more details.

	shortDateFormat

	Valid Java Date format

	MM/dd/yyyy

	The format to display short information of date. Visit the website: http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html to ensure the exact format.

	longDateFormat

	Valid Java Date format

	DDD,MMM dd,yyyy

	The format to display a date with more information. Visit the website http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html to ensure the exact format.

	timeFormat

	valid Java Date format

	hh:mm a

	The format to view time (for example, hour, minute,). Visit the website: http://java.sun.com/j2se/1.4.2/docs/api/java/text/SimpleDateFormat.html to ensure the exact format.

	maxTopic

	Integer

	10

	The maximum number of topics per page.

	maxPost

	Integer

	10

	The maximum number of posts per page.

FAQ plugins

This section describes the main component plugins used to configure the
FAQ application of eXo Platform, including:

	FAQ preference template updater

	FAQ user listener

	Template

FAQ preference template updater

The FAQPreferenceTemplateUpdaterPlugin plugin is used to migrate the
default template of the FAQ viewer.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.commons.upgrade.UpgradeProductService</target-component>

The configuration is applied mainly in
extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/faq/templates-configuration.xml.

Sample configuration:

<component-plugin profiles="knowledge,default,all">
 <name>FAQPreferenceTemplateUpdaterPlugin</name>
 <set-method>addUpgradePlugin</set-method>
 <type>org.exoplatform.faq.service.updater.FAQPreferenceTemplateUpdaterPlugin</type>
 <description>FAQ template upgrade plug-in</description>
 <init-params>
 <value-param>
 <name>product.group.id</name>
 <description>The groupId of the product</description>
 <value>org.exoplatform.forum</value>
 </value-param>
 <value-param>
 <name>old.product.group.id</name>
 <description>The groupId of the old product</description>
 <value>org.exoplatform.ks</value>
 </value-param>
 <value-param>
 <name>location</name>
 <description>The location of file template</description>
 <value>war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl</value>
 </value-param>
 </init-params>
</component-plugin>

	Name: FAQPreferenceTemplateUpdaterPlugin

	Type:
org.exoplatform.faq.service.updater.FAQPreferenceTemplateUpdaterPlugin

	Value-params

	Type

	Value

	Description

	product.group.id

	string

	org.exoplatform.forum

	The groupId of the product.

	old.product.group.id

	string

	org.exoplatform.ks

	The groupId of the old product.

	location

	string

	war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl

	The location of the template file.

FAQ user listener

The FAQUserListener plugin is used to process the user information
when the user is deleted from the system.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.services.organization.OrganizationService</target-component>

The configuration is applied mainly in
extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/ks-configuration.xml.

Sample configuration:

<component-plugin>
 <name>answer.user.event.listener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.faq.service.conf.FAQUserListener</type>
 <description>calculate info when deleted users</description>
</component-plugin>

	Name: answer.user.event.listener

	Type: org.exoplatform.faq.service.conf.FAQUserListener

Template

This plugin is used to initialize the template for the FAQ application.

To use the plugin in the component configuration, you must use the
following target-component:

<target-component>org.exoplatform.faq.service.FAQService</target-component>

The configuration is applied mainly in
extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/faq/templates-configuration.xml.

Sample configuration:

<component-plugin>
 <name>faq.default.template</name>
 <set-method>addTemplatePlugin</set-method>
 <type>org.exoplatform.faq.service.TemplatePlugin</type>
 <init-params>
 <value-param>
 <name>viewerTemplate</name>
 <value>war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl</value>
 </value-param>
 </init-params>
</component-plugin>

	Name: faq.default.template

	Type: org.exoplatform.faq.service.TemplatePlugin

	Value-params

	Type

	Value

	Description

	viewerTemplate

	string

	war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl

	The viewer template file.

Platform Development

	This chapter provides you with the helpful references on following

	topics:

	Extensions

The basic knowledge of extensions used in eXo Platform,
consisting of UI Extensions, Authoring Extension, and
Auxiliary attributes for documents.

	Overridable Components

The knowledge of some overridable components in eXo Platform so
that you can control how these components work by implementing or
extending default implementations, and then reconfigure these new
components in the configuration.xml file.

	Data Structure

Introduction to Data structure of eXo Platform components,
including Social, Calendar, Wiki, Forum, FAQ, and Poll.

	Templates configuration

Instructions on how to configure the templates used for Spaces,
Content and FAQ applications.

	Listener Service events

Introduction to events of eXo Platform modules, including:
Portal, ECMS, Social, and Forum.

Extensions

This section consists of the following main topics:

	UI Extensions

Introduction to the UI Extension framework that allows developers to
write plugin for eXo applications.

	Authoring Extension

Details of an extended Publication plugin used to manage the
lifecycles of documents in Content, and introduction to Publication
Manager which manages lifecycles and contexts in Content and its
details.

	Auxiliary attributes for documents

Details of how to create the DocumentContext which stores some
auxiliary attributes of the document and helps document listeners
make decision based on these attributes.

UI Extensions

Some of the eXo Platform applications provide an extension mechanism
which enables you to extend their capabilities, including: Sites
Explorer, Content Administration, and more. In eXo Platform, UI
Extension helps expanding the dynamic children of UI Component. With UI
Extension, you can add, change or remove a lot of children in UI
Component more easily than in traditional ways.

Also, it is simple for you and your team to control applications
containing a few fixed components. But when you start an application
which contains a lot of components, transactions, filters and
permissions on each component, it is really a disaster. As each
developer may handle problems in their own way, it also likely raises
the convention problem. Thus, UI Extension framework was created to
solve the management dynamic components on the applications and free
developers from controlling too many of them.

The main goals of this framework are:

	Creating simple child UI Components.

	Applying a filter on each component for a variety of purposes more
easily.

	Adding or removing extensions simply by configuration.

UI Extension components

UIExtensionManager

This class is used to manage all extensions available in the system. The
target is to create the ability to add a new extension dynamically
without changing anything in the source code. UIExtensionManager is
implemented by UIExtensionManagerImpl.

<component>
 <key>org.exoplatform.webui.ext.UIExtensionManager</key>
 <type>org.exoplatform.webui.ext.impl.UIExtensionManagerImpl</type>
</component>

UIExtensionPlugin

This class allows you to define new extensions in the configuration file
dynamically (for example: configuration.xml). As you want
UIExtensionManager to manage every extension, you have to plug
UIExtensionPlugin into it:

<external-component-plugins>
 <target-component>org.exoplatform.webui.ext.UIExtensionManager</target-component>
 <component-plugin>
 <name>add.action</name>
 <set-method>registerUIExtensionPlugin</set-method>
 <type>org.exoplatform.webui.ext.UIExtensionPlugin</type>
 ...
 </component-plugin>
</external-component-plugins>

Definition of UI Extensions

Each UI Extension is defined as an object param:

...
<object-param>
 <name>EditPage</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"><string>org.exoplatform.wiki.UIPageToolBar</string></field>
 <field name="rank"><int>300</int></field>
 <field name="name"><string>EditPage</string></field>
 <field name="component"><string>org.exoplatform.wiki.webui.control.action.EditPageActionComponent</string></field>
 </object>
 </object-param>
...

In which:

	Name: the extension’s name.

	Object Type: point to the UI Extension lib class.

	Type: the “parent” UI component which is extended by your UI
Extension.

	Rank: used to sort by Collection of UI Extension.

	Component: point to the UI Extension definition class.

UI Extension Definition class

This class is used to define filters, actions and templates of each UI
Extension:

@ComponentConfig(
 events =
{(listeners = EditPageActionComponent.EditPageActionListener.class);})
 public class EditPageActionComponent extends UIComponent {
 private static final List<UIExtensionFilter> FILTERS = Arrays.asList(new UIExtensionFilter[] { new IsViewModeFilter() });
 @UIExtensionFilters
 public List<UIExtensionFilter> getFilters() {
 return FILTERS;
}
 public static class EditPageActionListener extends UIPageToolBarActionListener<EditPageActionComponent> {
 @Override
 protected void processEvent(Event<EditPageActionComponent> event) throws Exception {
 ...
 super.processEvent(event);
 }
 }
...

Parent UI Component

This is what your UI Extension will be added to (in this example, the
parent UI Componet is UIPageToolBar). All extensions of this
component are got by UIExtensionManager.

UIExtensionManager manager = getApplicationComponent(UIExtensionManager.class);

List<UIExtension> extensions = manager.getUIExtensions(EXTENSION_TYPE);
 public List<ActionComponent> getActions() throws Exception {

 List<UIExtension> extensions = manager.getUIExtensions(EXTENSION_TYPE);
 if (extensions != null) {
 for (UIExtension extension : extensions) {
 UIComponent component = manager.addUIExtension(extension, context, this);
// Child UI Component has been made by UI Extension
// It's available to use now
 ...
 }
 }
 return activeActions;
 }

Internal filter

Each UI Extension has a list of filters depending on variety of
purposes. It indicates which UI Extension is accepted and which is
denied. You are free to create your own filter extended from
UIExtensionAbstractFilter. Internal filters are part of the business
logic of your component. For example, if your component is only
dedicated to articles, you will add an internal filter to your component
that will check the type of the current document.

public class IsViewModeFilter extends UIExtensionAbstractFilter {
 public IsViewModeFilter(String messageKey) {
 super(messageKey, UIExtensionFilterType.MANDATORY);
 }
 @Override
 public boolean accept(Map<String, Object> context) throws Exception {
 UIWikiPortlet wikiPortlet = (UIWikiPortlet) context.get(UIWikiPortlet.class.getName());
 return(wikiPortlet.getWikiMode() == WikiMode.VIEW||wikiPortlet.getWikiMode() == WikiMode.VIEWREVISION);
 }
 @Override
 public void onDeny(Map<String, Object> context) throws Exception {
 // TODO Auto-generated method stub
 }

Your filter will define which type of filter it belongs to (in
UIExtensionFilterType). There are 4 types:

	Types

	Description

	MANDATORY

	Checks if the action related to the extension can
be launched and if the component related to the
extension can be added to the WebUI tree. This
filter is required to launch the action and add the
component related to the extension to the WebUI
tree. If it succeeds, you need to check the other
filters. If it fails, you need to stop.

	REQUISITE

	Checks if the action related to the extension can
be launched. This filter is required to launch the
action to the WebUI tree. If it succeeds, you need
to check the other filters. If it fails, you need
to stop.

	REQUIRED

	Checks if the action related to the extension can
be launched and can be used for adding warnings.
This filter is required to launch the action. If it
succeeds or fails, you need to check the other
filters.

	OPTIONAL

	Checks if the action related to the extension can
be launched and can be used for the auditing
purpose. This filter is not required to launch the
action. If it succeeds or fails, you need to check
the other filters.

There are 2 conditions for filtering: Accept and onDeny.

	Accept: Describe the “Accept” condition, and how a UI Extension
can accept by a context.

	onDeny: What you will do after the filter denies a UI Extension
by a specific context (generating a message for pop-up form, for
example).

You have known how and where the filter is put in a UI Component, but
when it is gonna fire?

It falls into 2 situations: when you get it and when it is action fire.
Thus, you should ensure that your UI Extension is always trapped by its
filter.

External filter

External filters are mainly used to add new filters that are not related
to the business logic to your component. A good example is the
UserACLFilter which allows you to filter by access permissions.

For example, to make the EditPage action only be used by
manager:/platform/administrators, do as follows:

	Create an external filter:

public class UserACLFilter implements UIExtensionFilter {
 /**
 * The list of all access permissions allowed
 */
 protected List<String> permissions;
 /**
 * {@inheritDoc}
 */
 public boolean accept(Map<String, Object> context) throws Exception {
 if (permissions == null || permissions.isEmpty()) {
 return true;
 }
 ExoContainer container = ExoContainerContext.getCurrentContainer();
 UserACL userACL = (UserACL) container.getComponentInstance(UserACL.class);
 for (int i = 0, length = permissions.size(); i < length; i++) {
 String permission = permissions.get(i);
 if (userACL.hasPermission(permission)) {
 return true;
 }
 }
 return false;
 }

 /**
 * {@inheritDoc}
 */
 public UIExtensionFilterType getType() {
 return UIExtensionFilterType.MANDATORY;
 }

 /**
 * {@inheritDoc}
 */
 public void onDeny(Map<String, Object> context) throws Exception {}
}

	Add the external filter to a UI Extension in the
configuration.xml file:

<object-param>
 <name>EditPage</name>
 <object type="org.exoplatform.webui.ext.UIExtension">
 <field name="type"> <string>org.exoplatform.wiki.UIPageToolBar</string> </field>
 <field name="rank"><int>300</int></field>
 <field name="name"> <string>EditPage</string> </field>
 <field name="component"><string>org.exoplatform.wiki.webui.control.action.EditPageActionComponent</string> </field>
 <!-- The external filters -->
 <field name="extendedFilters">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.webui.ext.filter.impl.UserACLFilter">
 <field name="permissions">
 <collection type="java.util.ArrayList">
 <value>
 <string>manager:/platform/administrators</string>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
</object-param>

Mechanism

The UI Extension’s working process is divided into 3 phases:

	Setting up

	Loading

	Activating

Setting up

At first, you must add dependencies to pom.xml. In this phase, you
are going to install all elements of UI Extension framework in the
configuration.xml file:

	Implement UIExtensionManager by using UIExtensionManagerImpl.

	Plug UIExtensionPlugin in UIExtensionManager by using the
registerUIExtensionPlugin() method.

	List all the UI Extension’s definitions. You can also define your own
external filter (optional).

	Create the parent UI Component class.

	Create the UI Extension class.

	Create the internal filters.

Loading

UIExtensionPlugin is responsible for looking up all UI Extension
definitions, thus you can use it to obtain all UI Extensions, then plug
it into UIExtensionManager. At present, all UI Extensions in your
project will be managed by UIExtensionManager. Now you can get UI
Extensions everywhere by invoking the
getUIExtensions(String objectType) method.

In the UI Component class, implement a function which:

	Retrieve a collection of UI Extensions which belongs to it by
UIExtensionManager:

List<UIExtension> extensions = manager.getUIExtensions("org.exoplatform.wiki.UIPageToolBar");

	Transform them into UIComponent and add them to the parent UI
Component:

// You are free to create a context
Map<String, Object> context = new HashMap<String, Object>();
context.put(key,Obj);
// UIExtensionManager will depend on this context and extension to add or does not add extension to UI Component(this)
UIComponent component = manager.addUIExtension(extension, context, this);

The addUIExtension() method is responsible for adding extensions to
a UI Component. It depends on:

	UIExtension, in particular, the UIExtension’s filter. Either internal
filter or external filter has the accept method, thus the adding
process will be successful if accept returns ‘true’ and vice
versa.

	Context will be the parameter of the accept method.

Activating

The final step is to present UI Extension in a template.

As all UI Extensions are presently becoming children of UI Component,
you can implement UI Component’s action thanks to UI Extension’s action.
For example:

<%for(entry in uicomponent.getActions()) {
 String action = entry.Id();
 def uiComponent = entry;
 String link = uiComponent.event(action);
%>
 "><%= action %>
<%}%>

Note

You are free to customize your action's Stylesheet.

Authoring Extension

The section consists of the following main topics:

	Extended Publication Plugin

Details of an extended Publication plugin used to manage the
lifecycles of documents in Content, including:

	States

Information about new states and new profiles of the extended
publication that are enabled in Content.

	Start/End publication dates

Introduction to new properties added to the new publication plugin
that allows you to manage the content publication in a defined
period.

	New Publication Mixin

Introduction to the new authoring mixin that supplies more
information about the document creator.

	Publication Manager

Introduction to Publication Manager which manages lifecycles and
contexts in Content and its details, including:

	Lifecycle

Sample code of lifecycle, information about 3 lifecycles, and
instructions on how to listen to a lifecycle and to perform tasks
when a content’s state is updated.

	Context

Details of context, its sample code and rules.

	New Authoring Mixin

Introduction to the new authoring mixin that supplies more
information about the document creator, its sample code and
details of querying based on publication status.

Extended Publication Plugin

This section covers the following topics:

	States

	Start/End publicationdates

	New Publication Mixin

States

This extended publication has new states and new profiles that are
enabled in Content.

	Profiles

	Author: This profile can edit a content and mark this content as
redacted.

	Approver: This profile approves a pending content (marked by the
Author).

	Publisher: This profile publishes contents or marks them as “Ready
for publication” in multi-server mode.

	Archiver: An administrative profile which moves contents to an
archive storage.

	States

	enrolled: It is a pure technical state, generally used for content
creation.

	draft (Author): Content is in editing phase.

	pending (Author): The author validates the content.

	approved (Approver): A content is approved by the manager.

	inreview (Manager): This state can be used when a second approval
state is needed (for i18 translation for example).

	staged (Publisher): A content is ready for publication
(multi-server mode).

	published (Publisher or Automatic): A content is published and
visible in the Live mode.

	unpublished (Publisher or Automatic): A content is not visible in
the Live mode.

	obsolete: A content can still be published but it is not in an
editing lifecycle anymore.

	archived (Automatic): A content is archived and ready to be moved
in the archive workspace if enabled.

Start/End publication dates

In most cases, you do not want to publish a content directly, but at a
defined date and you can also want the content to be unpublished
automatically after that. New properties are added to the new
publication plugin, that allows you to manage this:

	publication:startPublishedDate

	publication:endPublishedDate

The Content rendering engine does not know anything about publication
dates, so another service needs to manage that. When the publisher sets
start/end publication dates, he can “stage” the content. The content
will go automatically to the “published” state when the start date
arrives and to the “unpublished” state after end date. A cron job checks
every hour (or less) all contents which need to be published (the start
date in the past and the “staged” state) or unpublished (the end date in
the past and the “published” state).

Thus, the publication dates are not mandatory and a content can go to:

	Staged: in multi-server mode, the publisher can only put the content
to the “staged” state and wait for auto-publication.

	Published: in single-server mode, the publisher can directly publish
a content (with or without publication dates).

New Publication Mixin

<nodeType hasOrderableChildNodes="false" isMixin="true" name="publication:authoringPublication" primaryItemName="">
 <supertypes>
 <supertype>publication:stateAndVersionBasedPublication</supertype>
 </supertypes>
 <propertyDefinitions>
 <propertyDefinition autoCreated="false" mandatory="true" multiple="false" name="publication:startPublishedDate" onParentVersion="IGNORE" protected="false" requiredType="Date">
 <valueConstraints/>
 </propertyDefinition>
 <propertyDefinition autoCreated="false" mandatory="true" multiple="false" name="publication:endPublishedDate" onParentVersion="IGNORE" protected="false" requiredType="Date">
 <valueConstraints/>
 </propertyDefinition>
 </propertyDefinitions>
</nodeType>

Publication plugin UI:

Note that some labels containing special or non-ASCII characters could
not be well displayed in the publication UI. You can extend the width of
the current UI State button by adding:

.UIPublicationPanel .StatusTable .ActiveStatus {
width: 75px !important;}

Also, for the publication date inputs, UIPublicationPanel should not
initialize the dates to any default value. The publishing and unpublish
CRON jobs will do this:

	A staged document with null publication start date is published
instantly.

	A document with null publication end date is published forever.

See the export section for more information about the CRON jobs.

Publication Manager

The Publication Manager manages lifecycles and contexts in the Content
platform. It allows managing different lifecycles based on different
publication plugin in the platform.

public interface PublicationManager {

public List<Lifecycle> getLifecycles();

public List<Context> getContexts();

public Context getContext(String name);

public Lifecycle getLifecycle(String name);

public List<Lifecycle> getLifecyclesFromUser(String remoteUser, String state);
}

In which:

	getLifecycles: returns a list of lifecycles (see below), with
lifecycle name, publication plugin involved and possible states.

	getContexts: returns a list of context, with name, related
Lifecycle and other properties (see below).

	getContext: returns a context by its name.

	getLifecycle: returns a lifecycle by its name.

	getLifecycleFromUser: returns a list of lifecycles in which the
user has rights (based on membership property).

Lifecycle

A lifecycle is defined by a simple vertical workflow with steps (states)
and profiles (membership). Each lifecycle is related to a
Publication plugin.

See the following code:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.extensions.publication.PublicationManager</target-component>
 <component-plugin>
 <name>AddLifecycle</name>
 <set-method>addLifecycle</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.lifecycle.StatesLifecyclePlugin</type>
 <description>Configures</description>
 <priority>1</priority>
 <init-params>
 <object-param>
 <name>lifecycles</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig">
 <field name="lifecycles">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$Lifecycle">
 <field name="name"><string>lifecycle1</string></field>
 <field name="publicationPlugin"><string>Authoring publication</string></field>
 <field name="states">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state"><string>draft</string></field>
 <field name="membership"><string>author:/platform/web-contributors</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state"><string>pending</string></field>
 <field name="membership"><string>author:/platform/web-contributors</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state"><string>approved</string></field>
 <field name="membership"><string>manager:/platform/web-contributors</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state"><string>staged</string></field>
 <field name="membership"><string>publisher:/platform/web-contributors</string></field>
 </object>
 </value>
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.lifecycle.impl.LifecyclesConfig$State">
 <field name="state"><string>published</string></field>
 <field name="membership"><string>publisher:/platform/web-contributors</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 <component-plugin>
 <name>AddContext</name>
 <set-method>addContext</set-method>
 <type>org.exoplatform.services.wcm.extensions.publication.context.ContextPlugin</type>
 <init-params>
 <object-param>
 <name>contexts</name>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig">
 <field name="contexts">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.extensions.publication.context.impl.ContextConfig$Context">
 <field name="name"><string>contextdefault</string></field>
 <field name="priority"><string>200</string></field>
 <field name="lifecycle"><string>lifecycle1</string></field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
 </external-component-plugins>

In this example, there is one lifecycle with states. This lifecycle is
based on AuthoringPublicationPlugin.

Listening to a lifecycle

When a state is changed, you can broadcast an event to add features. The
event could look like this:

listenerService.broadcast(AuthoringPlugin.POST_UPDATE_STATE_EVENT, null, node);

Listener declaration could look like this:

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>PublicationService.event.postUpdateState</name>
 <set-method>addListener</set-method>
 <type>org.exoplatform.services.wcm.publication.listener.post.PostUpdateStateEventListener</type>
 <description>this listener will be called every time a content changes its current state</description>
 </component-plugin>
</external-component-plugins>

Performing tasks when a content’s state is updated

To perform some tasks when a content’s state is updated, you need to
create a listener that handles the task and configure it. Following is
the general configuration:

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>PublicationService.event.postUpdateState</name>
 <set-method>addListener</set-method>
 <type>my.package.MyListener</type>
 <description>Your listener description</description>
 </component-plugin>
</external-component-plugins>

With this configuration, your listener my.package.MyListener will be
executed each time a content’s state is changed.

For example, eXo provides a listener which automatically sends email
notifications about the new state to all users of defined groups: ``

org.exoplatform.wcm.authoring.listener.PostUpdateStateEventListener``.

So, the configuration will be:

<external-component-plugins>
 <target-component>org.exoplatform.services.listener.ListenerService</target-component>
 <component-plugin>
 <name>PublicationService.event.postUpdateState</name>
 <set-method>addListener</set-method>
 <type>org.exoplatform.wcm.authoring.listener.PostUpdateStateEventListener</type>
 <description>This listener will send a mail when there are changes in a content's state</description>
 </component-plugin>
</external-component-plugins>

Context

A context is defined by simple rules. In Content, you can select to
enroll the content in a specific lifecycle (for example, publication
plugin) based on context parameters. There are three parameters used to
define contexts:

	Remote User: The current user who can create/edit the content.

	Current site name: The site from where the content is created (not
the storage but the navigation).

	Node: The node which you want to enroll.

From these parameters, you can easily connect and define contexts based
on:

	Membership: Does the current user have this membership?

	Site: On this particular site, you want to enroll contents in a
specific lifecycle.

	Path: You can enroll contents in the lifecycles based on their path
(from the Node).

	Type of content: You can enroll contents in the lifecycles based on
their nodetype (from the Node).

Because each site has a content storage (categories + physical storage),
you can select the right lifecycle for the right storage/site. To avoid
conflicts on contexts, you can set a priority (the less is the best).

For example, Different Contexts:

<external-component-plugins>
 <target-component>org.exoplatform.services.wcm.publication.PublicationManager</target-component>
 <component-plugin>
 <name>AddContext</name>
 <set-method>addContext</set-method>
 <type>org.exoplatform.services.wcm.publication.context.ContextPlugin</type>
 <init-params>
 <object-param>
 <name>contexts</name>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig">
 <field name="contexts">
 <collection type="java.util.ArrayList">
 <value>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>contextdefault</string>
 </field>
 <field name="priority">
 <string>200</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle1</string>
 </field>
 </object>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>context1</string>
 </field>
 <field name="priority">
 <string>100</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle1</string>
 </field>
 <field name="membership">
 <string>*:/platform/web-contributors</string>
 </field>
 <field name="site">
 <string>acme</string>
 </field>
 <field name="path">
 <string>repository:collaboration:/sites/acme/categories</string>
 </field>
 </object>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>context2</string>
 </field>
 <field name="priority">
 <string>100</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle1</string>
 </field>
 <field name="site">
 <string>classic</string>
 </field>
 </object>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>context3</string>
 </field>
 <field name="priority">
 <string>80</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle3</string>
 </field>
 <field name="membership">
 <string>manager:/company/finances</string>
 </field>
 <field name="path">
 <string>repository:collaboration:/documents/company/finances</string>
 </field>
 </object>
 <object type="org.exoplatform.services.wcm.publication.context.impl.ContextConfig$Context">
 <field name="name">
 <string>context4</string>
 </field>
 <field name="priority">
 <string>50</string>
 </field>
 <field name="lifecycle">
 <string>lifecycle4</string>
 </field>
 <field name="memberships">
 <collection type="java.util.ArrayList">
 <value>
 <string>manager:/communication</string>
 </value>
 <value>
 <string>manager:/sanitaryAlert</string>
 </value>
 <value>
 <string>manager:/informations</string>
 </value>
 </collection>
 </field>
 <field name="path">
 <string>repository:collaboration:/documents/company/finances</string>
 </field>
 <field name="nodetype">
 <string>exo:webcontent</string>
 </field>
 </object>
 </value>
 </collection>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The logic is very simple. When the content is created, it should be
attached with lifecycle and based on the lifecycle priority:

	context4 is the most important (priority=50): you will enroll the
content in the lifecycle “lifecycle4” if:

	The content creator has the manager:/company/finances
membership.

	The content is stored in
repository:collaboration:/documents/company/finances or any
subfolders.

	The content is a ‘exo:article’.

	If not, you will continue with context3.

The logic is very simple. When you create a content, go lifecycle by
lifecycle starting with the better priority:

	context4 is the most important (priority=50): you will enroll the
content in the lifecycle “lifecycle4” if:

	The content creator has the manager:/company/finances
membership.

	The content is stored in
repository:collaboration:/documents/company/finances or any
subfolders.

	The content is a exo:article.

	If not, you will continue with context3.

Note

The contexts will be used only when the content is created and when
you want to enroll it in a lifecycle for the first time. Once you
have the corresponding lifecycle, you will set the lifecycle inside
the content (see New Authoring Mixin)
and the context service will not be called again for this content.

New Authoring Mixin

<nodeType hasOrderableChildNodes="false" isMixin="true" name="publication:authoring" primaryItemName="">
 <propertyDefinitions>
 <propertyDefinition autoCreated="false" mandatory="false" multiple="false" name="publication:lastUser" onParentVersion="IGNORE" protected="false" requiredType="String">
 <valueConstraints/>
 </propertyDefinition>
 <propertyDefinition autoCreated="false" mandatory="false" multiple="false" name="publication:lifecycle" onParentVersion="IGNORE" protected="false" requiredType="String">
 <valueConstraints/>
 </propertyDefinition>
 </propertyDefinitions>
</nodeType>

When adding the content in a lifecycle, set the
publication:lifecycle_ property with the corresponding lifecycle.

Note

A content can be in one lifecycle only.

Each time you change from one state to another, set the user who changed
the state in ``

publication:lastUser``.

Querying based on publication status:

By adding this mixin to contents, you can access contents by simple
queries based on the current user profile. For example:

	All your draft contents:

	query: select * from nt:base where
publication:currentState”draft” and
publication:lastUser=”benjamin”.

	All the contents you have to approve.

	call: PublicationManager.getLifecycles('benjamin','approved')
=> returns lifecycles where you can go to the ‘approved’ state.

	query: select * from nt:base where
publication:currentState="pending" and
publication:lifecycle="lifecycle1"
orpublication:lifecycle="lifecycle3".

	All the content that will be published tomorrow.

	query: select * from nt:base where
publication:currentState="staged" and
publication:startPublishedDate=”xxxx”.

Auxiliary attributes for documents

By default, your activities, such as writing a document, and uploading a
file, are published on the activity stream. However, you can decide to
publish these activities or not by creating a context named
DocumentContext for a specific document. This context stores some
auxiliary attributes of the document and helps document listeners make
decision based on these attributes.

This context looks like:

public class DocumentContext {
private static ThreadLocal<DocumentContext> current = new ThreadLocal<DocumentContext>();

public static DocumentContext getCurrent() {
if (current.get() == null) {
setCurrent(new DocumentContext());
}
return current.get();
}

 //Each time, attributes are able to set and got via:
 /**
* @return the attributes
*/
public HashMap<String, Object> getAttributes() {
 return attributes;
}

 /**
* @param attributes the attributes to set
*/
public void setAttributes(HashMap<String, Object> attributes) {
 this.attributes = attributes;
}
 }

For example:

When you upload a document to a drive by using
ManageDocumentService, but do not want to publish this activity on
the activity stream, you can do as follows:

DocumentContext.getCurrent().getAttributes().put(DocumentContext.IS_SKIP_RAISE_ACT, true);

Then, this activity is skipped at:

Object isSkipRaiseAct = DocumentContext.getCurrent().getAttributes().get(DocumentContext.IS_SKIP_RAISE_ACT);
 if (isSkipRaiseAct != null && Boolean.valueOf(isSkipRaiseAct.toString())) {
return;
 }

Note

The DocumentContext class is able to help developers manage
various kinds of actions with a document based on its auxiliary
attributes. You can be free to define new attributes for yourself.

Overridable Components

This section consists of the following main topics:

	Social

Information about Social components which can be overriden, including
Relationship listener plugin, Profile listener plugin, and
Space listener plugin.

	Forum

Information about 2 overridden components in Forum, consisting of
ForumEventLifeCycle, and BBCodeRenderer.

	Answers

Information about the AnswerEventLifeCycle component which
installs event updates for the Answers data that is injected while
saving answers, saving questions or posting comments.

	Calendar

Information about the EventLifeCycle extension point used in the
Calendar application of eXo Platform.

Social

There are the following components in Social that can be overridden:

	Relationship listener plugin:
Enables you to listen to events of a relationship between users.

	Profile listener plugin: Enables you
to listen to events of profiles of users.

	Space listener plugin: Enables you to
listen to events of spaces.

Relationship listener plugin

RelationshipListenerPlugin enables you to listen to events of a
relationship between users. By implementing this overriable component,
users will be notified when the connection request is accepted or the
connection is removed.

	Tutorial

To use the RelationshipListenerPlugin class, you can do as follows:

Create a new class, for example, RelationshipPublisher that extends
RelationshipListenerPlugin.

public class RelationshipPublisher extends RelationshipListenerPlugin {
 ...
 }

Override functions in this created class. In each function, you can
write anything to meet your needs.

public void confirmed(RelationshipEvent event);
 public void removed(RelationshipEvent event);

	The confirmed function is called when a connection request is
accepted.

	The removed function is called when a connection is removed.

Add a new configuration to the
/social-config/src/main/resources/conf/social/core-configuration.xml
file with the type that is the class created in Step
1.

<sscomponent>
 <key>org.exoplatform.social.core.application.RelationshipPublisher</key>
 <type>org.exoplatform.social.core.application.RelationshipPublisher</type>
</component>

Profile listener plugin

ProfileListenerPlugin enables you to listen to events of profiles of
users. By implementing this overriable component, a notification will be
updated in Activity Stream when the profile is changed.

	Tutorial

To use the ProfileListenerPlugin class, you can do as follows:

Create a new class, for example, ProfileUpdatesPublisher that
extends ProfileListenerPlugin.

public class ProfileUpdatesPublisher extends ProfileListenerPlugin {

 }

Override functions in this created class. In each function, you can
write anything to meet your needs.

/**
 * avatar picture of the profile is updated
 * @param event
 */
 public void avatarUpdated(ProfileLifeCycleEvent event) ;

 /**
 * basic account info of the profile are updated
 * @param event
 */
 public void basicInfoUpdated(ProfileLifeCycleEvent event);

 /**
 * contact information of the profile is updated
 * @param event
 */
 public void contactSectionUpdated(ProfileLifeCycleEvent event) ;

 /**
 * experience section of the profile is updated
 * @param event
 */
 public void experienceSectionUpdated(ProfileLifeCycleEvent event);

 /**
 * header section of the profile is updated
 * @param event
 */
 public void headerSectionUpdated(ProfileLifeCycleEvent event) ;

	The avatarUpdated function is called when the avatar picture of a
user is updated.

	The basicInfoUpdated function is called when the basic account
information of a user is updated.

	The contactSectionUpdated function is called when the contact
information of a user is updated.

	The experienceSectionUpdated function is called when the
experience section of a user is updated.

	The headerSectionUpdated function is called when the header
section of a user is updated.

Add a new configuration to the
/social-config/src/main/resources/conf/social/core-configuration.xml
file with the type that is the class created in Step
1.

<component>
 <key>org.exoplatform.social.core.application.ProfileUpdatesPublisher</key>
 <type>org.exoplatform.social.core.application.ProfileUpdatesPublisher</type>
</component>

Space listener Plugin

SpaceListenerPlugin enables you to listen to events of spaces. By
implementing this overriable component, the notification will be updated
in Activity Stream of the space or of members when the space information
is changed or when a user joins or leaves the space.

	Tutorial

To use the SpaceListenerPlugin class, you can do as follows:

Create a new class, for example, SpaceActivityPublisher that extends
SpaceListenerPlugin.

public class SpaceActivityPublisher extends SpaceListenerPlugin {
 {

Override functions in this created class. In each function, you can
write anything to meet your needs.

public void spaceCreated(SpaceLifeCycleEvent event);
 public void grantedLead(SpaceLifeCycleEvent event);
 public void revokedLead(SpaceLifeCycleEvent event);
 public void joined(SpaceLifeCycleEvent event);
 public void left(SpaceLifeCycleEvent event);
 public void spaceRenamed(SpaceLifeCycleEvent event);
 public void spaceDescriptionEdited(SpaceLifeCycleEvent event);
 public void spaceAvatarEdited(SpaceLifeCycleEvent event);

	The grantedLead function is called when a member is promoted as a
space manager.

	The revokedLead function is called when a user is demoted from a
space manager.

	The joined function is called when a user joins a space.

	The left function is called when a user leaves a space.

	The spaceRenamed function is called when a space is renamed.

	The spaceDescriptionEdited function is called when the
description of a space is changed.

	The spaceAvatarEdited function is called when the space avatar is
changed.

Add a new configuration to the
/social-config/src/main/resources/conf/social/core-configuration.xml
file with the type that is the class created in Step 1.

<component>
 <key>org.exoplatform.social.core.application.SpaceActivityPublisher</key>
 <type>org.exoplatform.social.core.application.SpaceActivityPublisher</type>
</component>

Forum

The Forum function needs two overridden components:

	ForumEventLifeCycle
enables you to listen to the lifecycle of a forum. By implementing
ForumEventLifeCycle, you can be notified of new posts and replies,
categories and topics. This installation will be injected when the
data flow is called to save data.

	BBCodeRenderer
is used in the core of Forum to render BBCodes. In which, the data
input is text, containing BBCode tags. The data output will be BBCode
tags which have been encrypted into HTML tags.

Forum Event LifeCycle

ForumEventLifeCycle enables you to listen to the lifecycle of a
forum. By implementing ForumEventLifeCycle, you can be notified of new
posts and replies, categories and topics. This installation will be
injected when the data flow is called to save data.

Configuration plug-in

	You can find the configuration file of this component at: ``

	integ-forum-social/src/main/resources/conf/portal/configuration.xml``.

For example, to add a Forum to a space of the Social application and
keep new activities of Forum (such as new posts and topics) updated to
the activities of space, do as follows:

<external-component-plugins>
<target-component>org.exoplatform.forum.service.ForumService</target-component>
<component-plugin>
 <name>ForumEventListener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.forum.ext.impl.ForumSpaceActivityPublisher</type>
</component-plugin>
</external-component-plugins>

Tutorial

To use ForumEventLifeCycle class, do the following steps:

Create a new class that extends ForumEventListener.

For example: class ABCActivityPublisher

public class ABCActivityPublisher extends ForumEventListener {
..............
}

Override functions in this created class. In each function, you can
write anythings to meet your needs.

public class ABCActivityPublisher extends ForumEventListener {

public void saveCategory(Category category){

}

public void saveForum(Forum forum){

}

public void addTopic(Topic topic, String categoryId, String forumId)){

}

public void updateTopic(Topic topic, String categoryId, String forumId){

}

public void addPost(Post post, String categoryId, String forumId, String topicId){

}

public void updatePost(Post post, String categoryId, String forumId, String topicId){

}
}

	The function saveCategory is called when a category is added
and/or edited.

	The function saveForum is called when a forum is added and/or
edited.

	The addTopic function is called when a topic is added.

	The updateTopic function is called when a topic is updated.

	The addPost function is called when a post is added.

	The updatePost function is called when a post is updated.

Add a new configuration to the configuration.xml file with the type
that is the class created in the Step 1.

<external-component-plugins>
<target-component>org.exoplatform.forum.service.ForumService</target-component>
<component-plugin>
 <name>ForumEventListener</name>
 <set-method>addListenerPlugin</set-method>
 <type>{package}.{class name}</type>
<!-- example
<type>org.exoplatform.forum.ext.impl.ABCActivityPublisher</type>
-->
</component-plugin>
</external-component-plugins>

BBCode Renderer

BBCodeRenderer is used in the core of Forum to render BBCodes. In
which, the data input is text, containing BBCode tags. The data output
will be BBCode tags which have been encrypted into HTML tags.

	You can find the configuration file of this component at: ``

	extension/webapp/src/main/webapp/WEB-INF/ks-extension/ks/forum/bbcodes-configuration.xml``.

For example, to register BBCodeRenderer, do as follows:

<external-component-plugins>
 <target-component>org.exoplatform.forum.rendering.MarkupRenderingService</target-component>
 <component-plugin>
 <name>BBCodeRenderer</name>
 <set-method>registerRenderer</set-method>
 <type>org.exoplatform.forum.rendering.spi.RendererPlugin</type>
 <description>BBCode renderer</description>
 <init-params>
 <object-param>
 <name>renderer</name>
 <description>Extended BBCodeRenderer</description>
 <object type="org.exoplatform.forum.bbcode.core.BBCodeRenderer">
 <field name="bbCodeProvider">
 <object type="org.exoplatform.forum.bbcode.core.ExtendedBBCodeProvider"/>
 </field>
 </object>
 </object-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

In which, ExtendedBBCodeProvider is the class to implement
BBCodeProvider.

Answers

AnswerEventLifeCycle installs event updates for the Answers data
that is injected while saving answers, saving questions or posting
comments.

Configuration plug-in

You can find the configuration file of this component
here [https://github.com/exoplatform/integration/blob/master/integ-forum/integ-forum-social/src/main/resources/conf/portal/configuration.xml].

For example, to add Answers to a space of the Social application and
keep new activities of Answers updated to the activities of space, do as
follows:

<external-component-plugins>
 <target-component>org.exoplatform.faq.service.FAQService</target-component>
 <component-plugin>
 <name>AnswerEventListener</name>
 <set-method>addListenerPlugin</set-method>
 <type>org.exoplatform.forum.ext.impl.AnswersSpaceActivityPublisher</type>
 </component-plugin>
</external-component-plugins>

In which, AnswersSpaceActivityPublisher is the class to implement
ForumEventLifeCycle.

Tutorial

To use the AnswerEventLifeCycle class, do the following steps:

Create a new class that extends AnswerEventListener.

For example: ABCActivityPublisher

public class ABCActivityPublisher extends AnswerEventListener {

}

Override functions in this created class. In each function, you can
write anything to meet your needs.

public class ABCActivityPublisher extends AnswerEventListener {

 public void saveQuestion(Question question, boolean isNew){

 }

 public void saveAnswer(String questionId, Answer answer, boolean isNew){

 }

 public void saveAnswer(String questionId, Answer[] answers, boolean isNew){

 }

 public void saveComment(String questionId, Comment comment, boolean isNew){

 }
}

	The saveQuestion function is called when a question is added
and/or edited.

	The saveAnswer function is called when an answer is added and/or
edited.

	The saveAnswer function is called when answers are added and/or
edited.

	The saveComment function is called when a comment is added and/or
edited.

Add a new configuration to the configuration.xml file with the type
that is the class created in the Step 1.

<external-component-plugins>
 <target-component>org.exoplatform.faq.service.FAQService</target-component>
 <component-plugin>
 <name>AnswerEventListener</name>
 <set-method>addListenerPlugin</set-method>
 <type>{package}.{class name}</type>
 <!-- example
 <type>org.exoplatform.forum.ext.impl.ABCActivityPublisher</type>
 -->
 </component-plugin>
</external-component-plugins>

Calendar

EventLifeCycle is an extension point used in Calendar. You can
find the configuration file of this component at:
integration/integ-calendar/integ-calendar-social/src/main/resources/conf/portal/configuration.xml.

See the following example:

<external-component-plugins>
 <target-component>org.exoplatform.calendar.service.CalendarService</target-component>
 <component-plugin>
 <name>CalendarEventListener</name>
 <set-method>addEventListenerPlugin</set-method>
 <type>org.exoplatform.cs.ext.impl.CalendarSpaceActivityPublisher</type>
 </component-plugin>
</external-component-plugins>

Details:

	CalendarSpaceActivityPublisher implements EventLifeCycle. It
writes activities in the space activity stream when events or tasks
are added/modified.

Data Structure

This section consists of the following main topics:

	Files Data structure

A description of the Files Data Structure.

	Social Data structure

A description of the Social Data Structure.

	Calendar JCR structure

Introduction to the Calendar JCR structure, details of child nodes,
node types and properties of the following nodes: calendars,
eventCategories, categories, eXoCalendarFeed, YY%yyyy% and
calendarSetting.

	Wiki Data structure

Introduction to the whole Data structure of Wiki.

	Forum JCR structure

Introduction to the whole JCR structure of Forum, and comprehensive
knowledge of its main nodes: Forum System and Forum Data.

	Notifications data structure

A description of Notifications Data Structure.

	Email queue data structure

A description of Email queue Data Structure.

	Settings data structure

A description of Settings Data Structure.

	FAQ JCR structure

Introduction to the whole JCR structure of FAQ, and comprehensive
knowledge of its main nodes: Category, FAQ setting, Template for FAQ.

	Poll JCR structure

Introduction to the whole JCR structure of Poll, and properties of
its node type (exo:polls).

	Login History data structure

A description of Login History Data Structure.

Note

To learn more about the JCR Structure, you should have the certain knowledge of JCR [http://jcp.org/en/jsr/detail?id=170].

Files Data structure

Files in eXo Platform are stored in the database following this diagram:

[image: image18]

Table FILES_BINARY

	Name

	Type

	Description

	BLOB_ID

	ID

	The unique ID of the binary.

	NAME

	VARCHAR

	The name of the binary.

	DATA

	BLOB

	The data of the binary.

	UPDATED_DATE

	TIMESTAMP

	The updated date of the binary.

Table FILES_NAMESPACES

	Name

	Type

	Description

	NAMESPACE_ID

	ID

	The unique ID of the namespace.

	NAME

	VARCHAR

	The name of the namespace.

	DESCRIPTION

	VARCHAR

	The description of the namespace.

Table FILES_FILES

	Name

	Type

	Description

	FILE_ID

	ID

	The unique ID of the file.

	NAMESPACE_ID

	ID

	The ID of the namespace of the file.

	NAME

	VARCHAR

	The name of the file.

	MIMETYPE

	VARCHAR

	The mimetype of the file.

	FILE_SIZE

	VARCHAR

	The size of the file.

	UPDATED_DATE

	VARCHAR

	The updated date of the file.

	UPDATER

	VARCHAR

	The id of the user who did the last update of the file.

	CHECKSUM

	VARCHAR

	The checksum of the file.

	DELETED

	BOOLEAN

	True if the file is deleted.

Table FILES_ORPHAN_FILES

	Name

	Type

	Description

	ID

	ID

	The unique ID of the orphan file.

	FILE_ID

	ID

	The ID of the related file in table FILES_FILES.

	DELETED_DATE

	TIMESTAMP

	The date of the deletion of the file.

	CHECKSUM

	VARCHAR

	The checksum of the orphan file.

Social Data structure

Social data is stored in the JPA data source
in a set of database tables as follows:

[image: image13]

Activities and comments

The table SOC_ACTIVITIES stores all the activities and comments and has these fields:

	Name

	Type

	Description

	ACTIVITY_ID

	ID

	The unique ID of the activity or comment.

	APP_ID

	ID

	The ID of the sender application (if posted by an application).

	BODY

	VARCHAR

	The body of the activity.

	EXTERNAL_ID

	ID

	

	PROVIDER_ID

	VARCHAR

	The provider of the poster. Can be “organization” for users or “spaces” for spaces.

	HIDDEN

	BOOLEAN

	True if the activity is hidden.

	UPDATED_DATE

	TIMESTAMP

	The date of the last update of the activity.

	LOCKED

	BOOLEAN

	True if the activity is locked.

	OWNER_ID

	VARCHAR

	The ID of the owner of the activity.

	PERMALINK

	VARCHAR

	The permanent link of the activity.

	POSTED

	TIMESTAMP

	The posted date of the activity.

	POSTER_ID

	ID

	The ID of the poster of the activity.

	TITLE

	VARCHAR

	The title of the activity.

	TITLE_ID

	ID

	The type of the title. For example “forum.add-topic” or “space_avatar_edited”.

	TYPE

	VARCHAR

	The type of the activity. For example “ks-forum:spaces” or “exosocial:spaces”.

	IS_COMMENT

	BOOLEAN

	True if the activity is a comment.

	PARENT_ID

	ID

	The ID of the parent activity.

The table SOC_ACTIVITY_LIKERS stores the likers of an activity and the time of the like.

	Name

	Type

	Description

	ACTIVITY_ID

	ID

	The ID of the activity.

	LIKER_ID

	ID

	The ID of the user who liked the activity.

	CREATED_DATE

	TIMESTAMP

	The date of the like.

The table SOC_ACTIVITY_TEMPLATE_PARAMS stores information about the activity template.

	Name

	Type

	Description

	ACTIVITY_ID

	ID

	The ID of the activity.

	TEMPLATE_PARAM_VALUE

	VARCHAR

	The value of the template parameter.

	TEMPLATE_PARAM_KEY

	VARCHAR

	The name of the template parameter.

The table SOC_STREAM_ITEMS stores informations of the items of the activoty stream.

	Name

	Type

	Description

	STREAM_ITEM_ID

	ID

	The unique ID of the stream item.

	OWNER_ID

	ID

	The ID of the owner of the stream.

	STREAM_TYPE

	NUMBER

	The type of the stream. Can be :SPACE, POSTER, LIKER, COMMENTER, MENTIONER or
COMMENT_LIKER

	ACTIVITY_ID

	ID

	The ID of the activity.

	UPDATED_DATE

	TIMESTAMP

	The last updated date of the stream item.

The Table SOC_MENTIONS store all the user mentions in the activity stream.

	Name

	Type

	Description

	MENTION_ID

	ID

	The unique ID of the mention.

	ACTIVITY_ID

	ID

	The ID of the activity containing the mention.

	MENTIONER_ID

	VARCHAR

	The ID of the mentioner.

Spaces

The table SOC_SPACES stores the spaces.

	Name

	Type

	Description

	SPACE_ID

	ID

	The unique ID of the space.

	PRETTY_NAME

	VARCHAR

	The name of the space.

	DISPLAY_NAME

	VARCHAR

	The display name of the space.

	REGISTRATION

	NUMBER

	The type of registration of the space. Can be :0 (open), 1 (validation), 2 (close)

	DESCRIPTION

	VARCHAR

	The description of the space.

	AVATAR_LAST_UPDATED

	TIMESTAMP

	The date of the last update of the space avatar.

	VISIBILITY

	NUMBER

	The type of visibility of the space. Can be :0 (public), 1 (private), 2 (hidden)

	PRIORITY

	NUMBER

	The type of priority of the space. Can be :0 (high), 1 (intermediate), 2 (low)

	GROUP_ID

	ID

	The ID of the group linked to the space.

	URL

	VARCHAR

	The URL of the space.

	CREATED_DATE

	TIMESTAMP

	The creation date of the space.

	TYPE

	VARCHAR

	The type of the space.

	BANNER_LAST_UPDATED

	TIMESTAMP

	The date of the last update of the space banner.

The table SOC_SPACES_MEMBERS stores the list of users who are members of a given space.

	Name

	Type

	Description

	SPACE_MEMBER_ID

	ID

	The unique ID of the space membership.

	SPACE_ID

	ID

	The ID of the space.

	USER_ID

	ID

	The ID of the user.

	STATUS

	NUMBER

	The status of the membership. Can be : 0 (member), 1 (manager), 2 (pending),
3 (invited), 4 (ignored)

	LAST_ACCESS

	TIMESTAMP

	The last access date of the user in the space.

	VISITED

	BOOLEAN

	True if the user has already visited the space.

The table SOC_APPS stores the activated applications in each space.

	Name

	Type

	Description

	SPACE_ID

	ID

	The ID of the space membership.

	APP_ID

	VARCHAR

	The ID of the application.

	APP_NAME

	VARCHAR

	The name of the application.

	REMOVABLE

	BOOLEAN

	True if the application can be removed from the space.

	STATUS

	NUMBER

	The status of the application in the space. Can be 0 (enabled) or 1 (disabled).

Platform identities

The table SOC_IDENTITIES stores the identities of the platform. An identity
is a generic entity which is linked to a concrete entity like an user or a space.

	Name

	Type

	Description

	IDENTITY_ID

	ID

	The unique ID of the identity.

	PROVIDER_ID

	VARCHAR

	The provider of the poster. Can be “organization” for users or “spaces” for spaces.

	REMOTE_ID

	VARCHAR

	The ID of the entity linked to the identity (for example a user id or a space id).

	ENABLED

	BOOLEAN

	True if the identity is enabled.

	DELETED

	BOOLEAN

	True if the identity is deleted.

	AVATAR_FILE_ID

	ID

	The ID of the file of the identity avatar in the table FILES_FILES.

	CREATED_DATE

	TIMESTAMP

	The creation date of the identity.

	BANNER_FILE_ID

	ID

	The ID of the file of the identity banner in the table FILES_FILES.

The table SOC_IDENTITY_PROPERTIES stores the properties of an identity.
It allows to add any property to an identity.

	Name

	Type

	Description

	IDENTITY_ID

	ID

	The unique ID of the identity.

	NAME

	VARCHAR

	The name of the property of the identity.

	VALUE

	VARCHAR

	The value of the property of the identity.

The table SOC_CONNECTIONS stores the connections between identities (users, spaces, …).

	Name

	Type

	Description

	CONNECTION_ID

	ID

	The unique ID of the connection.

	SENDER_ID

	ID

	The ID of the sender of the connection.

	RECEIVER_ID

	VARCHAR

	The ID of the receiver of the connection.

	STATUS

	NUMBER

	The status of the connection. Can be :
- 0 (pending - a connection request is sent by the sender, waiting for the

receiver approval)

	1 (confirmed - the connection is setup)

	2 (all)

	3 (ignored)

	4 (incoming)

	5 (outgoing)

	UPDATED_DATE

	NUMBER

	The status of the application in the space. Can be :
- 0 (enabled)
- 1 (disabled)

The table SOC_IDENTITY_EXPERIENCES stores the job experiences of an identity.

	Name

	Type

	Description

	IDENTITY_ID

	ID

	The unique ID of the identity.

	COMPANY

	VARCHAR

	The company of the experience.

	POSITION

	VARCHAR

	The position in the company for the experience.

	START_DATE

	TIMESTAMP

	The start date of the experience.

	END_DATE

	TIMESTAMP

	The end date of the experience.

	SKILLS

	VARCHAR

	The skills of the experience.

	DESCRIPTION

	VARCHAR

	The description of the experience.

Calendar JCR structure

The Calendar data are saved in eXo-JCR under the CalendarApplication
data directory. The Calendar JCR Structure is divided into two main
branches: one for public (exo:application) and the other for users
(Users).

The whole JCR structure of Calendar can be visualized in the diagram
below:

[image: image0]

Calendars

The Calendars node of the nt:unstructured type contains the child
nodes of the exo:calendar type. When a calendar is created by users
or the default ones in the system, it is stored under the calendars
node: CalendarApplication/calendars/%calendar_id%. Its node type is
exo:calendar that has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the calendar.

	exo:name

	String

	false

	The name of the calendar.

	exo:description

	String

	false

	The brief description of the calendar.

	exo:viewPermissions

	String

	true

	The list of users/groups having the view permissions.

	exo:editPermissions

	String

	true

	The list of users/groups having the edit permissions.

	exo:groups

	String

	true

	The list of user groups to which the calendar belongs.

	exo:categoryId

	String

	false

	The Id of the category containing the calendar.

	exo:calendarColor

	String

	false

	The color name of the calendar that is defined in the org.exoplatform.web ui.form.ext.UIFormColorPicker class (such as Sky blue, Powder blue).

	exo:calendarOwner

	String

	false

	The name of the user creating the calendar.

	exo:locale

	String

	false

	Location where the calendar is set in format of the uppercase ISO 3166 3-letter country code.

	exo:timeZone

	String

	false

	The Id of the time zone that is set by the user in compliance with the Java class: java.util.TimeZone.

	exo:publicUrl

	String

	false

	The public ICAL link of the calendar.

	exo:privateUrl

	String

	false

	The private ICAL link of the calendar.

When a user shares his own calendar with other users, the Id of the
calendar node is referred to the node under the sharedCalendar node:
CalendarApplication/sharedCalendars/%user_id% following the JCR
reference mechanism.

In case of users’ private calendar, two mixin node types
exo:remoteCalendar and exo:calendarShared can be added to the
exo:calendar node type.

	The exo:remoteCalendar mixin node type has the following
properties:

	Property name

	Required type

	Multiple

	Description

	exo:remoteUrl

	String

	false

	The URL of the remote calendar.

	exo:remoteType

	String

	false

	The type of the remote calendar, including ICalendar (.ics) and CalDav.

	exo:username

	String

	false

	The username used to access the remote calendar.

	exo:password

	String

	false

	The password used to access the remote calendar.

	exo:syncPeriod

	String

	false

	The period the remote calendar is synchronized. auto, 5 minutes, 10 minutes, 15 minutes, 1 hour, 1 day, 1 year

	exo:lastUpdated

	Date

	false

	The last update of the remote calendar.

	exo:beforeDate

	String

	false

	The period before the current date in which the calendar is checked out, including the values: None (the unlimited time), 1 week, 2 weeks, 1month, 2 months, 3 months, 6 months and 1 year.

	exo:afterDate

	String

	false

	The period after the current date in which the calendar is checked out, including the values: Forever (the unlimited time), 1 week, 2 weeks, 1month, 2 months, 3 months, 6 months and 1 year.

	The exo:calendarShared mixin node type has the following
properties:

	Property name

	Required type

	Multiple

	Description

	exo:sharedId

	Reference

	true

	The user Ids who are shared the calendars.

An event can have many attachments which are stored under the
attachment node of the exo:eventAttachmenttype:
CalendarApplication/calendars/%calendar_id%/%event_id%/attachment/%attachment_id%.
The exo:eventAttachment node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:fileName

	String

	false

	The name of the attached file.

Event categories

The eventCategories node contains all event categories. When an
event category is created, it is stored in a node of the
exo:eventCategory type, under the eventCategories node defined
at the path: CalendarApplication/eventCategories/%eventcategory_id%.

This node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the category to which an event belongs.

	exo:name

	String

	false

	The name of the category to which an event belongs.

Each event category node contains the calendar event node of the
exo:calendarEvent type. This node of the exo:calendarEvent type
is stored at the path:
CalendarApplication/eventCategories/%eventcategory_id%/%event_id%.

This node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the event.

	exo:eventType

	String

	false

	Type of the event, including Event and Task.

	exo:summary

	String

	false

	The summary of the event.

	exo:location

	String

	false

	The location where the event will take place.

	exo:taskDelegator

	String

	false

	The name of the user being delegated the task.

	exo:description

	String

	false

	The brief description of the event.

	exo:eventCategoryId

	String

	false

	The Id of the category containing the event.

	exo:eventCategoryName

	String

	false

	The name of the category containing the event.

	exo:calendarId

	String

	false

	The Id of the calendar containing the event.

	exo:fromDateTime

	Date

	false

	The start time of the event.

	exo:toDateTime

	Date

	false

	The end time of the event.

	exo:priority

	String

	false

	The preference order of the event, including 4 values: none, low, normal, high.

	exo:isPrivate

	Boolean

	false

	Defines if the event is private or not.

	exo:eventState

	String

	false

	The state of the event which depends on each event type.

	exo:invitation

	String

	true

	The list of email addresses of users being invited to the event. This property is for the Event type only.

	exo:participant

	String

	true

	The list of users being invited to the event. This property is for the Event type only.

	exo:participantStatus

	true

	String

	The status of the participant, including name and status value.

	exo:message

	String

	false

	The content of the invitation email.

	exo:repeat

	String

	false

	Repetition type of the event, including: “norepeat”, “daily”, “weekly”, “monthly”, “yearly”, “weekend”, “workingdays”.

	exo:sendOption

	String

	false

	The option to notify users before sending the invitation via email: never (not sending all time), always (sending without asking) and ask (asking before sending).

eXo Calendar feed

The eXoCalendarFeed of the nt:unstructured type contains
iCalendars, webDavCalendars as child nodes and others of the
exo:rssData type.

The exo:rssData node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:baseUrl

	String

	false

	The original link to the RSS source.

	exo:title

	String

	false

	The title of the feed.

	exo:content

	Binary

	false

	The content of the feed.

The iCalendars node of the nt:unstructured type contains the
child nodes of exo:iCalData type.

The exo:iCalData node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:data

	Binary

	false

	The exported content of the calendar in the ics.format.

The webDavCalendars node of the nt:unstructured type contains
the child nodes of the exo:caldavCalendarEvent type.

The exo:caldavCalendarEvent node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:caldavHref

	String

	false

	The URL of the remote calendar event.

	exo:caldavEtag

	String

	false

	The tag of the remote calendar event.

Calendar year

The Y%yyyy% of the nt:unstructured type has the name beginning
with the Y character followed by the year name having 4 numbers. It
contains all the child nodes of M%mm%.

The M%mm% of the nt:unstructured type has the name beginning
with the M character followed by the month name having 2 numbers. It
contains all the child nodes of D%dd%.

The D%dd% of the nt:unstructured type has the name beginning
with the D character followed by the date having 2 numbers. This node
has two child nodes: reminder and events.

The reminder node of the nt:unstructured type contains the child
nodes named basing on the Id of the event. This child node also has the
nt:unstructured type. Each node is used to classify reminders of the
same event. Each reminder is stored under a node of the exo:reminder
type:
CalendarApplication/Y%yyyy%/M%mm%/D%dd%/reminders/%event_id%/%reminder_id%.

The exo:reminder node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the reminder.

	exo:eventId

	String

	false

	The event Id of the reminder.

	exo:creator

	String

	false

	Defines who creates the reminder.

	exo:alarmBefore

	Long

	false

	The amount of time that the reminder message is sent before the event starts.

	exo:email

	String

	false

	The list of emails to which the reminder message is sent.

	exo:timeInterval

	Long

	false

	Interval for resending the reminder message in minutes.

	exo:reminderType

	String

	false

	The types of reminders, including email and pop-up.

	exo:fromDateTime

	Date

	false

	The start time to send the reminder.

	exo:remindDateTime

	Date

	false

	The time to send the reminder.

	exo:isRepeat

	Boolean

	false

	Checks if the reminder is repeated or not.

	exo:isOver

	Boolean

	false

	Checks if the reminder is expired or not.

	exo:summary

	String

	false

	The summary of the reminder.

	exo:description

	String

	false

	The brief description of the reminder.

The events node of the nt:unstructured type contains the child
node of the exo:calendarPublicEvent type defined at the path:
CalendarApplication/Y%yyyy%/M%mm%/D%dd%/events/%event_id%.

	Property name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the public event.

	exo:eventType

	String

	false

	Event type, including Task and Event.

	exo:calendarId

	String

	false

	The calendar Id of the public event.

	exo:rootEventId

	String

	false

	The Id of each corresponding node: exo:calendarEvent.

	exo:fromDateTime

	Date

	false

	The start time of the public event.

	exo:toDateTime

	Date

	false

	The snd time of the public event.

	exo:participant

	String

	true

	The list of users being invited to the public event.

	exo:eventState

	String

	false

	The state of the public event, including: busy, available, outside.

The events node can add the exo:repeatCalendarEvent mixin node
that has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:repeatCount

	Long

	false

	The number of times that the event is repeated.

	exo:repeatUntil

	Date

	false

	The given time until when the event is repeated.

	exo:repeatInterval

	Long

	false

	The interval when the event is repeated. It can be day, week, month or year corresponding to the repetition type chosen of day, week, month or year.

	exo:repeatByDay

	String

	true

	The given days in a week on which the event is repeated.

	exo:repeatByMonthDay

	Long

	true

	The given day/date in a month on which the event is repeated.

	exo:recurrenceId

	String

	false

	The Id of each event in the event series.

	exo:excludeId

	String

	true

	The Id of the events that are removed from the event series.

	exo:isException

	Boolean

	false

	Shows whether the event is the exception in the event series or not. This case occurs when the event is removed from the repeated event series.

	exo:originalReference

	Reference

	false

	The UUID of the event that is repeated first.

	exo:repeatFinishDate

	Date

	false

	The end date on which the event is repeated.

Calendar setting

The calendarSetting node of the exo:calendarSetting type is
stored in CalendarApplication/calendarsetting. The
exo:calendarSetting node type has the following properties:

	Property name

	Required type

	Multiple

	Description

	exo:viewType

	String

	false

	View type of the calendar. For more details, refer to the org.exoplatform.calendar.service. CalendarSetting class.

	exo:timeInterval

	Long

	false

	The interval for each action displayed each UI, for example, dragging and dropping one event in the Calendar application.

	exo:weekStartOn

	String

	false

	Defines the start date of one week, complying with the org.exoplatform.cal endar.service.CalendarSetting class.

	exo:dateFormat

	String

	false

	Defines the date format, including dd/MM/yyyy, dd-MM-yyyy, MM/dd/yyyy, and MM-dd-yyyy.

	exo:timeFormat

	String

	false

	Defines the time format, including “hh:mm a” and “HH:mm”.

	exo:timeZone

	String

	false

	The Id of the time zone, which is set by the user in compliance with the java.util.TimeZone Java class.

	exo:showWorkingTime

	false

	Boolean

	Checks if the working period is displayed or not.

	exo:workingTimeBegin

	String

	false

	Time to start working. This property only takes effect when exo:showWorkingTime is set to true.

	exo:workingTimeEnd

	String

	false

	Time to end working. This property only takes effect when exo:showWorkingTime is set to true.

	exo:defaultPrivateCalendars

	String

	true

	The list of the hidden private calendars.

	exo:defaultPublicCalendars

	String

	true

	The list of the hidden public calendars.

	exo:defaultSharedCalendars

	String

	true

	The list of the hidden shared calendars.

	exo:sharedCalendarsColors

	String

	true

	Defines the color of the shared calendar, which is in the format of [calendar id]:[color name].

	exo:sendOption

	String

	false

	The option to notify users before sending an invitation via email: never (not sending all time), always (sending message without asking) and ask (asking before sending).

Wiki data structure

Same as for Social data,
Wiki data is stored in JPA data source
in a set of database tables as follows:

[image: image14]

Table WIKI_WIKIS

	Name

	Type

	Description

	WIKI_ID

	ID

	The unique ID of the wiki.

	NAME

	VARCHAR

	The name of the wiki.

	OWNER

	VARCHAR

	The owner of the wiki.

	TYPE

	VARCHAR

	The type of the wiki. Can be “PORTAL”, “GROUP” or “USER”.

	WIKI_HOME

	Fk

	The ID of the home page of the wiki.

	SYNTAX

	VARCHAR

	The default Wiki syntax of the wiki.

	ALLOW_MULTI_SYNTAX

	BOOLEAN | Specifies whether multiple syntaxes are enabled or not.

Table WIKI_PAGES

	Name

	Type

	Description

	PAGE_ID

	ID

	The unique ID of the wiki page.

	WIKI_ID

	FK

	The ID of the wiki of the page.

	PARENT_PAGE_ID

	FK

	The ID of the parent page.

	AUTHOR

	VARCHAR

	The last user who updated the page.

	NAME

	VARCHAR

	The name of the wiki page.

	OWNER

	VARCHAR

	The owner (creator) of the wiki page.

	CREATED_DATE

	TIMESTAMP

	The creation date of the page.

	UPDATED_DATE

	TIMESTAMP

	The last update date of the page.

	CONTENT

	VARCHAR

	The content of the page.

	SYNTAX

	VARCHAR

	The default Wiki syntax of the wiki page.

	TITLE

	VARCHAR

	The title of the wiki page.

	EDITION_COMMENT

	VARCHAR

	The default Wiki syntax of the wiki page.

	URL

	VARCHAR

	The URL of the wiki page.

	MINOR_EDIT

	BOOLEAN

	True if the last version of the page is a minor edition.

	ACTIVITY_ID

	VARCHAR

	The ID of the activity linked to the wiki page.

	DELETED

	BOOLEAN

	True if the page is deleted.

Table WIKI_TEMPLATES

	Name

	Type

	Description

	TEMPLATE_ID

	ID

	The unique ID of the template.

	WIKI_ID

	ID

	The unique ID of the wiki of the page.

	AUTHOR

	VARCHAR

	The author of the template.

	NAME

	VARCHAR

	The name of the template.

	DESCRIPTION

	VARCHAR

	The description of the template.

	CONTENT

	VARCHAR

	The content of the template.

	SYNTAX

	VARCHAR

	The default Wiki syntax of the template.

	TITLE

	VARCHAR

	The title of the template.

	CREATED_DATE

	TIMESTAMP

	The creation date of the template.

	UPDATED_DATE

	TIMESTAMP

	The last update date of the template.

Table WIKI_WIKI_PERMISSIONS

	Name

	Type

	Description

	WIKI_ID

	ID

	The unique ID of the wiki.

	WIKI_IDENTITY

	VARCHAR

	The identity of the entity (can be an user, a group or “any”).

	IDENTITY_TYPE

	VARCHAR

	The identity type. Can be “USER” or “MEMBERSHIP”.

	PERMISSION

	VARCHAR

	The permission type. Can be “VIEWPAGE”, “EDITPAGE”, “ADMINPAGE” or “ADMINSPACE”.

Table WIKI_DRAFT_PAGES

	Name

	Type

	Description

	DRAFT_PAGE_ID

	ID

	The unique ID of the wiki draft page.

	TARGET_PAGE_ID

	ID

	The ID of the target page.

	TARGET_PAGE_VERSION

	VARCHAR

	The version of the target page.

	NEW_PAGE

	BOOLEAN

	True if this is the draft of a new page.

	AUTHOR

	VARCHAR

	The author of the wiki draft page.

	NAME

	VARCHAR

	The name of the wiki draft page.

	TITLE

	VARCHAR

	The title of the wiki draft page.

	CONTENT

	VARCHAR

	The content of the wiki draft page.

	SYNTAX

	VARCHAR

	The default Wiki syntax of the wiki draft page.

	CREATED_DATE

	TIMESTAMP

	The creation date of the wiki draft page.

	UPDATED_DATE

	TIMESTAMP

	The last update date of the wiki draft page.

Table WIKI_DRAFT_ATTACHMENTS

	Name

	Type

	Description

	ATTACHMENT_ID

	ID

	The unique ID of the wiki draft page attachment.

	DRAFT_PAGE_ID

	ID

	The unique ID of the wiki draft page attachment.

	CREATED_DATE

	TIMESTAMP

	The creation date of the wiki draft page attachment.

	FULL_TITLE

	VARCHAR

	The title of the wiki draft page attachment.

	ATTACHMENT_FILE_ID

	ID

	The unique ID of the file in the table FILES_FILES.

Table WIKI_WATCHERS

	Name

	Type

	Description

	USERNAME

	VARCHAR

	The username of the watcher.

	PAGE_ID

	VARCHAR

	The ID of the watched page.

Table WIKI_PAGE_ATTACHMENTS

	Name

	Type

	Description

	ATTACHMENT_ID

	ID

	The unique ID of the wiki page attachment.

	WIKI_PAGE_ID

	ID

	The unique ID of the wiki page attachment.

	CREATED_DATE

	TIMESTAMP

	The creation date of the wiki page attachment.

	FULL_TITLE

	VARCHAR

	The title of the wiki page attachment.

	ATTACHMENT_FILE_ID

	ID

	The unique ID of the file in the table FILES_FILES.

Table WIKI_PAGE_VERSIONS

	Name

	Type

	Description

	PAGE_VERSION_ID

	ID

	The unique ID of the wiki page version.

	VERSION_NUMBER

	NUMBER

	The number of the page version.

	AUTHOR

	VARCHAR

	The last user who updated the page version.

	NAME

	VARCHAR

	The name of the wiki page version.

	TITLE

	VARCHAR

	The title of the wiki page version.

	CREATED_DATE

	TIMESTAMP

	The creation date of the page version.

	UPDATED_DATE

	TIMESTAMP

	The last update date of the page version.

	CONTENT

	VARCHAR

	The content of the page version

	SYNTAX

	VARCHAR

	The default Wiki syntax of the wiki page version.

	EDITION_COMMENT

	VARCHAR

	The default Wiki syntax of the wiki page version.

	MINOR_EDIT

	BOOLEAN

	True if this version of the page is a minor edition.

	PAGE_ID

	FK

	The unique ID of the wiki page of the version.

Table WIKI_PAGES_RELATED_PAGES

	Name

	Type

	Description

	PAGE_ID

	ID

	The unique ID of the wiki page.

	RELATED_PAGE_ID

	ID

	The unique ID of the related wiki page.

Table WIKI_PAGE_PERMISSIONS

	Name

	Type

	Description

	PAGE_ID

	ID

	The unique ID of the wiki page.

	WIKI_IDENTITY

	VARCHAR

	The identity of the entity (can be an user, a group or “any”).

	IDENTITY_TYPE

	VARCHAR

	The identity type. Can be “USER” or “MEMBERSHIP”.

	PERMISSION

	VARCHAR

	The permission type. Can be “VIEWPAGE”, or “EDITPAGE”.

Table WIKI_PAGE_MOVES

	Name

	Type

	Description

	PAGE_MOVE_ID

	ID

	The unique ID of the page move.

	WIKI_TYPE

	VARCHAR

	The type of the wiki of the page.

	WIKI_OWNER

	VARCHAR

	The owner of the wiki of the page.

	PAGE_NAME

	BOOLEAN

	The name of the wiki page.

	CREATED_DATE

	TIMESTAMP

	The date of the page move.

	PAGE_ID

	ID

	The unique ID of the wiki page.

Table WIKI_EMOTION_ICONS

	Name

	Type

	Description

	EMOTION_ICON_ID

	ID

	The unique ID of the emotion icon.

	NAME

	VARCHAR

	The name of the emotion icon.

	IMAGE

	BLOB

	The emotion icon binary.

Forum JCR structure

Forum is a JCR-based application. The Forum data are saved in eXo-JCR
under the Forum Service data directory. The whole JCR structure of Forum
can be visualized in the diagram below:

[image: image1]

Forum data

The Forum Data node is created from the exo:forumData node type.
The data nodes like category, forum, topic, post, tag, BBcode and topic
type will be stored under the Forum Data node: ``

/exo:applications/ForumService/ForumData``.

Category and Category home

The Category node is used to store all categories of forum, this
node is a child node of the Forum Data node and only the
Category node type can be added to the Category Home node. The
type of the Category Home node which is exo:categoryHome is
stored in /exo:applications/ForumService/ForumData/CategoryHome. The
Category node has the exo:forumCategory type which is a child
node of the CategoryHome node. This node type is defined to allow
adding child nodes as exo:forum and exo:forumRSS.

	The exo:forumCategory node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The category Id.

	exo:owner

	String

	false

	The category creator.

	exo:path

	String

	false

	The node path of the category.

	exo:createdDate

	Date

	false

	The date when the category was created.

	exo:modifiedBy

	String

	false

	The Id of the user who made the last modification on the category.

	exo:name

	String

	false

	The category name.

	exo:modifiedDate

	Date

	false

	The date when the modifications on category were made.

	exo:description

	String

	false

	The category description.

	exo:moderators

	String

	true

	The list of moderators of the category.

	exo:tempModerators

	String

	true

	The temporary moderator of the category.

	exo:createTopicRole

	String

	true

	The topic role.

	exo:poster

	String

	true

	The list of Ids of the users and groups who can post in the category.

	exo:viewer

	String

	true

	The list of Ids of the users and groups who can only view posts in the category.

	exo:categoryOrder

	Long

	false

	The order number of category in the category list.

	exo:userPrivate

	String

	true

	The list of user Ids whose access are restricted from the category.

	exo:forumCount

	Long

	false

	The total number of forums in the category.

	exo:includedSpace

	Boolean

	false

	Checks whether a category includes a space forum or not.

The exo:forumCategory can add the exo:forumWatching mixin type
which has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:emailWatching

	String

	true

	Lists email addresses which are used to watch categories/forums/topics.

	exo:userWatching

	String

	true

	Lists users who are watching categories/forums/topics.

	exo:rssWatching

	String

	true

	Lists users who are watching RSS of categories/forums/topics.

Forum

The Forum node is defined as a child node of category and allowed
adding child nodes as Topic and RSS type. The node type of
Forum is exo:forum. The Forum node is stored in
/exo:applications/ForumService/ForumData/CategoryHome/%Category-id%/%Forum-id%
and its node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The forum Id.

	exo:owner

	String

	false

	The forum creator.

	exo:path

	String

	false

	The node path of the forum.

	exo:name

	String

	false

	The forum title.

	exo:forumOrder

	Integer

	false

	The order number in the list of forums. Forum with smaller number will get higher order.

	exo:createdDate

	Date

	false

	The date and time when the forum was created.

	exo:modifiedBy

	String

	false

	The Id of user who modified the category.

	exo:modifiedDate

	Date

	false

	The time of modification, including date, time and time zone.

	exo:lastTopicPath

	String

	false

	The Id of the last topic in the forum.

	exo:description

	String

	false

	The description of forum.

	exo:postCount

	Long

	false

	The total number of submitted posts in the forum.

	exo:topicCount

	Long

	false

	The total number of created topics in the forum.

	exo:isAutoAddEmailNotify

	Boolean

	false

	Enables/Disables the notification email to moderators.

	exo:notifyWhenAddTopic

	String

	true

	Email addresses to notify when there is a new topic in the forum.

	exo:notifyWhenAddPost

	String

	true

	Email addresses to notify when there is a new post in the forum.

	exo:isModerateTopic

	Boolean

	false

	All new topics will be moderated if the value is set to “true”.

	exo:isModeratePost

	Boolean

	false

	All new posts will be moderated if the value is set to “true”.

	exo:isClosed

	Boolean

	false

	The forum status: closed/open. Forum is closed if the value is set to “true”.

	exo:isLock

	Boolean

	false

	The forum status: locked/unlocked. Forum is locked if the value is set to “true”.

	exo:createTopicRole

	String

	true

	The list of Ids of the users or groups who can create topic in the forum.

	exo:poster

	String

	true

	The list of Ids of the users or groups who can submit post in the forum.

	exo:viewer

	String

	true

	The list of Ids of the users or groups who can view posts in the forum.

	exo:moderators

	String

	true

	The list of user Ids who are the moderators of forum.

	exo:tempModerators

	String

	true

	The list of user Ids who are the temporary moderators.

	exo:banIPs

	String

	true

	The list of banned IP addresses.

The exo:forum can add the exo:forumWatching mixin type. See its
properties here.

	The exo:pruneSetting child node has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	False

	The forum Id.

	exo:inActiveDay

	Long

	False

	The number of days/weeks/months that the topics in forum have not been active.

	exo:periodTime

	Long

	False

	The number of days/weeks/months that the prune job will be executed to check for the old topics and deactivate them.

	exo:isActive

	Boolean

	False

	The current status of the prune job. If the value is set to “True”, the prune job will be run.

	exo:lastRunDate

	Date

	False

	The date that prune job runs for the last time.

Topic

The Topic node is defined as a child node of the Forum `` node and
allowed adding child nodes as ``Topic, Poll and RSS types. The
node type of the Topic and Poll nodes is exo:topic, and
exo:poll.

	The Topic node is stored in
/exo:applications/ForumService/ForumData/CategoryHome/%Category-id%/%Forum-id%/%Topic-id%
and its exo:topic node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The topic Id.

	exo:owner

	String

	false

	The user Id of the topic creator.

	exo:path

	String

	false

	The node path of the topic.

	exo:name

	String

	false

	The subject of the topic.

	exo:createdDate

	Date

	false

	The time when the topic was created.

	exo:modifiedBy

	String

	false

	The Id of the user who made the latest modification in the topic.

	exo:modifiedDate

	Date

	false

	The date when the modifications were made.

	exo:lastPostBy

	String

	false

	The user Id of the last poster in topic.

	exo:lastPostDate

	Date

	false

	The date when the last post was submitted.

	exo:description

	String

	false

	The topic description.

	exo:topicType

	String

	false

	The Id of the topic type.

	exo:postCount

	Long

	false

	The number of posts in the topic.

	exo:viewCount

	Long

	false

	The number of topic views.

	exo:numberAttachments

	Long

	false

	The number of attachments in the topic.

	exo:icon

	String

	false

	The name of the topic icon.

	exo:link

	String

	false

	The link to the topic. For example: http://localhost:8080/ksdemo/public/classic/forum/topic/%Topic-id%.

	exo:isModeratePost

	Boolean

	false

	All posts in the topic will have to wait for moderation if the value is set to “true”.

	exo:isNotifyWhenAddPost

	Boolean

	false

	When there is a new post in a topic, a notification message will be sent to the topic owner if this value is set to “true”.

	exo:isClosed

	Boolean

	false

	The state of the topic: closed/open. If the value is set to “true”, the topic is closed.

	exo:isLock

	Boolean

	false

	The lock status of the topic: lock/unlocked. If the value is set to “true”, the topic is locked.

	exo:isApproved

	Boolean

	false

	The topic is approved to be published if the value is set to “true”.

	exo:isSticky

	Boolean

	false

	If the value is set to “true”, the topic is currently sticky.

	exo:isWaiting

	boolean

	false

	The topic status. The topic is waiting for moderation if the value is set to “true”.

	exo:isActive

	boolean

	false

	The topic activity status: active/inactive. The topic is active (topic gets new posts in a period of time) if the status is set to “true”.

	exo:isActiveByForum

	Boolean

	false

	The topic status based on the forum state. For example: When the topic is active and the forum that contains it is closed, this topic will be considered as inactive.

	exo:canView

	String

	true

	List of user Ids who can view the topic contents.

	exo:canPost

	String

	true

	List of user Ids who can post in the topic.

	exo:isPoll

	Boolean

	false

	The topic contains poll if the value is set to “true”.

	exo:userVoteRating

	String

	true

	The list of user Id who voted.

	exo:tagId

	String

	true

	The list of the topic tag Id.

	exo:voteRating

	Double

	false

	The average vote score of the topic.

The exo:topic can add the exo:forumWatching mixin type. See its
properties here.

	The exo:poll child node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The poll Id.

	exo:owner

	String

	false

	The user Id of poll creator.

	exo:createdDate

	Date

	false

	The date and time when the poll was created.

	exo:modifiedBy

	String

	false

	The user Id who modified the poll.

	exo:modifiedDate

	Date

	false

	The time when the poll is modified.

	exo:lastVote

	Date

	false

	The date of the last vote.

	exo:question

	String

	false

	The contents of the question for poll.

	exo:timeOut

	Long

	false

	The time when the polled is closed.

	exo:option

	String

	true

	The list of options for poll.

	exo:vote

	String

	true

	The list of votes by users.

	exo:userVote

	String

	true

	The list of user Ids who voted.

	exo:isMultiCheck

	Boolean

	false

	Users can choose more than one option if the value is set to “true”.

	exo:isAgainVote

	Boolean

	false

	Users can change their vote if the value is set to “true”.

	exo:isClosed

	Boolean

	false

	The poll status. Poll is closed if the value is set to “true”.

Post

The Post node is defined as the child node of Topic and allowed
adding only the Attachment `` child node type. The ``Post node has
the type of exo:post, and the child node type is
exo:forumAttachment.

	The Post node is stored in
``/exo:applications/ForumService/ForumData/CategoryHome/%Category-id%/%Forum-id%/%Topic-id%/%Post-id%

`` and its exo:post node type has the following

properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The post Id.

	exo:owner

	String

	false

	The user Id of the poster.

	exo:path

	String

	false

	The node path of the post.

	exo:createdDate

	Date

	false

	The date time when post is submitted, including date, time, time zone.

	exo:modifiedBy

	String

	false

	The Id of the user who modified the post.

	exo:editReason

	String

	false

	The reason for editing the post.

	exo:modifiedDate

	Date

	false

	The date when the post was modified.

	exo:name

	String

	false

	The post title.

	exo:message

	String

	false

	The message of the post.

	exo:remoteAddr

	String

	false

	The remote IP address of the post.

	exo:icon

	String

	false

	The name of the icon for the post.

	exo:userPrivate

	String

	true

	The list of user Ids that are restricted from the post.

	exo:link

	String

	false

	The link to open the topic.

	exo:isApproved

	Boolean

	false

	The state of the post: approved/unapproved. The post is approved if the value is set to “true”.

	exo:numberAttach

	Long

	false

	The number of attachments in the post.

	exo:isActiveByTopic

	Boolean

	false

	The post is activity status based on the topic state. If the topic is close, all post in it will be considered as inactive.

	exo:isHidden

	Boolean

	false

	The post status: shown/hidden. The post is hidden if the value is set to “true”.

	exo:isWaiting

	Boolean

	false

	The post is in the “waiting for approval” status. The post is waiting if the value is set to “true”.

	exo:isFirstPost

	Boolean

	false

	The post is the first one in a topic if the value is set to “true”.

Tag and Tag home

The Tag node is used to store data about tag name, topics with tag
added, number of users using this tag, number of tags in use. The type
of the Tag node is exo:forumTag and its child node type is
“exo:tagHome”. The Tag node is stored in
/exo:applications/ForumService/ForumData/TagHome/%tag-id% and its
node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of tag.

	exo:name

	String

	false

	The tag name.

	exo:useCount

	Long

	false

	The number of times that the tag was used.

	exo:userTag

	String

	true

	The number of users using the tag.

BBCode and BBCode home

The BBCode node is used to define what BBCode will be used in the
forum. The type of the BBCode node is exo:forumBBCode. The
BBCode node is stored in
/exo:applications/ForumService/ForumData/forumBBCode/%BBCode_tag%
and its node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:description

	String

	false

	The description about the tag purpose. For example: ‘The [url] tag allows creating links to other websites and files’.

	exo:example

	String

	false

	The example about using the tag. For example: ‘[URL]http://www.exoplatform.com[/URL]’.

	exo:isActive

	Boolean

	false

	The BBCode tag is active/inactive. The BBCode tag is active if the value is set to “true”.

	exo:isOption

	Boolean

	false

	If the value is set to “true”, users can create a tag with attributes and values.

	exo:replacement

	String

	false

	
	The HTML code that will be replaced by the tag. For example: The [url] tag replaces ‘``<a target=’_blank’

	href=”{param}”>{param}``’.

	exo:tagName

	String

	false

	The BBCode tag name.

Forum system

The Forum System node is created from the exo:forumSystem node
type. That is defined as a child node of Forum Service and can store
nodes with these following types: exo:banIP, ``

exo:forumUserProfile``, exo:statistic, exo:administration

	under the Forum System. The Forum System node is stored in ``

	/exo:applications/ForumService/ForumSystem``.

User Profile and User Profile Home

The User Profile and User Profile Home nodes are used to store
information of each user. User Profile is automatically created by a
listener when a user registers to the organization service. Private
message and forum subscription can be added to User Profile as a
child node. These node types exo:forumUserProfile,
exo:userProfileHome, exo:privateMessage and
exo:forumSubscription are defined as child nodes of
exo:forumUserProfile. The User Profile node is stored under the
ForumSystem node: ``

/exo:applications/ForumService/ForumSystem/exo:userProfileHome/exo:forumUserProfile``.

	The exo:forumUserProfile node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:userId

	String

	false

	The user Id.

	exo:fullName

	String

	false

	The user’s full name.

	exo:firstName

	String

	false

	The user’s first name.

	exo:lastName

	String

	false

	The user’s last name.

	exo:email

	String

	false

	The user’s email address.

	exo:userTitle

	String

	false

	The user’s title: Administrator, Moderator or User.

	exo:screenName

	String

	false

	The displayed name of user in Forum.

	exo:userRole

	Long

	false

	The user’s role. The value can be: “O”: Administrator, “1”: Moderator, “2”: User, “3”: guest.

	exo:signature

	String

	false

	The signature displayed at the end of each user’s post.

	exo:totalPost

	Long

	false

	The total posts submitted by the user.

	exo:totalTopic

	Long

	false

	The total topics started by the user.

	exo:jobWattingForModerator

	Long

	false

	The number of jobs that are waiting to be moderated.

	exo:moderateForums

	String

	true

	The list of forum Ids that user is the moderator.

	exo:moderateCategory

	String

	true

	The list of category Ids that user is the moderator.

	exo:readTopic

	String

	true

	The list of topics that user has read.

	exo:readForum

	String

	true

	The list of forums that user has read.

	exo:lastReadPostOfTopic

	String

	true

	The list of the last read posts id in a topic that user has read.

	exo:lastReadPostOfForum

	String

	true

	The list of the last read posts Id in a forum that user has read.

	exo:isAutoWatchMyTopics

	Boolean

	false

	Enables/Disables the auto-watch the topics created by user. Topics created by a user will be watched automatically if the value is set to “true”.

	exo:isAutoWatchTopicIPost

	Boolean

	false

	Enables/Disables the auto-watch posts submitted by user. Topics posted by an user will be watched automatically if the value is set to “true”.

	exo:bookmark

	String

	true

	The list of topics/posts bookmarked by user.

	exo:lastLoginDate

	Date

	false

	The date of the last login.

	exo:joinedDate

	Date

	false

	The date when user joined forum.

	exo:lastPostDate

	Date

	false

	The date of the last post.

	exo:isDisplaySignature

	Boolean

	false

	User’s signature will be displayed at the end of their post if the value is set to “true”.

	exo:isDisplayAvatar

	Boolean

	false

	User’s avatar is displayed if the value is set to “true”.

	exo:newMessage

	Long

	false

	The number of new messages.

	exo:timeZone

	Double

	false

	The time zone configured by user.

	exo:timeFormat

	String

	false

	The time format configured by user: 12h or 24h format.

	exo:shortDateformat

	String

	false

	The format of short date configured by user. For example: ‘dd/MM/yyyy’.

	exo:longDateformat

	String

	false

	The format of long date configured by user. For example: ‘dd mmm, yyyy’.

	exo:maxPost

	Long

	false

	The number of the maximum posts displayed per page.

	exo:maxTopic

	Long

	false

	The number of the maximum topics displayed per page

	exo:isShowForumJump

	Boolean

	false

	Displays/Hides the forum jump drop-down list. This jump list will be shown if the value is set to “true”.

	exo:collapCategories

	String

	true

	The list of categories collapsed by user.

	exo:isBanned

	Boolean

	false

	The user’s condition. User is currently banned if the value is set to “true”.

	exo:banUntil

	Long

	false

	The time when the ban period expires.

	exo:banReason

	String

	false

	The description for the reason that user was banned.

	exo:banCounter

	String

	false

	The number of bans that user has committed.

	exo:banReasonSummary

	String

	true

	The list of ban reason summaries when a user is banned for more than one time.

	exo:createdDateBan

	Date

	false

	The date when the ban period starts.

	The exo:privateMessage child node type has the following
properties:

	Properties name

	Required type

	Multiple

	Description

	exo:from

	String

	false

	The user Id of the sender.

	exo:sendTo

	String

	false

	The user Id of the receiver.

	exo:name

	String

	false

	The private message subject.

	exo:message

	String

	false

	The message contents.

	exo:type

	String

	false

	The private message type: sent messages or received messages.

	exo:receivedDate

	Date

	false

	The date when the private message was received.

	exo:isUnread

	Boolean

	false

	The status of private message: read/unread.

	The exo:forumSubscription child node type has the following
properties:

	Properties name

	Required type

	Multiple

	Description

	exo:categoryIds

	String

	true

	The Ids of the subscribed categories.

	exo:forumIds

	String

	true

	The Ids of the subscribed forums.

	exo:topicIds

	String

	true

	The Ids of the subscribed topics.

Statistic and Statistic Home

The Statistic and Statistic Home nodes are used to store
statistic information of forum, such as number of posts, topics, users,
active users. The node types are exo:forumStatistic, and
exo:statisticHome.

	The Statistic node is stored under the Forum System node:
/exo:applications/ForumService/ForumSystem/exo:statisticHome/exo:forumStatistic
and its exo:forumStatistic node type has the following
properties:

	Properties name

	Required type

	Multiple

	Description

	exo:postCount

	Long

	false

	The total number of submitted posts in Forum.

	exo:topicCount

	Long

	false

	The number of total created topics in Forum.

	exo:membersCount

	Long

	false

	The number of the registered users.

	exo:newMembers

	String

	false

	The Id of the latest registered user.

	exo:mostUsersOnline

	String

	false

	The highest number of the online users.

	exo:activeUsers

	Long

	false

	The number of active users.

Ban IP and Ban IP Home

The Ban IP and Ban IP Home nodes are used to store data about
banned IP addresses. The exo:banIPHome node type contains the
exo:IPHome child node.

	The Ban IP node is stored under the Forum System node:
/exo:applications/ForumService/ForumSystem/exo:banIPHome/exo:banIP
and its exo:banIP node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:ips

	String

	true

	The list of IP addresses of the banned users.

Administration and Administration Home

The Administration and Administration Home nodes are used to
store data for setting the layout, notification email format and censor
jobs. The type of the Administration Home node is
exo:administrationHome and the its child node type is
exo:administration. The Administration node is stored under the
ForumSystem node
/exo:applications/ForumService/ForumSystem/exo:administrationHome/exo:administration
and its exo:administration child node type has the following
properties:

	Properties name

	Required type

	Multiple

	Description

	exo:forumSortBy

	String

	false

	Sorts forum by criteria: post count, topic count, lock status.

	exo:forumSortByType

	String

	false

	Sorts forum by ascending/descending type.

	exo:topicSortBy

	String

	false

	Sorts topic by criteria.

	exo:topicSortByType

	String

	false

	Sorts topic by ascending type or descending type.

	exo:censoredKeyword

	String

	false

	The list of censored words.

	exo:headerSubject

	String

	false

	The subject header.

	exo:enableHeaderSubject

	Boolean

	false

	Enables/Disables the subject header. The subject header is displayed if the value is set to “true”.

	exo:notifyEmailContent

	String

	false

	Defines if the notification email will be sent when there is a new added topic/post.

	exo:notifyEmailMoved

	String

	false

	Defines if the notification email will be sent when there are any moved topic/post.

Notifications data structure

Same as for Wiki
and Social datas,
notifications data is also stored on JPA data source
and it has this database structure:

[image: image15]

Web notifications

Table NTF_WEB_NOTIFS

	Name

	Type

	Description

	WEB_NOTIF_ID

	ID

	The unique ID of the web notification.

	SENDER

	VARCHAR

	The sender of the web notification.

	TYPE

	VARCHAR

	The type of the web notification.

	CREATION_DATE

	TIMESTAMP

	The creation date of the web notification.

	TEXT

	VARCHAR

	The content of the web notification.

Table NTF_WEB_NOTIFS_PARAMS

	Name

	Type

	Description

	WEB_NOTIF_PARAMS_ID

	ID

	The unique ID of the web notification parameter.

	WEB_NOTIF_ID

	ID

	The ID of the related web notification.

	PARAM_NAME

	VARCHAR

	The name of the web notification parameter.

	PARAM_VALUE

	VARCHAR

	The value of the web notification parameter.

Table NTF_WEB_NOTIFS_USERS

	Name

	Type

	Description

	WEB_NOTIFS_USERS_ID

	ID

	The unique ID of the web notification user.

	WEB_NOTIF_ID

	ID

	The ID of web notification.

	RECEIVER

	VARCHAR

	The receiver of the web notification.

	UPDATE_DATE

	TIMESTAMP

	The updated date of the web notification.

	IS_READ

	BOOLEAN

	True if the web notification is read by the user.

	SHOW_POPOVER

	BOOLEAN

	True if the web notification must be shown is the notifications dropdown list.

	RESET_NUMBER_BADGE

	BOOLEAN

	True if the badge of the number of web notifications is reset.

E-mail notifications

Table NTF_EMAIL_NOTIFS

	Name

	Type

	Description

	EMAIL_NOTIF_ID

	ID

	The unique ID of the email notification.

	SENDER

	VARCHAR

	The sender of the email notification.

	TYPE

	VARCHAR

	The type of the email notification.

	CREATION_DATE

	TIMESTAMP

	The creation date of the email notification.

	SENDING_ORDER

	NUMBER

	The sending order of the email notification.

Table NTF_EMAIL_NOTIFS_PARAMS

	Name

	Type

	Description

	EMAIL_NOTIF_PARAMS_ID

	ID

	The unique ID of the email notification parameter.

	EMAIL_NOTIF_ID

	ID

	The ID of the related email notification.

	PARAM_NAME

	VARCHAR

	The name of the email notification parameter.

	PARAM_VALUE

	VARCHAR

	The value of the email notification parameter.

Table NTF_EMAIL_NOTIFS_DIGEST

	Name

	Type

	Description

	EMAIL_NOTIF_DIGEST_ID

	ID

	The unique ID of the email notification digest.

	EMAIL_NOTIF_ID

	ID

	The ID of the related email notification.

	DIGEST_TYPE

	VARCHAR

	The type of the email notification digest. Can be “daily” or “weekly”.

Email queue data structure

[image: image17]

The database table EMAIL_QUEUE stores information about emails sent via the platform.

Table EMAIL_QUEUE

	Name

	Type

	Description

	EMAIL_ID

	ID

	The unique ID of the email.

	CREATION_DATE

	TIMESTAMP

	The creation date of the email.

	TYPE

	VARCHAR

	The type of the email.

	SENDER

	VARCHAR

	The sender of the email.

	RECEIVER

	VARCHAR

	The receiver of the email.

	SUBJECT

	VARCHAR

	The subject of the email.

	BODY

	VARCHAR

	The body of the email.

	FOOTER

	VARCHAR

	The footer of the email.

Settings data structure

The settings data stucture is defined by this databases diagram:

[image: image16]

Table STG_SCOPES

	Name

	Type

	Description

	SCOPE_ID

	ID

	The unique ID of the settings scope.

	TYPE

	VARCHAR

	The type of the settings scope. Can be “WINDOWS”, “PAGE”, “SPACE”, “SITE”,
“PORTAL”, “APPLICATION” or “GLOBAL”.

	Name

	VARCHAR

	The name of the settings scope.

Table STG_CONTEXTS

	Name

	Type

	Description

	CONTEXT_ID

	ID

	The unique ID of the settings context

	TYPE

	VARCHAR

	The type of the settings context. Can be “GLOBAL” or “USER”.

	NAME

	VARCHAR

	The name of the settings context.

Table STG_SETTINGS

	Name

	Type

	Description

	SETTING_ID

	ID

	The unique ID of the settings.

	NAME

	VARCHAR

	The name of the settings.

	VALUE

	VARCHAR

	The value of the setting.

	CONTEXT_ID

	ID

	The ID of the context of the setting.

	SCOPE_ID

	ID

	The ID of the scope of the setting.

FAQ JCR structure

FAQ is a JCR-based application. The FAQ data are stored in the eXo-JCR
under the faqApp data directory. The whole FAQ JCR structure can be
visualized in the following diagram:

[image: image2]

Category

The system will automatically create the Category Home node under the
FAQ application node at the first time the user launches application.
All users-created categories are the sub-categories of Category Home.
The home of the Category node is automatically created
in/exo:applications/faqApp/categories.

In fact, Sub-category is also a category. FAQ has defined a mixin node
type called mix:faqSubCategory to allow adding a node having the same
type with category to an existing category. When a category is created,
this mixin node type will be mixed to that category.

The node type exo:faqCategory has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The sub-category Id.

	exo:name

	String

	false

	Name of the sub-category.

	exo:userPrivate

	String

	true

	The list of user Ids that are restricted from the category.

	exo:description

	String

	false

	The description of the sub-category.

	exo:isModerateQuestions

	Boolean

	false

	The question post moderation status. All questions posted in the sub-category will have wait for moderation if the value is set to “true”.

	exo:isModerateAnswers

	Boolean

	false

	The answer post moderation status. All answers posted in the sub-category will have to wait for moderation if the value is set to “true”.

	exo:isView

	Boolean

	false

	The category is shown/hidden. The category will be shown if the value is set to “true”.

	exo:viewAuthorInfor

	Boolean

	false

	The category enables user to view the information of questions poster if the value is set to “true’.

	exo:moderators

	String

	true

	The list of user ids who are the category moderator.

	exo:createdDate

	Date

	false

	The time when the sub-category is created.

	exo:index

	Long

	false

	The index number of the category.

Each category has a RSS child node that stores a RSS feed representing
all questions in this category as the binary data type. The RSS node is
stored in /exo:applications/faqApp/categories/ks.rss and its node
type is exo:faqRSS.

	Properties name

	Required type

	Multiple

	Description

	exo:content

	Binary

	false

	The content of RSS.

The Question Home node is created from the exo:faqQuestionHome node type
that is defined as a child node of category. This node cantains all
question nodes that created in side a category. Only the Question node
type exo:faqQuestion can be added to the question Home. The Question
Home node is created as a child node of Categories
/exo:applications/faqApp/categories/questions.

Question node is created from exo:faqQuestion node type under the
Question Home node. The Answers, Comments and Attachments node are
defined as child nodes of the Question node. The Question node is
created under the Question Home:
/exo:applications/faqApp/categories/questions/%Question-id%.

	The exo:faqQuestion node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The question Id.

	exo:language

	String

	false

	The language of the question.

	exo:name

	String

	false

	The question details.

	exo:title

	String

	false

	The question title.

	exo:author

	String

	false

	The user Id of the question poster.

	exo:email

	String

	false

	The email of the question author

	exo:isActivated

	Boolean

	false

	The question status: activated/inactivated. The question is activated if the value is set to “true”.

	exo:isApproved

	Boolean

	false

	The state of the question: approved/unapproved. The question is approved to be published if the value is set to “true”.

	exo:categoryId

	String

	false

	The Id of the category containing the question.

	exo:createdDate

	Date

	false

	The date and time when the question was submitted.

	exo:relatives

	String

	true

	The list of the related questions Ids.

	exo:usersVote

	String

	true

	The list of user Ids who voted.

	exo:markVote

	Double

	false

	The average vote scores of the question.

	exo:topicIdDiscuss

	String

	false

	The topic Id in the forum where the question is discussed.

	exo:nameAttachs

	String

	true

	The file name of attachments in the question.

	exo:lastActivity

	String

	false

	The user Id and time when the last activity of the question was made.

	exo:numberOfPublicAnswers

	Long

	false

	The number of all posted answers that has been published.

	exo:link

	String

	false

	The link to open the question.

	exo:responses

	String

	true

	The responses of the question.

	exo:dateResponse

	Date

	true

	The date when the question received the answer.

	exo:responseBy

	String

	true

	The user Id of the answer poster.

A question can support multilanguages, all other languages are stored as
a child node of the question and can be add to the question via a mixin
node type called mix:faqi18n. After the mixin node type mix:faqi18n is
added to the question, the node type exo:questionLanguageHome can be
added to the question node and this node type will contain all languages
node with the node type exo:faqLanguage. All display properties of the
question are defined in the node type exo:faqLanguage.

	The node type exo:faqLanguage has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:language

	String

	false

	The language of the question.

	exo:name

	String

	false

	The name of the language.

	exo:title

	String

	false

	The title of the question in the selected language.

	exo:questionId

	String

	false

	The Id of the question.

	exo:categoryId

	String

	false

	The Id of the category.

The Answer, Comment and Attachment node is defined as the child nodes of
the Question node. Attachment node is defined as a nt:file node type and
stored right under the Question node. Answers and comments node are
stored under the Answer home and the Comment home node.

	The Answer node is stored in
/exo:applications/faqApp/categories/questions/%Question-id%/faqAnswerHome/%Answer-id%
and its node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The Id of the answer.

	exo:answerPath

	String

	false

	The path to the answer.

	exo:questionId

	String

	false

	The Id of the question.

	exo:categoryId

	String

	false

	The Id of the category containing the question.

	exo:responses

	String

	false

	The content of the answer.

	exo:dateResponse

	Date

	false

	The date when the response was posted.

	exo:responseBy

	String

	false

	The Id of the user who responded the answer.

	exo:responseLanguage

	String

	false

	The language of the answer response.

	exo:approveResponses

	Boolean

	false

	The response is pending for approval if the value is set to “false”.

	exo:activateResponses

	Boolean

	false

	The state of the answer: activated/deactivated .

	exo:usersVoteAnswer

	String

	true

	The list of user Ids who voted for the answer.

	exo:MarkVotes

	Long

	false

	The average vote scores of the answer.

	exo:postId

	String

	false

	The post Id.

	exo:fullName

	String

	false

	The answer author’s full name.

	The Comment node is stored in
/exo:applications/faqApp/categories/questions/%Question-id%/faqCommentHome/%Comment-id%
and its node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The comment Id.

	exo:comments

	String

	false

	The comment contents.

	exo:dateComment

	Date

	false

	The date when the comment is posted.

	exo:commentBy

	String

	false

	The user Id of the comment poster.

	exo:postId

	String

	false

	The Id of the post.

	exo:fullName

	String

	false

	The full name of the comment poster.

	exo:categoryId

	String

	false

	The Id of the category in which the comment is posted.

	exo:questionId

	String

	false

	The Id of the question in which the comment is posted.

	exo:commentLanguage

	String

	false

	The language of the comment.

	The Attachment node is stored in
/exo:applications/faqApp/categories/questions/%Question-id%/faqAttachment
and its node type has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:fileName

	String

	false

	The name of the attachment file.

FAQ setting

This FAQ Setting node stores the user settings data, such as how answer
is ordered (in alphabetical order or by created date), the order type
(descending or ascending) or the user’s selection to sort questions by
popularity. Each user has a dedicated settings data to select the
display preferences in FAQ. The default setting will be used if the
users has never changed and saved their setting.

	The User Setting node of an individual user is stored in
/exo:applications/faqApp/settingHome/userSettingHome/%user-id%
and has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:ordeBy

	string

	false

	Defines how questions are ordered, by “alphabet/index” or “created date”.

	exo:ordeType

	string

	false

	The value “asc” = ascending and “des” = descending.

exo:ordeType | string | false | The value “asc” = ascending and “des” = descending. |

Template for FAQ

This node stores the template for FAQ portlet. The user can edit this
template online in FAQ to change the layout, skins, and more.

	The template is stored in an nt:file node type under the Template
Home node: /exo:applications/faqApp/templateHome/nt:file.

Poll JCR structure

The Poll data are saved in eXo-JCR under the eXoPolls data directory.
The whole JCR structure of Poll can be visualized in the diagram below:

[image: image3]

The Poll node is used to store the default data in a poll. The node type
of the Poll node is ``

exo:poll``. The Poll node is stored under eXoPolls node

/exo:applications/eXoPolls/%PortalName%/Polls/Poll-id% and its node
type (exo:poll) has the following properties:

	Properties name

	Required type

	Multiple

	Description

	exo:id

	String

	false

	The poll Id.

	exo:owner

	String

	false

	The user Id of the poll creator.

	exo:createdDate

	Date

	false

	The date and time when the poll is created.

	exo:modifiedBy

	String

	false

	The Id of the user who made the last modification on the poll.

	exo:modifiedDate

	Date

	false

	The date and time when the latest modification on poll was made.

	exo:lastVote

	Date

	false

	The date and time when the last vote was made.

	exo:question

	String

	false

	The question content of poll.

	exo:timeOut

	Long

	false

	The time when the poll will be closed.

	exo:option

	String

	true

	The list of options for poll. Each option is separated by commas.

	exo:vote

	String

	true

	The list of votes by users.

	exo:userVote

	String

	true

	The list of user Ids who voted.

	exo:isMultiCheck

	Boolean

	false

	Enables/Disables the multi-check. Users can vote for more than one option if the value is set to “true”.

	exo:isAgainVote

	Boolean

	false

	Enables/Disables the option to vote again. Users can change their vote if the value is set to “true”.

	exo:isClosed

	Boolean

	false

	The poll status: open/closed. The poll is closed if the value is set to “true”.

	exo:activityId

	String

	false

	When a Poll is created, a new activity will be created. The activity Id is stored as preference between Poll and the activity. When there are any updates on the poll, the corresponding activities will be updated on the Activity Stream.

Login History data structure

The login history data is stored in this database table:

[image: image19]

Table LOGIN_HISTORY

Templates configuration

This section consists of the following main topics:

	Spaces Templates

Provision of simple and explicit examples of the spaces template
configuration in the Social function of eXo Platform.

	ContentTemplates

Information about Content types and a list of Contents used in the
Content function of eXo Platform.

	FAQ Template

Instructions on how to configure the FQA template and to change its
look and feel, information of APIs provided by the UIComponent.

Spaces Templates

A space template allows you to configure layout of applications. In the
example below, a container called “Menu” is placed on top of others. The
container contains the SpaceMenuPortlet portlet:

<page>
 <owner-type></owner-type>
 <owner-id></owner-id>
 <name></name>
 <container id="SpacePage" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <container id="Menu" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <portlet-application>
 <portlet>
 <application-ref>social-portlet</application-ref>
 <portlet-ref>SpaceMenuPortlet</portlet-ref>
 </portlet>
 <access-permissions>*:/platform/users</access-permissions>
 <show-info-bar>false</show-info-bar>
 </portlet-application>
 </container>
 <container id="Application" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 </container>
 </container>
</page>

In this example, the outer container “SpacePage” contains two inner
containers: Menu and Application. These containers are displayed
as below, where [image: image4] is “Menu” and [image: image5] is “Application”:

[image: image6]

Changing the order of these two inner containers will swap the display
position:

<page>
 <owner-type></owner-type>
 <owner-id></owner-id>
 <name></name>
 <container id="SpacePage" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 <container id="Application" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 </container>
 <container id="Menu" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 ...
 </container>
 </container>
</page>

If you want to display a container in the left and another in the right,
place them in the UITableColumnContainer.gtmpl outer container:

<page>
 <owner-type></owner-type>
 <owner-id></owner-id>
 <name></name>
 <container id="SpacePage" template="system:/groovy/portal/webui/container/UITableColumnContainer.gtmpl">
 <container id="Menu" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 ...
 </container>
 <container id="Application" template="system:/groovy/portal/webui/container/UIContainer.gtmpl">
 </container>
 </container>
</page>

The sample code of space templates can be found
here [https://github.com/exoplatform/platform/tree/stable/4.0.x/samples/acme-intranet/webapp/src/main/webapp/WEB-INF/conf/portal/template/pages].

Content Templates

This sections consists of two following topics:

	Content types

Details of 2 template types (dialog and view) applied to a node type
or a metadata mixin type.

	Content list viewer templates

Description about Content List Templates, Category Navigation
Templates, and Paginator Templates which are commonly used in
Content.

Content types

Overview

The templates are applied to a node type or a metadata mixin type. There
are three of templates:

	Dialogs: are in the HTML form that allows creating node
instances.

	Views: are in the HTML fragments which are used to display nodes.

	CSS: can be embedded into the Views template to define how to
display HTML elements.

From the ECM Admin portlet, the Templates lists existing node types
associated to Dialog, View and CSS templates. These templates can be
attached to permissions (in the usual membership:group form), so
that a specific one is displayed according to the rights of the user
(very useful in a content validation workflow activity).

Document Type

The checkbox defines if the node type should be considered as the
Document Type or not. Sites Explorer considers such nodes as user
content and applies the following behavior:

	View template will be used to display the document type nodes.

	Document types nodes can be created by the ‘Add Document’ action.

	Non-document types are hidden (unless the ‘Show non document types’
option is checked).

Templates are written by using Groovy Templates [http://groovy-lang.org/templating.html]
that requires some experiences with JCR API and HTML notions.

Dialogs

Dialogs are Groovy templates that generate forms by mixing static HTML
fragments and Groovy calls to the components responsible for building
the UI at runtime. The result is a simple but powerful syntax.

Common parameters

These following parameters are common and can be used for all input
fields.

	Parameter

	Type

	Required

	Example

	Description

	jcrPath

	string

	
	jcrPath=/node/exo:title

	The relative path inside the current node.

	mixintype

	string with the commas (,) character.

	
	mixintype=mix:i18n

mixintype=mix:votable,mix:commentable,mix:i18n

	The list of mixin types you want to initialize when creating the content.

	validate

	string with the comma (,) character

	
	validate=empty

validate=empty,name

validate=org.exoplatform.webui.form.validator.StringLengthValidator

	The list of validators you want to apply to the input. Possible values are: name, email, number, empty, null, datetime, length OR validator classes. To know how to pass parameters to validators, refer here

	editable

	string

	
	editable=if-null

	The input will be editable only if the value of this parameter is if-null and the value of this input is null or blank.

	multiValues

	boolean

	
	multiValues=true

	Shows a multi-valued component if true and must be used only with corresponding multi-valued properties. The default value of this parameter is false.

	visible

	boolean

	
	visible=true

	The input is visible if this value is true.

	options

	String separated by the commas (,) character.

	
	"options=toolbar:CompleteWCM,height:'410px',noSanitization"

	A list of parameters which are input while the content templates are initialized.

Pass parameters to validators

	“name” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=name", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“email” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=email", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“number” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=number", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“empty” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=empty", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“null” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=null", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“datetime” validator:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=datetime", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

	“length” validator:

For a maximum length of 50 characters:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=empty,length(50;int)", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

For a minimum length of 6 characters and maximum length of 50
characters:

String[] webContentFieldTitle = ["jcrPath=/node/exo:title", "validate=empty,length(6;50;int)", "editable=if-null"];

uicomponent.addTextField("title", webContentFieldTitle) ;

Note

The mixintype can be used only in the root node field (commonly known as the name field).

Text Field

	Additional parameters See also: Common parameters

	Example

<%
 String[] fieldTitle = ["jcrPath=/node/exo:title", "validate=empty"] ;
 uicomponent.addTextField("title", fieldTitle) ;
 %>

Hidden Field

	Additional parameters

See also: Common parameters

	Example

String[] hiddenField5 = ["jcrPath=/node/jcr:content/dc:date", "visible=false"];
 uicomponent.addCalendarField("hiddenInput5", hiddenField5);

Non-value field

You cannot either see the non-value field on the form or input value for
them. Its value will be automatically created or defined when you are
managing templates.

	Example

String[] hiddenField1 = ["jcrPath=/node/jcr:content", "nodetype=nt:resource", "mixintype=dc:elementSet", "visible=false"] ;
uicomponent.addHiddenField("hiddenInput1", hiddenField1) ;

Text Area Field

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	rows

	Number

	
	The initial text area’s number of rows. The value is 10 by default.

	rows=20

	cols

	Number

	
	The initial text area’s number of cols. The value is 30 by default .

	cols=50

See also: Common parameters

	Example

<%
String[] fieldDescription = ["jcrPath=/node/exo:description", "validate=empty"] ;
uicomponent.addTextAreaField("description", fieldDescription) ;
%>

Rich Text Field

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	options

	string with the semicolon (;) character

	
	Some options for CKEditor field: toolbar, width and height.

	options=CompleteWCM;width:'100%';height:'200px';

	toolbar

	string

	
	
	The predefined toolbar for CKEditor. The value can be: Default, Basic, ``

	CompleteWCM``, BasicWCM, SuperBasicWCM.

	options=CompleteWCM

	width

	string

	
	The width of CKEditor. Its value can be the percent of pixel.

	options=width:'100%'

	height

	string

	
	The height of CKEditor. Its value can be the percent of pixel.

	options=height:'200px'

See also: Common parameters

	Example

<%
String[] fieldSummary = ["jcrPath=/node/exo:summary", "options=toolbar:CompleteWCM,width:'100%',height:'200px'", "validate=empty"] ;
uicomponent.addRichtextField("summary", fieldSummary) ;
%>

Creating a custom RichText editor fields

In the WYSIWYG widget
section, you already know about a set of default toolbars (CompleteWCM,
Default, BasicWCM, Basic, SuperBasicWCM). In this section, you will
learn how to create a RichText editor with custom buttons.

Just edit the configuration file and modify or add new items to the
configuration file of the RichText editor is located in:
webapps/eXoWCMResources/eXoConfig.js

Take a look at the eXoConfig.js file to see a definition of a custom
toolbar named “MyCustomToolbar”:

config.toolbar_MyCustomToolbar = [
 ['Source','Templates','-','FitWindow','ShowBlocks'],
 ['Cut','Copy','PasteText','-','SpellCheck','-','Undo','Redo'],
 ['WCMInsertGadget','Flash','Table','SpecialChar', 'WCMInsertContent'],
 '/',
 ['Bold','Italic','Underline','StrikeThrough','-','JustifyLeft','JustifyCenter','JustifyRight','JustifyFull','-','OrderedList','UnorderedList','-','TextColor','BGColor','-','RemoveFormat'],
 ['Link','WCMInsertPortalLink','Unlink','Anchor'],
 '/',
 ['Style','FontFormat','FontName','FontSize']
] ;

Every toolbar set is composed of a series of “toolbar bands” that are
grouped in the final toolbar layout. The bands items move together on
new rows when resizing the editor.

Every toolbar band is defined as a separated JavaScript array of
strings. Each string corresponds to an available toolbar item defined in
the editor code or in a plugin.

	Put the desired button names in square bracket (“[” & “]”) and
separate them by commas to create a toolbar band. You can look at the
above code to know all the possible toolbar item. If the toolbar item
does not exist, a message will be displayed when loading the editor.

	Include a separator in the toolbar band by putting the “-” string on
it.

	Separate each toolbar brands with commas.

	Use slash (“/”) to tell the editor that you want to force the next
bands to be rendered in a new row and not following the previous one.

Note

The last toolbar band must have no comma after it.

Calendar Field

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	options

	string

	
	An option for the calendar field: Display time.

	options=displaytime

	Example

<%
String[] fieldPublishedDate = ["jcrPath=/node/exo:publishedDate", "options=displaytime", "validate=datetime", "visible=true"] ;
uicomponent.addCalendarField("publishedDate", fieldPublishedDate) ;
%>

Upload Field

	Additional parameters

See also: Common parameters

	Example

When you create an upload form, you can store an image by two main ways:

	If you want to store the image as a property, use the following code:

<%
String[] fieldMedia = ["jcrPath=/node/exo:image"] ;
uicomponent.addUploadField("media", fieldMedia) ;
%>

	If you want to store the image as a node, use the following code:

<%
String[] hiddenField1 = ["jcrPath=/node/exo:image", "nodetype=nt:resource", "visible=false"] ;
String[] hiddenField2 = ["jcrPath=/node/exo:image/jcr:encoding", "visible=false", "UTF-8"] ;
String[] hiddenField3 = ["jcrPath=/node/exo:image/jcr:lastModified", "visible=false"] ;
uicomponent.addHiddenField("hiddenInput1", hiddenField1) ;
uicomponent.addHiddenField("hiddenInput2", hiddenField2) ;
uicomponent.addHiddenField("hiddenInput3", hiddenField3) ;

String[] fieldMedia = ["jcrPath=/node/exo:image"] ;
uicomponent.addUploadField("media", fieldMedia) ;
%>

	But, this code is not complete. If you want to display the upload
field, the image must be blank, otherwise you can display the image
and an action enables you to remove it. You can do as follows:

<%
 def image = "image";
 // If you're trying to edit the document
 if(uicomponent.isEditing()) {
 def curNode = uicomponent.getNode();
 // If the image existed
 if (curNode.hasNode("exo:image")) {
 def imageNode = curNode.getNode("exo:image") ;
 // If the image existed and available
 if (imageNode.getProperty("jcr:data").getStream().available() > 0 && (uicomponent.findComponentById(image) == null)) {
 def imgSrc = uicomponent.getImage(curNode, "exo:image");
 def actionLink = uicomponent.event("RemoveData", "/exo:image");
 %>
 <div>

 </div>
 <%
 } else {
 String[] fieldImage = ["jcrPath=/node/exo:image/jcr:data"] ;
 uicomponent.addUploadField(image, fieldImage) ;
 }
 } else {
 String[] fieldImage = ["jcrPath=/node/exo:image/jcr:data"] ;
 uicomponent.addUploadField(image, fieldImage) ;
 }
 } else if(uicomponent.dataRemoved()) {
 String[] fieldImage = ["jcrPath=/node/exo:image/jcr:data"] ;
 uicomponent.addUploadField(image, fieldImage) ;
 } else {
 String[] fieldImage = ["jcrPath=/node/exo:image/jcr:data"] ;
 uicomponent.addUploadField(image, fieldImage) ;
 }
%>

	To have multiple upload fields, you just add the multiValues=true
parameter to fieldProperty in dialog1.gtmpl:

Multi upload
fieldProperty = ["jcrPath=/node/exo:value", "multiValues=true"];
uicomponent.addUploadField("/node/exo_value", fieldProperty);

Note

In this case, you must be sure that the node type definition of the
document you are currently editing should allow the document to have
a child node named ‘exo:value’ whose node type is ‘
nt:unstructured’. All uploaded files of this upload component
are stored in this ‘exo:value’ child node.

Radio Field

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	options

	string with the comma (,) characters

	
	Some radio values.

	options=radio1,radio2,radio3

See also: Common parameters

	Example

<%
String[] fieldDeep = ["jcrPath=/node/exo:isDeep", "defaultValues=true", "options=radio1,radio2,radio3"];
uicomponent.addRadioBoxField("isDeep", fieldDeep);
%>

Select box Field

The select box widget enables you to render a select box with static
values. These values are enumerated in a comma-separated list in the
“options” argument.

	Parameter

	Type

	Required

	Description

	Example

	options

	string with the comma (,) characters

	
	Some option values.

	options=option1,option2,option3

See also: Common parameters

	Example

String[] mimetype = ["jcrPath=/node/jcrcontent/jcr:mimeType", "text/html", "options=text/html,text/plain"] ;
uicomponent.addSelectBoxField("mimetype", mimetype) ;

The argument with no key (here “text/html”) is selected by default.

Advanced dynamic select box

In many cases, the previous solution with static options is not good
enough and one would like to have the select box checked dynamically.
That is what eXo Platform provide thanks to the introduction of a Groovy
script as shown in the code fragment below.

String[] args = ["jcrPath=/node/exodestWorkspace", "script=ecm-explorer/widget/FillSelectBoxWithWorkspaces:groovy", "scriptParams=production"];
uicomponent.addSelectBoxField("destWorkspace", args) ;

The script itself implements the CMS Script interface and the cast is
done to get the select box object as shown in the script code which
fills the select box with the existing JCR workspaces.

import java.util.List ;
import java.util.ArrayList ;

import org.exoplatform.services.jcr.RepositoryService;
import org.exoplatform.services.jcr.core.ManageableRepository;

import org.exoplatform.webui.form.UIFormSelectBox;
import org.exoplatform.webui.core.model.SelectItemOption;
import org.exoplatform.services.cms.scripts.CmsScript;

public class FillSelectBoxWithWorkspaces implements CmsScript {

 private RepositoryService repositoryService_;

 public FillSelectBoxWithWorkspaces(RepositoryService repositoryService) {
 repositoryService_ = repositoryService;
 }

 public void execute(Object context) {
 UIFormSelectBox selectBox = (UIFormSelectBox) context;

 ManageableRepository jcrRepository = repositoryService_.getRepository();
 List options = new ArrayList();
 String[] workspaceNames = jcrRepository.getWorkspaceNames();
 for(name in workspaceNames) {
 options.add(new SelectItem(name, name));
 }
 selectBox.setOptions(options);
 }

 public void setParams(String[] params) {
 }
}

Note

It is also possible to provide a parameter to the script by using the argument “scriptParams”.

Checkbox Field

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	options

	string with the comma (,) characters

	
	Some checkbox values.

	options=checkbox1,checkbox2,checkbox3

See also: Common parameters

	Example

<%
String[] fieldDeep = ["jcrPath=/node/exo:isDeep", "defaultValues=true", "options=checkbox1,checkbox2,checkbox3"];
uicomponent.addCheckBoxField("isDeep", fieldDeep);
%>

Mixin Field

	Additional parameters

See also: Common parameters

	Example

<%
String[] fieldId = ["jcrPath=/node", "editable=false", "visible=if-not-null"] ;
uicomponent.addMixinField("id", fieldId) ;
%>

Action Field

One of the most advanced functionalities of this syntax is the ability
to plug your own component that shows an interface, enabling you to
select the value of the field.

In the generated form, you will see an icon which is configurable thanks
to the selectorIcon argument.

You can plug your own component using the selectorClass argument. It
must follow the eXo UIComponent mechanism and implements the interface
ComponentSelector:

package org.exoplatform.ecm.webui.selector;

import org.exoplatform.webui.core.UIComponent;
public interface ComponentSelector {
 public UIComponent getSourceComponent() ;
 public void setSourceComponent(UIComponent uicomponent, String[] initParams) ;
}

	Additional parameters

	Parameter

	Type

	Required

	Description

	Example

	selectorClass

	string

	
	The component to display.

	selectorClass=org.exoplatform.ecm.webui.tree.selectone.UIOneNodePathSelector

	selectorIcon

	string

	
	The action icon.

	selectorIcon=SelectPath24x24Icon

Depending on the selectorClass, some other parameters can be added.

For example, the component
org.exoplatform.ecm.webui.tree.selectone.UIOneNodePathSelector needs
the following parameter:

	Parameter

	Type

	Required

	Description

	Example

	workspaceField

	string

	
	The field which enables you to select a workspace.

	workspaceField=targetWorkspace

The component
org.exoplatform.ecm.webui.selector.UIPermissionSelector does not
need any special parameters.

	Example

<%
String[] fieldPath = ["jcrPath=/node/exo:targetPath", "selectorClass=org.exoplatform.ecm.webui.tree.selectone.UIOneNodePathSelector", "workspaceField=targetWorkspace", "selectorIcon=SelectPath24x24Icon"] ;
uicomponent.addActionField("targetPath", fieldPath) ;
%>

The followings are predefined selectors which can be used in the action
field to select an object from a list provided by the system. For
example, to assign the permission to given users/groups, users must
select them from a list of users/groups available in the system.

	org.exoplatform.ecm.webui.tree.selectone.UIOneNodePathSelector

Allows selecting the node path.

	org.exoplatform.ecm.webui.tree.selectone.UIOneTaxonomySelector

Allows selecting the category path.

	org.exoplatform.ecm.webui.selector.UIGroupMemberSelector

Allows selecting the membership of a given group.

	org.exoplatform.ecm.webui.component.explorer.popup.info.UIGroupSelector

Allows selecting a group.

	org.exoplatform.ecm.webui.nodetype.selector.UINodeTypeSelector

Allows selecting node types.

	org.exoplatform.ecm.webui.selector.UIPermissionSelector

Allows selecting permission expressions.

	org.exoplatform.wcm.webui.selector.UIUserMemberSelector

Allows selecting users from a users list.

Interceptors

To add an interceptor to a dialog, you can use this method
uicomponent.addInterceptor(String scriptPath, String type).

	Parameters

	Type

	Description

	scriptPath

	string

	The relative path to the script file.

	type

	string

	The type of interceptor: prev or post.

	Example

<%
uicomponent.addInterceptor("ecm-explorer/interceptor/PreNodeSaveInterceptor.groovy", "prev");
%>

WYSIWYG widget

Widgets are natively part of the eXo Platform product to provide a
simple and easy way for users to get information and notification on
their application. They complete the portlet application that focuses on
more transactional behaviors.

WYSIWYG stands for What You See Is What You Get. This widget is one of
the most powerful tools. It renders an advanced JavaScript text editor
with many functionalities, including the ability to dynamically upload
images or flash assets into a JCR workspace and then to refer to them
from the created HTML text.

String[] fieldSummary = ["jcrPath=/node/exo:summary", "options=basic"] ;
uicomponent.addWYSIWYGField("summary", fieldSummary) ;

String[] fieldContent = ["jcrPath=/node/exo:text", "options=toolbar:CompleteWCM,'height:410px'", ""] ;
uicomponent.addRichtextField("content", fieldContent

The “options” argument is used to tell the component which toolbar
should be used.

By default, there are five options for the toolbar: CompleteWCM,
Default, BasicWCM, Basic, SuperBasicWCM.

	CompleteWCM: a full set of tools is shown.

The following buttons are shown: Source, Templates, Show Blocks, Cut,
Copy, Paste Text, Undo, Redo, SpellCheck, WCM Insert Gadget, Flash,
Table, Insert Special Character, WCM Insert Content Link, Bold, Italic,
Underline, Strike Through, Justify Left, Justify Center, Justify Right,
Justify Full, Ordered List, Unordered List, Text Color, Background
Color, Remove Format, Link, WCM Insert Portal Link, Unlink, Anchor,
Style, Font Format, Font Name, Font Size, Maximize.

	Default: a large set of tools is shown, no “options” argument is
needed in that case.

The following buttons are shown: Source, Templates, Cut, Copy,
PasteText, Undo, Redo, SpellCheck, RemoveFormat, Bold, Italic,
Underline, Strike Through, Ordered List, Unordered List, Link, Unlink,
Anchor, Image, Flash, Table, Special Character, Text Color, Background
Color, Show Blocks, Style, Font Format, Font Name, Font Size, Maximize.

	BasicWCM: a minimal set of tools is shown.

The following buttons are shown: Source, Bold, Italic, Underline, Strike
Through, OrderedList, UnorderedList, Outdent, Indent, Justify Left,
Justify Center, Justify Right, JustifyFull, Blockquote, Link, Unlink,
WCM Insert Portal Link, WCM Insert Content Link, Show Blocks, Style,
Font Format, Font Name, FontSize, Maximize.

	Basic:

The following buttons are shown: Source, Bold, Italic, Underline, Strike
Through, Ordered List, Unordered List, Outdent, Indent, Justify Left,
Justify Center, Justify Right, Justify Full, Blockquote, Link, Unlink,
Show Blocks, Style, Font Format, Font Name, Font Size, Maximize.

	SuperBasicWCM:

The following buttons are shown: Source, Bold, Italic, Underline,
Justify Left, Justify Center, Justify Right, Justify Full, Link, Unlink,
WCM Insert Portal Link, WCM Insert Gadget, WCM Insert Content Link.

There is also a simple text area widget, which has text-input area only:

String [] descriptionArgs = ["jcrPath=/node/exo:title", "validate=empty"];
uicomponent.addTextAreaField("description", descriptionArgs) ;

Content Explorer

CSS

	By using Content, all the stylesheets of each site can be managed
online easily. You do not need to access the file system to modify
and wait until the server has been restarted. For the structure, each
site has its own CSS folder which can contain one or more CSS files.
These CSS files have the data, and the priority. If they have the
same CSS definition, the higher priority will be applied. You can
also disable some of them to make sure the disabled style will no
longer be applied into the site.

	For example, the Platform demo package has two main sites by default:
ACME and Intranet. The ACME site has two CSS files called
BlueStylesheet and GreenStylesheet. The blue one is enabled
and the green one is disabled by default. All you need to test is to
disable the blue one (by editing it and setting Available to ‘false’)
and enable the green one. Now, back to the homepage and see the
magic.

Note

Remember the cache and refresh the browser first if you do not see
any changes. Normally, this is the main reason why the new style is
not applied.

CKEditor

Basically, if you want to add a rich text area to your dialogs, you can
use the
addRichtextField
method. However, in case you want to add the rich text editor manually,
you first need to use the
addTextAreaField
method and some additional Javascripts as shown below:

<script src="/CommonsResources/ckeditor/ckeditor.js"></script>
<div class="control-group">
 <label class="control-label">Description:</label>
 <div class="controls">
 <%
 String[] fieldDescription = ["jcrPath=/node/exo:description"] ;
 uicomponent.addTextAreaField("description", fieldDescription)
 %>
 </div>
</div>
<script>
 CKEDITOR.config.toolbar = "Basic";
 CKEDITOR.replace('description');
</script>

CKEditor Enter mode

When creating/editing content with CKEditor, the Enter mode in
CKEditor will determine the default behavior when users press the
Enter key.

In eXo Platform, when you press the Enter key inside an editable text
region, a new <p/> paragraph is created in the Source editor by default
as below.

[image: image7]

However, you can change the default behavior of the CKEditor Enter mode
(
 line breaks or <div/> blocks) when creating a new dialog. For
example, if you want the Enter mode to be displayed as
 rather than
<p/> in CKEditor, simply add the following to the dialog.

String[] htmlArguments = ["jcrPath=/node/default.html/jcr:content/jcr:data", "options=toolbar:CompleteWCM,height:'410px',noSanitization,enterMode:CKEDITOR.ENTER_BR", htmlContent];

In case you want to change the default value from <p/> to
 for an
existing dialog, follow the steps:

Click Content > Content Administration on the top navigation bar.

Select Templates, then click [image: image8] corresponding to one template (for
example, Web Content) to open the View & Edit Template form.

Select the Dialog tab, then click [image: image9] corresponding to the dialog
that is currently used by the template (for example, dialog1).

Replace the following in the Content field:

String[] htmlArguments = ["jcrPath=/node/default.html/jcr:content/jcr:data", "options=toolbar:CompleteWCM,height:'410px',noSanitization", htmlContent];

with the following:

String[] htmlArguments = ["jcrPath=/node/default.html/jcr:content/jcr:data", "options=toolbar:CompleteWCM,height:'410px',noSanitization,enterMode:CKEDITOR.ENTER_BR", htmlContent];

Save the above change, then go to Content > Sites Explorer on the top
navigation bar to see your change:

	i. Click [image: image10] on the Action bar.

	ii. Select the template (Web Content in this example).

	iii. Enter the content with line breaks by hitting the Enter key.

	iv. Select [image: image11] in the Main Content field. The behavior of
Enter mode is now changed into
 as below.

[image: image12]

Adding a new ECM template with tabs

To avoid refreshing the first tab for every action execution, add a new
private function to the template with tabs. In the template, you must
insert a new piece of code like the following:

private String getDisplayTab(String selectedTab) {
if ((uicomponent.getSelectedTab() == null && selectedTab.equals("mainWebcontent"))
 || selectedTab.equals(uicomponent.getSelectedTab())) {
 return "display:block";
 }
 return "display:none";
 }

 private String getSelectedTab(String selectedTab) {
 if (getDisplayTab(selectedTab).equals("display:block")) {
 return "SelectedTab";
 }
 return "NormalTab";
 }

Changing in every event of onClick must be done like the following:

<div class="UITab NormalTabStyle">
<div class="<%=getSelectedTab("mainWebcontent")%>
 ">
 <div class="LeftTab">
<div class="RightTab">
 <div class="MiddleTab" onClick="<%=uicomponent.event("ChangeTab", "mainWebcontent")%>"><%=_ctx.appRes("WebContent.dialog.label.MainContent")%></div>
</div>
 </div>
</div>
 </div>

 <div class="UITab NormalTabStyle">
 <div class="<%=getSelectedTab("illustrationWebcontent")%>
 ">
 <div class="LeftTab">
 <div class="RightTab">
 <div class="MiddleTab" onClick="<%=uicomponent.event("ChangeTab", "illustrationWebcontent")%>"><%=_ctx.appRes("WebContent.dialog.label.Illustration")%></div>
 </div>
 </div>
 </div>
 </div>

 <div class="UITab NormalTabStyle">
 <div class="<%= getSelectedTab("contentCSSWebcontent")%>
 ">
 <div class="LeftTab">
 <div class="RightTab">
 <div class="MiddleTab" onClick="<%=uicomponent.event("ChangeTab", "contentCSSWebcontent")%>"><%=_ctx.appRes("WebContent.dialog.label.Advanced")%></div>
 </div>
 </div>
 </div>
</div>

Finally, to display the selected tab, simply add it to the style of
UITabContent class.

<div class="UITabContent" style="<%=getDisplayTab("mainWebcontent")%>">

Preventing XSS attacks

In the content management sytem, its typical feature is enabling
JavaScript in a content. This causes the XSS (Cross-site Scripting)
attacks to the content displayed in the HTML format.

However, there is no solution to keep JavaScript and to prevent the XSS
attacks at the same time, so Content allows you to decide whether
JavaScript is allowed to run on a field of the content template or not
by using the option parameter.

	To allow JavaScript to execute, add “options = noSanitization” to
the dialog template file. Normally, this file is named
dialog1.gtmpl.

	For example: The following code shows how to enable JavaScript in the
Main Content field of the Free Layout Webcontent content:

String [] htmlArguments = ["jcrPath = / node / default.html / JCR: content / JCR: data", "options = toolbar: CompleteWCM, height: '410px ', noSanitization" htmlContent];

	By default, there is no “options = noSanitization” parameter in
the dialog template file and this helps you prevent the XSS attacks.
When end-users input JavaScript into a content, the JavaScript is
automatically deleted when the content is saved.

View

The following is a sample code of the View template of a content
node:

	Get a content node to display:

<%
def node = uicomponent.getNode() ;
def originalNode = uicomponent.getOriginalNode()
%>

	Display the name of the content node:

<%=node.getName()%>

	Display the exo:title property of the content node:

<%if(node.hasProperty("exo:title")) {
 %>
<%=node.getProperty("exo:title").getString()%>
 <%
}
%>

	Display the exo:date property of the content node in a desired
format. For example: “MM DD YYYY” or “YYYY MM DD”.

<%
import java.text.SimpleDateFormat ;
SimpleDateFormat dateFormat = new SimpleDateFormat() ;
 %>
 ...

 <%
if(node.hasProperty("exo:date")) {
 dateFormat.applyPattern("MMMMM dd yyyy") ;
 %>
 <%=dateFormat.format(node.getProperty("exo:date").getDate().getTime())%>
 <%
}
%>

	Display the translation of the Sample.view.label.node-name
message in different languages.

<%=_ctx.appRes("Sample.view.label.node-name")%>

CSS

In Content, the stylesheet of a node is an optional template embedded in
the View template, such as File. To create the stylesheet for the View
template, you just need to add the content of the stylesheet into the
Content field of the CSS tab.

See the following example of the stylesheet for the nt:file
template:

/**
 LTR skin for nt:file template
*/
.FileContent {
 color: #0e396c;
}

.FileContent .TopNavContent {
 background: #F8F8F8;
 border: 1px solid #E1E1E1;
}

.FileContent .TopTitle {
 color: #4F4F4F;
 font-weight: bold;
 height: 28px;
 line-height: 26px;
 padding-left: 10px;
 width:75%;
 overflow:hidden;
 float:left;
}

.FileContent .ActionButton{
 padding: 4px 0 !important;
}

.FileContent .ActionButton a{
 background: url("/eXoWCMResources/skin/images/file/DownloadFile.png") no-repeat scroll 4px center transparent;
 border-left: 1px solid #E1E1E1;
 color: #058EE6;
 line-height: 20px;
 padding: 3px 10px 3px 29px;
}

.FileContent .ActionTextButton a{
 border-left: 1px solid #E1E1E1;
 color: #058EE6;
 line-height: 20px;
 padding: 3px 10px 3px 2px;
}

.FileContent .ECMIframe {
 border: 1px solid #cbcbcb;
 height: 100%;
 overflow: auto;
 width: 93%;
 margin: 5px;
 background: white;
}

Content list viewer templates

Content List Templates

The Content List Templates allow you to view the content list with
various templates. eXo Platform supports the following content list
templates:

	Template

	Description

	Documents.gtmpl

	Displays contents under a content list with a NodeType icon or the illustration on the left of the corresponding content.

	OneColumn.gtmpl

	Displays contents under one column. The illustration of each content is displayed on its left.

	TwoColumns.gtmpl

	Displays contents under two columns. The illustration of each content is displayed on its left.

	AccessibleBreadcrumb.gtmpl

	This template is designed according to the WCAG 2.0 (Web Content Accessibility Guidelines)to display content under the breadcrumb format.

	AccessibleSitemap.gtmpl

	This template is designed according to the WCAG 2.0 (Web Content Accessibility Guidelines) to display all content under the sitemap format.

	AccessibleBanner.gtmpl

	This template is designed according to the WCAG 2.0 (Web Content Accessibility Guidelines) to display the banner.

	AccessibleToolbar.gtmpl

	This template is designed according to the WCAG 2.0 (Web Content Accessibility Guidelines) to display the toolbar.

	AcmePowers.gtmpl

	Displays the content in the ACME website.

	Announcement.gtmpl

	Displays the announcement content.

Category Navigation Templates

The Category Navigation Templates display all contents under the
categories.

	Template

	Description

	CategoryList.gtmpl

	Displays categories as a navigation bar.

	AccessibleNavigation.gtmpl

	This template is designed according to the WCAG 2.0 (Web Content Accessibility Guidelines) to display categories as a navigation bar.

	AcmePowersCategoryTree.gtmp

	Displays category trees of the ACME site. It can be also used for other sites if it is available.

Paginator Templates

The Paginator Templates allow you to paginate the content into
various pages.

	Template

	Description

	DefaultPaginator.gtmpl

	Allows you to paginate content.

	EmptyPaginator.gtmpl

	The empty paginator template.

FAQ Template

This section consists of three following main topics:

	Configuration plug-in

Information about the configuration plug-in which is used to
automatically set up a default template for the FAQ portlet, and
details of properties of the template configuration plug-in.

	How to change look and feel

Instructions on how to change the template FAQ viewer, either by
using plug-in or by using the Edit mode.

	API provided by the UIComponent (UIViewer.java)

Introduction to UIViewer, details of APIs and classes (CategoryInfo,
QuestionInfo, SubCategoryInfo).

Configuration plug-in

Configuration plug-in is used to automatically set up a default template
for the FAQ portlet. When the FAQ service starts, it will get values
which are returned from the TemplatePlugin component to initialize
the template for the FAQ portlet.

The template configuration plug-in is configured in the
templates-configuration.xml file.

In details:

At runtime of the FAQ Service, FAQService component is called, then
templates-configuration.xml file is executed. The component-plugin
named addTemplatePlugin will be referred to
org.exoplatform.faq.service.TemplatePlugin to execute some objects
and create default data for the Forum application.

<external-component-plugins>
 <target-component>org.exoplatform.faq.service.FAQService</target-component>
 <component-plugin>
 <name>faq.default.template</name>
 <set-method>addTemplatePlugin</set-method>
 <type>org.exoplatform.faq.service.TemplatePlugin</type>
 <init-params>
 <value-param>
 <name>viewerTemplate</name>
 <value>war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl</value>
 </value-param>
 </init-params>
 </component-plugin>
</external-component-plugins>

The properties of template configuration plug-in are defined in the
init-params tag as follows:

<init-params>
 <value-param>
 <name>viewerTemplate</name>
 <value>war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl</value>
 </value-param>
</init-params>

	Name

	Description

	Value

	viewerTemplate

	Path of file template.

	war:/ks-extension/ks/faq/templates/FAQViewerPortlet.gtmpl

How to change look and feel

You can change the template FAQ viewer in one of the following two ways:

	By using Plug-in

	By using the **edit mode**

Plug-in

	Create a file named FAQViewerPortlet.gtmpl. The content of the file
is the template of the FAQ viewer.

	Copy this file and paste into
ks-extension/WEB-INF/ks-extension/ks/faq/templates/ that is in the
webapps folder of the server (Tomcat, JBoss).

When the server runs, FAQViewerPortlet.gtmplwill initialize the
template of the FAQ viewer.

Edit Mode

	Run the server and open the FAQ Portlet.

	Go to edit mode and open the Edit Template tab.

	Edit the content of text-area-input and click Save.

API provided by the UIComponent (UIViewer.java)

	UIViewer is the child of the component UIFAQPortlet. It shows the
main content of FAQ portlet.

	List of APIs:

	Function name

	Param

	Return

	Description

	getCategoryInfo

	Empty

	CategoryInfo object

	Gets the object CategoryInfo.

	arrangeList

	(List< String > list): List of path

	A new list is arranged

	Arranges a list of paths.

	render

	(String): The content of answers or comments

	A new string is converted by function render

	Renders the content of answers or comments.

	The CategoryInfo class:

...
private String id;
private String path;
private String name;
private List<String> pathName;
private List<QuestionInfo> questionInfos = new ArrayList<QuestionInfo>();
private List<SubCategoryInfo> subCateInfos = new ArrayList<SubCategoryInfo>();
...

	Param

	Type

	Description

	id

	String

	The JCR node name of the category node.

	path

	String

	The JCR node path of the category node.

	name

	String

	The name of the category.

	pathName

	``List<String> ``

	The path to the category includes a list of category names.

	questionInfos

	List<QuestionInfo>

	The list of QuestionInfo object.

	subCateInfos

	List<SubCategoryInfo>

	The list of SubCategoryInfo object.

	The QuestionInfo class:

...
private String id;
private String question;
private String detail;
private List<String> answers = new ArrayList<String>();
...

	Param

	Type

	Description

	id

	String

	The JCR node name of the question node.

	question

	String

	The content of the question.

	details

	String

	Details of the question.

	answers

	List<String>

	The list of answers for the question.

	The SubCategoryInfo class: The params of this class are the same
as those of the CategoryInfo class. See here for
more information.

Listener Service events

In eXo Platform, whenever an action occurs (for example, login/logout,
content creation/modification), a corresponding event is sent to the
Listener Service that dispatches the notification to its listeners.
Listeners then can perform whatever action they want when receiving an
event.

For example, to manage events related to profile updates, the
ProfileLifecyle that extends
AbstractLifeCycle<ProfileListener, ProfileLifeCycleEvent> will be
implemented. To listen to these event types, the ProfileLifecyle
extends LifeCycleListener<ProfileLifeCycleEvent>. This listener is
registered to ProfileLifecyle as below:

<external-component-plugins>
 <target-component>org.exoplatform.social.core.manager.IdentityManager</target-component>
 <component-plugin>
 <name>ProfileUpdatesPublisher</name>
 <set-method>addProfileListener</set-method>
 <type>org.exoplatform.social.core.application.ProfileUpdatesPublisher</type>
 </component-plugin>
</external-component-plugins>

For simplification, it is assumed that the user changes his avatar, then
this activity is posted on his stream. The process of these actions are
illustrated as below:

The ProfileUpdatesPublisher listener (that extends
ProfileListenerPlugin) is registered into ProfileLifecyle in the
IdentityManager class. When his profile is updated, the below event
will be broadcasted.

 /**
 * {@inheritDoc}
 */
 public void updateProfile(Profile existingProfile) throws MessageException {

 broadcastUpdateProfileEvent(existingProfile);
}

Based on event type of avatar update, the ProfileLifecycle will
dispatch that event to the avatarUpdated listener.

/**
 * Broadcasts update profile event depending on type of update.
 *
 * @param profile
 * @since 1.2.0-GA
 */
 protected void broadcastUpdateProfileEvent(Profile profile) {
 if (..) {

 } else if (profile.getUpdateType().equals(Profile.UpdateType.AVATAR)) { // updateAvatar
 profileLifeCycle.avatarUpdated(profile.getIdentity().getRemoteId(), profile);
 } else if (...) {
 }
 }

The fired event is listened by ProfileListener.

@Override
 protected void dispatchEvent(ProfileListener listener, ProfileLifeCycleEvent event) {
 switch(event.getType()) {
 case AVATAR_UPDATED :
 listener.avatarUpdated(event);
 break;
 case BASIC_UPDATED:
 ...
 }
 }

Information included in the event is extracted and processed.

@Override
public void avatarUpdated(ProfileLifeCycleEvent event) {

 publishActivity(event, activityMessage, "avatar_updated");
}

private void publishActivity(ProfileLifeCycleEvent event, String activityMessage, String titleId) {

 publish(event, activity, activityId, titleId);
}

See Understanding the ListenerService for more details.

Events and event listeners in eXo Platform have to follow the
org.exoplatform.services.listener.Event and
org.exoplatform.services.listener.Listener classes respectively.

To make easy for you to learn about events in eXo Platform, this section
will list events and their brief description that are classified to each
module, including:

	Portal events

	ECMS events

	Social events

	Forum events

Portal events

Portal configuration events

org.exoplatform.portal.config.DataStorage will fire the following
events when a portal configuration object is created/updated/removed:

	org.exoplatform.portal.config.DataStorage.portalConfigCreated

	org.exoplatform.portal.config.DataStorage.portalConfigUpdated

	org.exoplatform.portal.config.DataStorage.portalConfigRemoved

To cache these above events, you can create event listeners that must be
subclasses of:
org.exoplatform.services.listener.Listener<org.exoplatform.portal.config.DataStorage,
org.exoplatform.portal.config.model.PortalConfig>.

Page configuration events

org.exoplatform.portal.config.DataStorage will fire the following
events when a page configuration object is created/updated/removed:

	org.exoplatform.portal.config.DataStorage.pageCreated

	org.exoplatform.portal.config.DataStorage.pageUpdated

	org.exoplatform.portal.config.DataStorage.pageRemoved

The related event listeners must be extended from
org.exoplatform.services.listener.Listener<org.exoplatform.portal.config.DataStorage,
org.exoplatform.portal.config.model.Page>.

Navigation tree events

org.exoplatform.portal.mop.navigation.NavigationService will
broadcast the following events when a navigation is
created/updated/removed:

	org.exoplatform.portal.mop.navigation.navigation_created

	org.exoplatform.portal.mop.navigation.navigation_updated

	org.exoplatform.portal.mop.navigation.navigation_destroyed

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.portal.mop.navigation.NavigationService,
org.exoplatform.portal.mop.SiteKey>.

Page events

org.exoplatform.portal.mop.page.PageService will broadcast the
following events when a page is created/updated/removed.

	org.exoplatform.portal.mop.page.page_created

	org.exoplatform.portal.mop.page.page_updated

	org.exoplatform.portal.mop.page.page_destroyed

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.portal.mop.page.PageService,
org.exoplatform.portal.mop.page.PageKey>.

Registered/unregistered conversation state events

org.exoplatform.services.security.ConversationRegistry will fire the
following events when any user signs in/out the portal.

	exo.core.security.ConversationRegistry.register

	exo.core.security.ConversationRegistry.unregister

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.security.ConversationRegistry,
org.exoplatform.services.security.ConversationState>.

Servlet context events

org.exoplatform.web.GenericHttpListener will broadcast the following
events when a Servlet context is initialized/destroyed:

	org.exoplatform.web.GenericHttpListener.contextInitialized

	org.exoplatform.web.GenericHttpListener.contextDestroyed

The related event listeners must be extended from
org.exoplatform.services.listener.Listener<org.exoplatform.container.PortalContainer,
javax.servlet.ServletContextEvent>.

HTTP Session Events

org.exoplatform.web.GenericHttpListener will broadcast the following
events when an HTTP session is created/destroyed:

	org.exoplatform.web.GenericHttpListener.sessionCreated

	org.exoplatform.web.GenericHttpListener.sessionDestroyed

The related event listeners must be extended from
org.exoplatform.services.listener.Listener<org.exoplatform.container.PortalContainer,
javax.servlet.http.HttpSessionEvent>.

ECMS events

Content events

	InlineEditingService and RenameConnector will fire the below
event when a content is created, updated, or removed from the
database:

	CmsService.event.postEdit

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.cms.CmService,
javax.jcr.Node>.

	CmsService will fire these events when a content is
created/added.

	CmsService.event.postCreate

	CmsService.event.postEdit

	CmsService.event.preCreate

	CmsService.event.preEdit

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.cms.CmService,
javax.jcr.Node>.

	LinkManager will fire the following event when a link is added to
the content.

	CmsService.event.postEdit

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.cms.CmService,
javax.jcr.Node>.

	WebDavService will fire this event when a content is uploaded
through WebDav.

	WebDavService.event.postUpload

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.jcr.webdav.WebDavService,
javax.jcr.Node>.

File events

	FileUploadHandler and WebdavService will fire the below
events when a file is created or removed from the database:

	FileActivityNotify.event.FileRemoved

	ActivityNotify.event.FileCreated

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<java.lang.Object,
javax.jcr.Node>.

	UIDocumentForm will fire the following event when a file is
created.

	ActivityNotify.event.FileCreated

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<java.lang.Object,
javax.jcr.Node>.

	DeleteManageComponent will fire the following event when a file
is removed from the database.

	FileActivityNotify.event.FileRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<java.lang.Object,
javax.jcr.Node>.

	AddNodeActivityAction will fire the following event when an
attachment is added into the database.

	ActivityNotify.event.AttachmentAdded

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
javax.jcr.Node>.

	RemoveFileActivityAction will fire the following event when a
file is removed from the database.

	FileActivityNotify.event.FileRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<java.lang.Object,
javax.jcr.Node>.

	RemoveNodeActivityAction will fire the following event when an
attachment is removed from the database.

	ActivityNotify.event.AttachmentRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
javax.jcr.Node>.

Publication events

	WCMPublicationService will fire the below event when the document
publication state is changed.

	WCMPublicationService.event.updateState

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.cms.CmService,
javax.jcr.Node>.

	AuthoringPublicationPlugin will fire the below event when a node
is involved into a publication lifecycle.

	PublicationService.event.postInitState

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.cms.CmService,
javax.jcr.Node>.

	AuthoringPublicationPlugin will fire the following events when
publication state of a document is changed.

	ActivityNotify.event.StateChanged

	PublicationService.event.postUpdateState

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

Version events

UIPublicationPanel will fire the below event when the document
version is restored.

	ActivityNotify.event.RevisionChanged

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

Comment events

CommentService will fire the following events when a comment is
created/updated/removed.

	ActivityNotify.event.CommentAdded

	ActivityNotify.event.CommentUpdated

	ActivityNotify.event.CommentRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
javax.jcr.Node>.

Tag events

NewFolksonomyService will fire the following events when a tag is
created/removed.

	ActivityNotify.event.TagAdded

	ActivityNotify.event.TagRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

Node events

	CmsService, MoveNodeManageComponent and
PasteManageComponent will fire the below event when a node is
moved to another place.

	ActivityNotify.event.NodeMoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

	RemoveNodeActivityAction will fire the below event when a node is
removed from the database.

	ActivityNotify.event.NodeRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

	UIDocumentForm will fire the below event when a new node is
created.

	ActivityNotify.event.NodeCreated

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<java.lang.Object,
javax.jcr.Node>.

Property events

	AddFilePropertyActivityAction will fire the below event when a
new property is added to a file:

	FileActivityNotify.event.PropertyAdded

	EditFilePropertyActivityAction will fire the below event when a
property of file is modified.

	FileActivityNotify.event.PropertyUpdated

	EditPropertyActivityAction will fire the below event when a
property of document is modified.

	ActivityNotify.event.PropertyUpdated

	RemoveFilePropertyActivityAction will fire the below event when a
property is removed from file.

	FileActivityNotify.event.PropertyRemoved

The listeners of Property events must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

Category events

TaxomonyService will fire the following events when a category is
added to/removed from a node.

	ActivityNotify.event.CategoryAdded

	ActivityNotify.event.CategoryRemoved

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<javax.jcr.Node,
java.lang.String>.

Artifacts events

CreatePortalArtifactService will fire the below event when artifacts
are deployed for a new site.

	PortalArtifactsInitializerServiceImpl.portal.onCreate

The related event listeners must be subclasses of
org.exoplatform.services.listener.Listener<org.exoplatform.services.jcr.ext.commonSessionProvider,
java.lang.String>.

Social events

All Social event listeners must be extended from the
org.exoplatform.social.common.lifecycle.AbstractLifeCycle<T extends
LifeCycleListener<E>, E extends LifeCycleEvent<?,?>.

People events

org.exoplatform.social.core.profile.ProfileLifeCycle will broadcast
the following events when the user profile is created or when the
profile information (avatar/basic info/contact/experience/current
position) is updated:

	org.exoplatform.social.core.profile.ProfileLifeCycle.createProfile

	org.exoplatform.social.core.profile.ProfileLifeCycle.avatarUpdated

	org.exoplatform.social.core.profile.ProfileLifeCycle.basicUpdated

	org.exoplatform.social.core.profile.ProfileLifeCycle.contactUpdated

	org.exoplatform.social.core.profile.ProfileLifeCycle.experienceUpdated

	org.exoplatform.social.core.profile.ProfileLifeCycle.headerUpdated

Spaces events

org.exoplatform.social.core.space.SpaceLifecycle will broadcast the
following events when:

	A space is created/removed.

	org.exoplatform.social.core.space.SpaceLifecycle.spaceCreated

	org.exoplatform.social.core.space.SpaceLifecycle.spaceRemoved

	An application is added/activated/deactivated/removed.

	org.exoplatform.social.core.space.SpaceLifecycle.addApplication

	org.exoplatform.social.core.space.SpaceLifecycle.deactivateApplication

	org.exoplatform.social.core.space.SpaceLifecycle.activateApplication

	org.exoplatform.social.core.space.SpaceLifecycle.removeAp